
Chapter 5

WAVES AT LOW LATITUDES

A characteristic of the atmosphere is its shallow depth; 99% of the mass lies
below a height of 30 km whereas the mean earth radius is 6,380 km. Over

this 30 km which extends into the middle stratosphere there is a considerable
variation in the vertical structure. However much can be learned about low

latitude motions by considering the atmosphere to be a uniform layer of

uid with variable depth. Put another way, consideration of the horizontal

structure of the vertical mean atmosphere yields rich information about the

predominant wave modes, especially at low latitudes. The classical papers

on this subject are those of Matsuno (1966) and Longuet-Higgins (1968) with
important contributions also from Webster (1972) and Gill (1980) amongst

others. A recent review is given by Lim and Chang (1987).
Although we begin our study by assuming a uniform vertical structure,

we shall �nd that the e�ort is not in vain for it turns out that the solutions
to the divergent barotropic system are, in fact, the horizontal part of the
baroclinic modes.

In contrast to Longuet-Higgins (1968) and Webster (1972) who use full-
spherical geometry, we follow Matsuno (1966) and Gill (1980) and consider
motions on an equatorial beta plane. To begin with, we review the the-

ory of wave motions in a divergent barotropic uid on an f -plane or on a

mid-latitude �-plane as described in DM, Chapter 11. The basic ow con-

�guration is shown in Fig. 5.1. The uid layer has undisturbed depth H.

We consider small amplitude perturbations about a state of rest in which
the free surface elevation is H(1 + �). As shown in DM, the linearized

\shallow-water" equations take the form

@u

@t
� fv = �c2

@�

@x
; (5.1)
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Figure 5.1: Con�guration of a one-layer uid model with a free surface.

@v

@t
+ fu = �c2

@�

@y
; (5.2)

@�

@t
+
@u

@x
+
@v

@y
= 0; (5.3)

where c =
p
(gH) is the phase speed of long waves in the absence of rotation

(f = 0).

On an f -plane, Eqs. (5.1) - (5.3) have sinusoidal travelling wave solutions
in the x-direction with wavelength 2�=k and period 2�=! (wavenumber k,

frequency !) of the form

v = v̂ sin (kx� !t) (5.4)

(u; �) = (û; �̂) cos (kx� !t) ; (5.5)

where û; v̂; �̂ are constants, provided

!
�
!2 � f 2 � c2 k2

�
= 0: (5.6)

This dispersion relation yields ! = 0, which corresponds with a steady

(@=@t = 0) geostrophic ow, or !2 = f 2 + c2 k2, corresponding with inertia -

gravity waves. The phase speed of these waves, cp, is given by

cp =
!

k
= �

s�
c2 +

f 2

k2

�
= �c

s�
1 +

1

L2
R
k2

�
; (5.7)

where LR = c=f is the Rossby radius of deformation. Clearly, the importance

of inertial e�ects compared with gravitational e�ects is characterized by the

size of the parameter L2
R
k2, i.e. by the wavelength of waves compared with

the Rossby radius of deformation.
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On a mid-latitude �-plane where f is a function of y (speci�cally, where

f = f0 + �y, f0 6= 0), it is inconsistent to seek a solution of the form (5.4) -

(5.5) with û; v̂ and �̂ as constants, unless meridional particle displacements
are relatively small. In that case, the e�ects of variable f can be incorporated

by replacing the second equation of (5.1) - (5.3) by the vorticity equation

@�

@t
+ �v = f0

@v

@t
; (5.8)

where

� =
@v

@x
�
@u

@y
; : (5.9)

Note that variations of f are included only in so much as they appear in

the advection of planetary vorticity by the meridional velocity component.
Substituting again (5.4) into (5.1), (5.8) and (5.9) shows that, solutions are
possible now only if ! satis�es the equation

�
!2 � c2 k2

�
(!k + �)� f 20!k = 0: (5.10)

It is convenient to scale ! by f0 and k by 1=LR, say ! = f0�; k = m=LR.

Then (5.10) reduces to

(�2 � �2)(��+ ")� �� = 0 (5.11)

where " = �LR=f0. At latitude 45
Æ, �=f0 = 1=a, where a is the earths radius.

It follows that for Rossby radii LR << a, then " << 1.

