
1 Axisymmetric equations of motion in cylindrical (r, λ, z)-

coordinates

The primitive equations are:

∂u

∂t
+ u

∂u

∂r
+
v

r

∂u

∂λ
+ w

∂u

∂z
− v2

r
− fv = −1

ρ

∂p

∂r
+ Fr, (1)

∂v

∂t
+ u

∂v

∂r
+
v

r

∂v

∂λ
+ w

∂v

∂z
+
uv

r
+ fu = − 1

ρr

∂p

∂λ
+ Fλ, (2)

∂w

∂t
+ u

∂w

∂r
+
v

r

∂w

∂λ
+ w

∂w

∂z
= −1

ρ

∂p

∂z
− g + Fz, (3)

∂ρ

∂t
+

1

r

∂ρru

∂r
+

1

r

∂ρv

∂λ
+
∂ρw

∂z
= 0, (4)

∂θ

∂t
+ u

∂θ

∂r
+
v

r

∂θ

∂λ
+ w

∂θ

∂z
= θ̇ (5)

ρ = p∗π
1
κ
−1/(Rdθ) (6)

where u, v, w are the Eulerian velocity components in the three orthogonal coordinate directions,
(Fr, Fλ, Fz) is the divergence of the sub-grid-scale turbulent momentum fluxes and/or the frictional
force per unit mass, θ̇ is the diabatic heating rate. Temperature is given by T = πθ, where θ is the
potential temperature and π is the Exner function.

The diabatic heating rate, θ̇, in units of Kelvin per second is given by

θ̇ =
Q̇

cpdπ
, (7)

where Q̇ is the heating rate per unit mass in units of Joules per second per kilogram.

2 The balance equations

Assuming gradient wind balance and hydrostatic balance, Eqs. (1) and (3) give,

∂p

∂r
= ρ

(
v2

r
+ fv

)
, (8)

and
∂p

∂z
= −ρg. (9)

Taking (∂/∂z)[Eq. (8)] and (∂/∂r)[Eq. (9)] to eliminate the pressure we obtain

the thermal wind equation

g
∂ ln ρ

∂r
+ C

∂ ln ρ

∂z
= −∂C

∂z
, (10)

where

C =
v2

r
+ fv (11)

denotes the sum of the centrifugal and Coriolis forces per unit mass. Equation (10) is a linear
first-order partial differential equation for ln ρ.

The characteristics of the equation satisfy
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dz

dr
=
C

g
. (12)

The characteristics coincide with the isobaric surfaces because a small displacement (dr, dz) along
an isobaric surface satisfies (∂p/∂r)dr + (∂p/∂z)dz = 0. Then, using the equations for hydrostatic
balance (∂p/∂z = −ρg) and gradient wind balance (∂p/∂r = ρC) gives the equation for the charac-
teristics (Eq. (12)). The density variation along a characteristic is governed by the equation

d

dr
ln ρ = −1

g

∂C

∂z
, (13)

which is another form of Eq. (10).

3 Stability of a balanced vortex

The local axisymmetric stability of a baroclinic vortex depends on the three spatially-varying pa-
rameters characterizing:

the static stability

N2 = − g

χ

∂χ

∂z
; (14)

the generalized inertial stability

I2g = I2 +
C

χ

∂χ

∂r
; (15)

the baroclinicity

B =
1

χ

∂

∂z
(Cχ) = ξ

∂v

∂z
+
C

χ

∂χ

∂z
. (16)

The condition for a baroclinic vortex to be symmetrically stable is

∆ = N2I2g −B2 > 0. (17)
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4 The secondary circulation: derivation of the dry Eliassen

equation

If the vortex is axisymmetric, evolves strictly axisymmetrically and adheres to strict gradient wind
and hydrostatic balance, we can derive an equation for the streamfunction, ψ, of the secondary
circulation, i.e. the circulation in a vertical plane. This streamfunction is such that

u = − 1

rρ

∂ψ

∂z
, w =

1

rρ

∂ψ

∂r
. (18)

which ensures that the quasi-steady form of equation (4) is satisfied exactly. The equation for ψ
follows by differentiating the thermal wind equation in the form g∂χ/∂r = −∂(Cχ)/∂z with respect
to time t and using the azimuthal momentum equation and thermodynamic equation to eliminate
the time derivatives. It is convenient to write the last two equations in the following form