When " = 0, implying that � = 0, Eq. (5.11) has solutions � = 0 and

� = �2 + 1 as before.
If " << 1, there is a root of 0(") which emerges if we set � = "�0, where

�0 is 0(1) and neglect higher powers of ". It follows easily that

� = �
" �

1 + �2
(5.12)

which in dimensional form, ! = �� k= [k2 + 1=L2
R
], is the familiar dispersion

relation for divergent Rossby waves. The other two roots for small " are
the same as when " = 0, and again correspond with inertia-gravity wave

modes. We consider now a rather special wave type that owes its existence
to the presence of a boundary - the so-called Kelvin wave. Consider the ow

con�guration on an f -plane sketched in Fig. 5.2. The equation set (5.1) -

(5.3) has a solution in which v � 0. In that case, they reduce to

@u

@t
= �c2

@�

@x
; (5.13)
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fu = �c2
@�

@y
; (5.14)

@�

@t
+
@u

@x
= 0: (5.15)

Figure 5.2: Flow con�guration of a Kelvin wave.

Cross-di�erentiating (5.13) and (5.15) to eliminate u gives

@2�

@t2
= c2

@2�

@x2
; (5.16)

which has a general travelling-wave solution of the form

� = F (x� ct; y) + G (x + ct; y) ; (5.17)

where F and G are arbitrary functions. De�ne X = x � ct and Y = x + ct.

Then using (5.15) we have

@u

@x
= c

�
@F

@X
�

@G

@Y

�
= c

�
@F

@x
�

@G

@x

�
;
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u = c (F �G) ; (5.18)

which may be integrated partially with respect to x to give ignoring an

arbitrary function of y and t. Substitution of (5.18) in (5.14) gives

fc [F �G] = c2
�
@F

@y
+
@G

@y

�
;

and since F and G are arbitary functions we must have

@F

@y
+ (f=c) F = 0; (5.19)

and

@G

@y
� (f=c) G = 0: (5.20)

These �rst order equations in y may be integrated to give the y depen-

dence of F and G, i.e.

F = F0 (X) e�fy=c; G = G0 (Y ) e
fy=c:

In the con�guration shown in Fig. 5.2, we must reject the solution G as
this is unbounded as y !1. In this case, the solution is

� = F0 (x� ct) e�fy=c: (5.21)

This represents the surface elevation of a wave that moves in the positive

x-direction with speed c and decays exponentially away from the boundary
with decay scale c=f which is simply the Rossby radius of deformation, LR.

The solution for u from (5.18) is simply

u = cF0 (x� ct) e�fy=c: (5.22)

The Kelvin wave is essentially a gravity wave that is \trapped" along the

boundary by the rotation. The velocity perturbation u is always such that

geostrophic balance occurs in the y direction, expressed by (5.14). If the uid

occupies the region y < 0, then the appropriate solution is the one for which

F0 � 0 and then

u = cF0 (x� ct) e�fy=c: (5.23)

Again this represents a trapped wave moving at speed c with the boundary on

the right (left) in the Northern (Southern) Hemisphere when f > 0(f < 0).
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5.1 The equatorial beta-plane approximation

At the equator, f0 = 0, but � is a maximum. In the vicinity of the equator,

(5.1)-(5.3) must be modi�ed by setting f = �y. This constitutes the equa-

torial beta-plane approximation that may be derived from the equations for

motion on a sphere (see e.g. Gill, 1982, x11.4). The perturbation equations

are now

@u

@t
� �yv = �c2

@�

@x
; (5.24)

@v

@t
+ �yu = �c2

@�

@y
; (5.25)

@�

@t
+
@u

@x
+
@v

@y
= 0; (5.26)

@

@t
(� � f�) + �v = 0; (5.27)

where again

� =
@v

@x
�
@u

@y
: (5.28)

Taking

�
�
�y

c

�
@

@t
(5:24) +

�
1

c

�
@2

@t2
(5:25)� c

@2

@y@t
(5:26)� c

@

@x
(5:27)

and using (5.28) and remembering that f = �y gives

@

@t

�
1

c2

�
@2v

@t2
+ f 2v

�
�
�
@2v

@x2
+
@2v

@y2

��
� �

@v

@x
= 0; (5.29)

which has only the dependent variable v. We follow the usual procedure and

look for travelling-wave solutions of the form

v = v̂ (y) exp [i (kx� !t)] ; (5.30)

whereupon v̂ (y) has to satisfy the ordinary di�erential equation obtained by

substituting (5.30) into (5.29). Note that, unlike the previous case we cannot
assume that v̂ is a constant because Eq.(5.29) has a coeÆcient (namely f 2)

that depends on y. The equation for v̂ (y) is

d2v̂

dy2
+

�
!2

c2
� k2 �

�k

!
�

�2y2

c2

�
v̂ = 0: (5.31)
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Before attempting to �nd solutions to this equation we scale the indepen-

dent variables t; x; y; using the time scale (�c�1=2) and length scale (c=��1=2),

the latter de�ning the equatorial Rossby radius LE. This scaling necessitates
scaling ! = (c�)�1=2� and k = �(c=�)�1=2 also. Then the equation becomes

d2v̂

dy2
+
h
�2 � �2 �

�

�
� y2

i
v̂ = 0 (5.32)

which is the same form as Schr�odingers equation that arises in the theory

of quantum mechanics. The solutions are discussed succinctly by Sneddon
(1961, see especially Chapter V). A brief sketch of the main results that we

require are given in an appendix to this chapter. There it is shown that
solutions for v̂ that are bounded as jyj ! 1 are possible only if

�2 � �2 � � ��1 = 2n+ 1 ; (n = 0; 1; 2; :::) : (5.33)

These solutions have the form of parabolic cylinder functions. In dimen-

sional terms,

v (x; y; t) = Hn

�
(�=c) 1=2y

�
exp

�
��y2=2c

�
cos (kx� !t) ; (5.34)

which on multiplication by 2�n=2 can be written as

v (x; y; t) = Dn

�
(�=c) 1=2y

�
cos (kx� !t) ; (5.35)

where Dn is the parabolic cylinder function of order n and Hn is the Hermite
polynominal of order n. In dimensional form the corresponding dispersion

relation, (5.33), is

!2=c2 � k2 � �k=! = (2n+ l)�=c: (5.36)

Like (5.10), this is a cubic equation for ! for each value of n and evidently
a whole range of wave modes is possible. We shall consider the structure of
these presently.

5.2 The Kelvin Wave

First we note that (5.32) has a trivial solution v̂ = 0. As in the case of

the Kelvin wave discussed earlier, this solution corresponds with a nontrivial

wave mode. To see this we substitute v̂ = 0 into Eqs. (5.24) - (5.26) to
obtain
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@u

@t
= �c2

@�

@x
; (5.37)

� y u = �c2
@�

@y
; (5.38)

@�

@t
+
@u

@x
= 0: (5.39)

These equations are identical with (4.12) if we set f = �y in (5.14). In

particular the solutions for � and u are exactly the same as (5.17) and (5.18),

respectively. Then (5.38) gives

@F

@y
+ (�y=c) F = 0; (5.40)

and

@G

@y
� (�y=c) G = 0; (5.41)

analogous to (5.19) and (5.20). Now (5.40) has the solution

F = F0 (X) exp
�
��y2=2c

�
; (5.42)

whereas the solution for G is unbounded as y! �1. Therefore Eqs. (5.37)
-(5.39) have a solution

� (x; y; t) = F0 (x� ct) exp (��y2=2c) ;
u (x; y; t) = c F0 (x� ct) exp (��y2=2c) ;
v(x; y; t) = 0

9=
; (5.43)

This solution is called an equatorial Kelvin wave. It is an eastward propa-

gating gravity wave that is trapped in the equatorial waveguide by Coriolis
forces. Note that it is nondispersive and has a meridional scale on the order

of LE = (c=�)1=2.

5.3 Equatorial Gravity Waves

We return now to the dispersion relation (5.36). For n � 1, the waves sub-

divide into two classes like the solutions of (5.10). There are two solutions
for which �k=! is small, whereupon the dispersion curves are given approx-

imately by

!2 � (2n+ 1) �c+ k2c2: (5.44)
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The form is similar to that for inertia-gravity waves (sometimes called Poincar�e

waves also - e.g., in Gill, 1982). These waves are equatorially-trapped gravity

waves, or equatorially-trapped Poincar�e waves.

5.4 Equatorial Rossby Waves

There are solutions also of (5.36) for which !2=c2 is small. Then the disper-
sion relation is approximately

! � ��k=
�
k2 + (2n + 1) �=c

�
: (5.45)

These modes are called equatorially trapped planetary waves or equatorially

trapped Rossby waves. The various dispersion curves are plotted in Fig. 5.3.

This �gure includes also the dispersion curves for the case n = 0 described
below and for the Kelvin wave.