∂v

∂t
+ u(ζ + f) + wS = −V̇ (19)

and
∂χ

∂t
+ u

∂χ

∂r
+ w

∂χ

∂z
= −χ2θ̇ (20)

where ζ = (1/r)(∂(rv)/∂r) is the relative vorticity and S = ∂v/∂z is the vertical shear of the
tangential wind. Note that we have added a momentum sink term Fλ = −V̇ in the former equation
to represent the effect of surface friction on the tangential wind component of the vortex in the
balance formulation. Here the term V̇ represents a distributed body force and is confined to a thin
layer adjacent to the lower boundary.

For general forcing terms V̇ and θ̇, v and χ given by Eqs. (19) and (20) will change at rates that
will destroy thermal wind balance. To ensure that the vortex remains in balance as time proceeds,
the time derivative of the thermal wind equation, Eq. (10) expressed in terms of1 χ, must be satisfied,
i.e., ∂v/∂t and ∂χ/∂t must satisfy

g
∂

∂r

(
∂χ

∂t

)
+

∂

∂z

(
C
∂χ

∂t
+ χ

∂C

∂t

)
= 0. (21)

Substituting the time derivatives from Eqs. (19) and (20) in Eq. (21) gives

−g ∂
∂r

(
u
∂χ

∂r
+ w

∂χ

∂z
+ Θ̇

)
− ∂

∂z

[
C

(
u
∂χ

∂r
+ w

∂χ

∂z
+ Θ̇

)
+ χξ

(
u(ζ + f) + wS + V̇

)]
= 0,

where χ = 1/θ and Θ̇ = χ2θ̇. We will refer to Θ̇ as the heating function. Then

∂

∂r

[
−g∂χ

∂z
w − g

∂χ

∂r
u

]
− ∂

∂z

[(
χξ(ζ + f) + C

∂χ

∂r

)
u+

∂

∂z
(χC)w

]
= g

∂Θ̇

∂r
+

∂

∂z
(CΘ̇) +

∂

∂z
(χξV̇ )

or, using Eq. (10),

∂

∂r

[
−g∂χ

∂z
w +

∂

∂z
(χC)u

]
− ∂

∂z

[
(χξ(ζ + f) + C

∂χ

∂r
)u+

∂

∂z
(χC)w

]
= g

∂Θ̇

∂r
+

∂

∂z
(CΘ̇) +

∂

∂z
(χξV̇ ). (22)

Then, substitution for u and w from Eqs. (18) into Eq. (22) gives

∂

∂r

[
−g∂χ

∂z

1

ρr

∂ψ

∂r
− ∂

∂z
(χC)

1

ρr

∂ψ

∂z

]
+

∂

∂z

[(
χξ(ζ + f) + C

∂χ

∂r

)
1

ρr

∂ψ

∂z
− ∂

∂z
(χC)

1

ρr

∂ψ

∂r

]
= g

∂Θ̇

∂r
+

∂

∂z
(CΘ̇) +

∂

∂z
(χξV̇ ). (23)

1It is easy to verify that Eq. (10) has exactly the same form when expressed in terms of χ.
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This linear second-order partial differential equation is called the Eliassen equation. In terms of the
parameters introduced in Section 3, the equation may be written finally as

The Eliassen equation

∂

∂r

[
γN2∂ψ

∂r
− γB

∂ψ

∂z

]
+

∂

∂z

[
γI2g

∂ψ

∂z
− γB

∂ψ

∂r

]
= g

∂Θ̇

∂r
+

∂

∂z
(CΘ̇) +

∂

∂z
(χξV̇ ), (24)

where
γ = χ/(ρr). (25)

Equation (24) contains the same three spatially-varying parameters N2, I2g and B that arise in the
local axisymmetric linear stability analysis of a baroclinic vortex (Section 3).