5.5 The mixed Rossby-gravity wave

When n = 0, Eq. (5.33) may be written

(� + �) (� � �� 1=�) = 0: (5.46)

The solution � = �� must be excluded since it leads to an indeterminate

solution for u (see later). Therefore the solutions are, in dimensional form,

!+ = 1
2
kc+

�
1
4
k2c2 + c�

�1/2 ; (5.47)

which represents an eastward propagating inertia-gravity wave, and

!
�
= 1

2
kc�

�
1
4
k2c2 + c�

�1/2 ; (5.48)

which represents an inertia-gravity wave if k is small and a Rossby wave if

k is large (see Ex. 5.2). Note that as k ! 0, !
�
� �(c�)1=2, which agrees

with the long wavelength limit of the inertia-gravity wave solution (5.44),

while as k ! 1, !
�
� ��=k, which agrees with the limit of the Rossby

wave solution (5.45). The solution n = 0 is called therefore a mixed Rossby-

gravity wave. The phase velocity of this mode can be either eastward or

westward, but the group velocity is always eastward (Ex. 5.2). The Kelvin

wave solution is sometimes called the n = �1 wave because (5.36) is satis�ed
by the Kelvin-wave dispersion relation (i.e. ! = kc) when n = �1.
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Figure 5.3: Nondimensional frequencies � from (5.36) as a function of nondi-

mensional wavenumber �.

To calculate the complete structure of the various wave modes we need
to obtain solutions for u and � corresponding to the solution for v in Eq.

(5.34).
We return to the linearized equations (5.24)-(5.28). The substitution

v = v̂ sin (kx� ! t), (u; �;= (û; �̂) cos (kx� ! t) in (5.24) and (5.26) gives

!û� �yv̂ = kc2�̂; (5.49)

!�̂ � kû+
dv̂

dy
= 0; (5.50)

which may be solved for û and �̂ in terms of v̂ and dv̂=dy, i.e.,

�
!2 � k2 c2

�
û = ! � y v̂ � k c2

dv̂

dy
; (5.51)



CHAPTER 5. WAVES AT LOW LATITUDES 82

�
!2 � k2 c2

�
�̂ = k � y v̂ � !

dv̂

dy
: (5.52)

With the previously introduced scaling and y = LEY , these become

�
�2 � �2

�
û = � Y v̂ � �

dv̂

dY
; (5.53)

and

�
�2 � �2

�
�̂ = �Y v̂ � �

dv̂

dY
: (5.54)

Also, from (5.34)

v̂ (Y ) = v̂n = exp
�
�1

2
Y 2
�
Hn (Y ); (5.55)

whereupon

dv̂

dY
= �Y v̂n + exp

�
�1

2
Y 2
� dHn

dY
: (5.56)

We use now two well-known properties of the Hermite polynomials:

dHn

dY
= 2nHn�1 (Y ); (5.57)

and

Hn+1 (Y ) = 2YHn (Y )� 2nHn�1 (Y ): (5.58)

It follows that

�
�2 � �2

�
ûn =

1
2
(� + �) v̂n+1 + n (� � �) v̂n�1 (5.59)

and

�
�2 � �2

�
�̂n =

1
2
(� + �) v̂n+1 � n (� � �) v̂n�1 (5.60)

Figure 5.4 shows the horizontal structure of the Kelvin wave and of a

westward propagating Mixed Rossby-gravity wave. Air parcels move parallel

to the equator in the case of the Kelvin wave and move clockwise around

elliptical orbits in the case of the mixed wave. The equatorial wave-guide
equation (5.31) has the form

d2v̂

dy2
+
�2

c2

�
y2
c
� y2

�
v̂ = 0; (5.61)

where
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Figure 5.4: Contours of surface elevation and arrows representing for : (a)
a Kelvin wave; and (b) a westward propagating mixed Rossby-gravity wave.

The latter shows only one half the zonal wavelength (after Matsuno, 1966).