The discriminant of the Eliassen equation (24) is

D = 4γ2(I2gN
2 −B2), (26)

which is proportional to ∆, where ∆ = I2gN
2 − B2 characterizes the local axisymmetric stability of

a baroclinic vortex. Recall that a baroclinic vortex is symmetrically stable if ∆ > 0. Equation (24)
is elliptic if D > 0, parabolic if D = 0, and hyperbolic if D < 0. Thus the symmetric stability of
the vortex globally is a requirement that the Eliassen equation is elliptic globally, which, in turn, is
a requirement that the equation may be solved as a diagnostic equation for the streamfunction, ψ,
subject to suitable boundary conditions on ψ along the horizontal and vertical domain boundaries
of the axisymmetric vortex.

The Eliassen equation can be written in the form

Ā
∂2ψ

∂r2
+ 2B̄

∂2ψ

∂r∂z
+ C̄

∂2ψ

∂z2
+ D̄

∂ψ

∂r
+ Ē

∂ψ

∂z
= g

∂Θ̇

∂r
+

∂

∂z
(CΘ̇) +

∂

∂z
(χξV̇ ), (27)

where

Ā = −g∂χ
∂z

1

ρr
= γN2, (28)

B̄ = − ∂

∂z
(χC)

1

ρr
= −γB, (29)

C̄ =

(
χξ(ζ + f) + C

∂χ

∂r

)
1

ρr
= γI2g , (30)

D̄ =
∂Ā

∂r
+
∂B̄

∂z
, (31)

and

Ē =
∂B̄

∂r
+
∂C̄

∂z
. (32)

Again, the discriminant of this equation is 4(ĀC̄− B̄2) (Sneddon 1957, p108 uses B̄ as the coefficient
of the mixed derivative term instead of 2B̄ used here and defines the discriminant as B̄2 − 4ĀC̄. We
have chosen here to reverse the sign so that positive potential vorticity (Section 5) corresponds with
positive discriminant.).
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4.1 The moist Eliassen equation

We can write

Θ̇ = χ2θ̇ = χ2 Q̇

cpπ
. (33)

Let us approximate the material diabatic heating rate for slantwise ascent by2

Q̇ ≈ −Lv

(
u
∂r∗v
∂r

+ w
∂r∗v
∂z

)
. (34)

Then, using the formula (34) for Q̇ and formulae (18) for u and w gives,

χ2θ̇ = −γLv

cpT
J(ψ, r∗v), (35)

where γ = χ/(ρr) and J(·, ·) denotes the Jacobian operator. In the foregoing, we have used the fact
that

χ2Lv

cpπ
=
Lcχ

cpT
, (36)

because θ = T/π.
It follows from (35) that

∂

∂r
(gχ2θ̇) = − ∂

∂r

(
gγLv

cpT
J(ψ, r∗v)

)
, (37)

and
∂

∂z
(Cχ2θ̇) = − ∂

∂z

(
CγLv

cpT
J(ψ, r∗v)

)
. (38)

The diabatic forcing terms involving the stream function ψ may then be moved to the left hand side
of Eq. (24) to give

∂

∂r

[
−g∂χ

∂z

1

ρr

∂ψ

∂r
− ∂

∂z
(χC)

1

ρr

∂ψ

∂z
− gΘ̇

]
+

∂

∂z

[(
χξ(ζ + f) + C

∂χ

∂r

)
1

ρr

∂ψ

∂z
− ∂

∂z
(χC)

1

ρr

∂ψ

∂r
− CΘ̇

]
=

∂

∂z
(χξV̇ ). (39)

Inserting the foregoing relations for the diabatic forcing terms then yields

∂

∂r

[
γN2∂ψ

∂r
− γB

∂ψ

∂z
+ γ

gLv

cpT
J(ψ, r∗v)

]
+

∂

∂z

[
γI2g

∂ψ

∂z
− γB

∂ψ

∂r
+ γ

CLv

cpT
J(ψ, r∗v)

]
=

∂

∂z
(χξV̇ ). (40)

Finally,

the Eliassen equation for moist slantwise ascent is

∂

∂r

[
γ

{(
N2 +

gLv

cpT

∂r∗v
∂z

)
∂ψ

∂r
−

(
B +

gLv

cpT

∂r∗v
∂r

)
∂ψ

∂z

}]
+

∂

∂z

[
γ

{(
I2g −

CLv

cpT

∂r∗v
∂r

)
∂ψ

∂z
−
(
B − CLv

cpT

∂r∗v
∂z

)
∂ψ

∂r

}]
=

∂

∂z

(
χξV̇

)
. (41)

2It is readily verified that retention of the local time derivative of r∗v in (34) does not change the discriminant
condition (Eq. (45) below) that characterizes the partial differential equation type for ψ in the case of explicit
moist adiabatic dynamics. Its retention merely adds a time derivative ‘forcing’ term to the right hand side of the
corresponding Eliassen equation. This forcing term corresponds to a higher order term in the balance formulation,
which would be typically neglected for slowly evolving axisymmetric tropical cyclone vortices. A scale analysis confirms
that this term is subdominant in comparison to the vertical advection and radial advection advection of r∗v . In the
limit of a slowly evolving vortex, this term is asymptotically small, justifying its neglect herein.
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In the form of Eq. (27), the coefficients of the second-order derivatives are now given by:

Ā = γ

(
N2 +

gLv

cpT

∂r∗v
∂z

)
, (42)

B̄ = −γ
[
B +

1

2

Lv

cpT

(
g
∂r∗v
∂r

− C
∂r∗v
∂z

)]
, (43)

C̄ = γ

(
I2g −

CLv

cpT

∂r∗v
∂r

)
. (44)

Then,

the moist discriminant is

Dm = 4γ2

[(
I2g −

CLv

cpT

∂r∗v
∂r

)(
N2 +

gLv

cpT

∂r∗v
∂z

)
−
{
B +

Lv

2cpT

(
g
∂r∗v
∂r

− C
∂r∗v
∂z

)}2
]
. (45)

Note that, at least up to this stage, we have made no approximations concerning the variation of
Lv/T .

5 Dry PV

The dry Rossby-Ertel PV is defined as

P =
(ω + f) · ∇θ

ρ
. (46)

For a symmetric vortex with tangential wind speed distribution v(r, z),

ω + f = −∂v
∂z

i+ (ζ + f)k = −1

r

∂M

∂z
i+

1

r

∂M

∂r
k,

and

∇θ = ∂θ

∂r
i+

∂θ

∂z
k,

where i and k as unit vectors in the radial and vertical directions, respectively. Therefore

P =
1

rρ

(
−∂M
∂z

∂θ

∂r
+
∂M

∂r

∂θ

∂z

)
=

1

rρ
J(M, θ), (47)

where J(.,.) is the Jacobian operator. Now

−∂M
∂z

∂θ

∂r
+
∂M

∂r

∂θ

∂z
= j · ∇θ ∧∇M,

where j is a unit vector in the tangential direction. It follows that zero dry PV is equivalent to the
congruence of the M - and θ-surfaces.

It is straightforward to show that the discriminant of the dry Eliassen equation is proportional
to P . Specifically,

D = 4g
χ3

ρr2
ξP. (48)
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6 Saturation moist PV

The saturation moist PV is defined by the analogous formula:

P ∗
m =

(ω + f) · ∇θ∗e
ρ

, (49)

where

∇θ∗e =
∂θ∗e
∂r

i+
∂θ∗e
∂z

k.

Therefore

P ∗
m =

1

rρ

(
−∂M
∂z

∂θ∗e
∂r

+
∂M

∂r

∂θ∗e
∂z

)
=

1

rρ
J(M, θ∗e). (50)

Now

−∂M
∂z

∂θ∗e
∂r

+
∂M

∂r

∂θ∗e
∂z

=
1

rρ
j · ∇θ∗e ∧∇M.

Then

P ∗
m =

1

rρ
j · ∇θ∗e ∧∇M. (51)

Note that this formula does not depend on any approximation for θ∗e . Thus zero moist PV is equivalent
to the congruence of the M - and θ∗e-surfaces.

7 An approximate expression for P ∗
m

We could write

P ∗
m =

θ∗e
rρ

j · ∇ ln θ∗e ∧∇M. (52)

Now, ln θ∗e = ln θ+Lvr
∗
v/(cpT ) = − lnχ+Lvr

∗
v/(cpT ) and therefore, treating Lv/(cpT ) as a constant

to a first approximation in comparison to spatial variations of r∗v,

1

θ∗e
∇θ∗e = − 1

χ
∇χ+

Lv

cpT
∇r∗v =

(
− 1

χ

∂χ

∂r
+

Lv

cpT

∂r∗v
∂r

)
i+

(
− 1

χ

∂χ

∂z
+

Lv

cpT

∂r∗v
∂z

)
k,

so that

P ∗
m =

θ∗e
ρ

[
−∂v
∂z

(
− 1

χ

∂χ

∂r
+

Lv

cpT

∂r∗v
∂r

)
+ (ζ + f)

(
− 1

χ

∂χ

∂z
+

Lv

cpT

∂r∗v
∂z

)]
. (53)

Recall that

B =
1

χ

∂

∂z
(Cχ) = ξ

∂v

∂z
+
C

χ

∂χ

∂z
, (54)

I2g = I2 +
C

χ

∂χ

∂r
, (55)

g
∂χ

∂r
= − ∂

∂z
(Cχ) = −χB, (56)

N2 = − g

χ

∂χ

∂z
, (57)

and note that
∂C

∂z
= B −N2C/g. (58)

Then, upon multiplying P ∗
m by gρξ/θ∗e yields

gρξ

θ∗e
P ∗
m =

(
C

χ

∂χ

∂z
−B

)
︸ ︷︷ ︸

− ∂C
∂z

− g

χ

∂χ

∂r︸ ︷︷ ︸
B

+
gLv

cpT

∂r∗v
∂r

+ ξ(ζ + f)︸ ︷︷ ︸
I2g−C

χ
∂χ
∂r

− g

χ

∂χ

∂z︸ ︷︷ ︸
N2

+
gLv

cpT

∂r∗v
∂z

 ,
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or, interchanging the two terms on the right-hand-side,

gρξ

θ∗e
P ∗
m =

(
I2g −

C

χ

∂χ

∂r

)
︸ ︷︷ ︸

I2g+
C
g
B, using Eq. (56)

(
N2 +

gLv

cpT

∂r∗v
∂z

)
− ∂C

∂z

(
B +

gLv

cpT

∂r∗v
∂r

)
.

Now, using Eqs. (58),

B

(
C

g
N2 − ∂C

∂z

)
= −B2,

whereupon
gρξ

θ∗e
P ∗
m = I2g

(
N2 +

gLv

cpT

∂r∗v
∂z

)
+B

CLv

cpT

∂r∗v
∂z

−B2 − ∂C

∂z

gLv

cpT

∂r∗v
∂r

. (59)

Our expectation at first was that P ∗
m would be proportional to Dm, where

Dm = 4γ2

[(
I2g −

CLv

cpT

∂r∗v
∂r

)(
N2 +

gLv

cpT

∂r∗v
∂z

)
−
{
B +

Lv

2cpT

(
g
∂r∗v
∂r

− C
∂r∗v
∂z

)}2
]
. (60)

However, this turns out not to be the case. Nevertheless, comparison of the Eqs. (59) and (60)
suggested adding

−CLv

cpT

∂r∗v
∂r

(
N2 +

gLv

cpT

∂r∗v
∂z

)
(61)

to the right-hand-side of Eq. (59) and then subtracting it. The last three terms on the right-hand-side
of (59) with the expression (61) subtracted then sum to give

−B
(
B − CLv

cpT

∂r∗v
∂z

)
+

Lv

cpT

∂r∗v
∂r

(
−g∂C

∂z
+ CN2

)
︸ ︷︷ ︸

−gB, using Eqs. (54) and (57)

+gC

(
Lv

cpT

)2
∂r∗v
∂r

∂r∗v
∂z

,

which factorizes to give

−
(
B − CLv

cpT

∂r∗v
∂z

)(
B +

gLv

cpT

∂r∗v
∂r

)
.

It follows that

the saturation moist PV is

gρξ

θ∗e
P ∗
m =

(
I2g −

CLv

cpT

∂r∗v
∂r

)(
N2 +

gLv

cpT

∂r∗v
∂z

)
−
(
B − CLv

cpT

∂r∗v
∂z

)(
B +

gLv

cpT

∂r∗v
∂r

)
. (62)

8 Relationship between Dm and P ∗
m

From Eq. (60) above,

Dm

4γ2
=

(
I2g −

CLv

cpT

∂r∗v
∂r

)(
N2 +

gLv

cpT

∂r∗v
∂z

)
−
[
B +

Lv

2cpT

(
g
∂r∗v
∂r

− C
∂r∗v
∂z

)]2
. (63)

Subtracting Eq. (62) from Eq. (63) gives

Dm

4γ2
− gρξ

θ∗e
P ∗
m =

(
B − CLv

cpT

∂r∗v
∂z

)(
B +

gLv

cpT

∂r∗v
∂r

)
−
[
B +

Lv

2cpT

(
g
∂r∗v
∂r

− C
∂r∗v
∂z

)]2
. (64)
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Writing

α =
CLv

cpT

∂r∗v
∂z

and β =
gLv

cpT

∂r∗v
∂r

, (65)

Eq. (64) becomes

Dm

4γ2
− gρξ

θ∗e
P ∗
m = (B − α)(B + β)−

[
B +

1

2
(β − α)

]2
= B2 +B(β − α)− αβ −

[
B2 +B(β − α) +

1

4
(β − α)2

]
= −1

4
(α + β)2

= −1

4

(
Lv

cpT

)2(
g
∂r∗v
∂r

+ C
∂r∗v
∂z

)2

. (66)

Now r∗v = r∗v(p, T ), whereupon application of the chain rule gives

g
∂r∗v
∂r

+ C
∂r∗v
∂z

= g

(
∂r∗v
∂p

∂p

∂r
+
∂r∗v
∂T

∂T

∂r

)
+ C

(
∂r∗v
∂p

∂p

∂z
+
∂r∗v
∂T

∂T

∂z

)

=
∂r∗v
∂p

(
g
∂p

∂r
+ C

∂p

∂z

)
︸ ︷︷ ︸

=0 from Eqs. (8) and (9)

+
∂r∗v
∂T

(
g
∂T

∂r
+ C

∂T

∂z

)
= g

(
∂r∗v
∂T

)
p

(
∂T

∂r

)
p

,

where the change of constraint relation(
∂T

∂r

)
p

=

(
∂T

∂r

)
z

+
C

g

(
∂T

∂z

)
r

,

has been used. Finally,

the relation between Dm and P ∗
m is

Dm = 4gγ2

ρξP ∗
m

θ∗e
− g

4

(
Lv

cpT

)2(
∂r∗v
∂T

)2

p

(
∂T

∂r

)2

p︸ ︷︷ ︸
>0

 . (67)

Important conclusions:

� The congruence of the M and θ∗e surfaces does not imply that Dm = 0.

� If M and θ∗e surfaces are congruent, Dm < 0 and the moist Eliassen equation is hyperbolic.
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