�2y2
c
= !2 � k2c2 � �kc2=! = (2n+ 1) �c; (5.62)

using (5.36). Solutions thereto have a wave-like structure in the meridional
(y-) direction if y < yc and an exponential structure if y > yc. Thus yc
corresponds with a critical latitude for a particular mode, a latitude beyond
which wave-like propagation is not possible. If the phase of a particular wave

changes rapidly enough with y, we can de�ne a local meridional wavenumber
� for each value of y, the assumption being that � varies only slowly with

y. One may then use the WKB technique outlined in Gill (1982, x8.12, pp
297-302) to �nd approximate solutions to (5.61). Such solutions have the

form

v̂ = ��1=2 exp

�
i

�
kx +

Z
�dy � !t

��
; (5.63)

where
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�2 =
�2

c2

�
y2
c
� y2

�
: (5.64)

This approximate solution is valid provided that

Æ = ��3=2
d2

dy2

�
��1=2

�
<< 1: (5.65)

At the equator Æ = 1= [2(2n+ 1)2] i.e. the approximate solution is valid

provided n is large. The group velocity of waves follows from (5.62), i.e.,

cg =
(2k + �=!; 2�)

2 !=c2 + �k=!2
(5.66)

whereupon wave packets propagate along rays de�ned by dx=dt = cg, or in
this case,

dy

dx
=

�

k + �=2!
(5.67)

Using (5.64) it follows readily that ray paths have the form

y = yc sin
�
c�1�x= (k + �=2!)

�
(5.68)

i.e., they are sinusoidal paths about the equator in which wave energy is
reected at the critical latitudes y = �yc. Figure (5.5) shows an example of

this type of behaviour for the case of gravity waves with no variation in x,
i.e. k = 0. Then the term �=2! can be ignored in (5.66) and (5.68). Since

k = 0 the group velocity is given by

cg = (0 ; cgy) =
(0; 2�)

2 !=c2 + �k=!2
: (5.69)

In the calculation in Fig. (5.5) a uniform wind stress is suddenly applied

over the ocean over a small range of latitudes that are remote from the
equator. This results in the generation of inertial waves. The path followed

by these waves can be calculated from dy=dt = cgy. Integration of (5.69)

with respect to time shows that the path followed by the waves is sinusoidal
in time about the equator. As seen in Fig. (5.5) the waves move backwards

and forwards across the equator along ray paths that are described quite well
by a sinusoidal function.

Another e�ect of the waveguide is the discretization of modes n = 1, 2,

.... in the meridional direction. For long inertia-gravity waves (k ! 0) this
implies a discrete set of frequencies given by
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Figure 5.5: An illustration of beta dispersion of gravity waves. An eastward

wind stress is applied in the strip 2000 km < y < 2500 km from t = 0. At
�rst local inertial waves are generated as on an f -plane, but the variation of

f with latitude causes the waves to propagate backward and forward across

the equator. Contours are of the meridional velocity. (from Gill, 1982)

!2 � (2n+ 1) �c; (5.70)

obtained from (5.62). Gill (1982, p 442) notes that this frequency selection
shows up in Paci�c sea-level records because variations associated with the

�rst baroclinic mode have magnitudes of the order of centimeters which is

large enough to be detected. For these modes c � 2:8ms�1 giving periods of

51
2
, 4 and 3 days for n = 1, 2 and 3, respectively. See Gill (1982, p442) for

further details.

5.6 The planetary wave motions

Planetary waves have the approximate dispersion relation (5.45) which, in

the long-wave limit (k! 0), is ! � �kc=(2n+1). The phase speed !=k is in

the opposite direction to the Kelvin wave (i.e. westward) and the amplitudes

are reduced by factors 3, 5, 7 etc. For example, for the �rst baroclinic mode
in the Paci�c Ocean, c = 2:8 ms�1, so that the planetary wave with n = 1

has speed 0:9 ms�1. This mode would require 6 months to cross the Paci�c
Ocean from east to west. Other modes would be slower. These facts have

implications for the coupled atmospheric-ocean response to perturbations in

the tropics.
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Figure 5.6 shows the dispersion curve (5.45) for the planetary wave modes.

Di�erentiating (5.45) with respect to k gives

1

!

d!

dk
=

1

k
�

2k

[k2 + (2n+ 1) �=c]
:

Thus the curve has zero slope where

Figure 5.6: Graph of the planetary wave dispersion relation (5.45). The units

are de�ned by the expression (5.70) and (5.71), i.e. � = k=k? and � = !=!?.

k? =
�
(2n + 1) =L2

E

�1=2
= fc=c; (5.71)

fc = �yc, and yc is de�ned by (5.62).

At the point k = k? the frequency has a maximum absolute value

!? =
1

2
�/[(2n+ 1) �=c]1/2 =

1

2
�c=fc: (5.72)

For example when n = 1, this corresponds to a minimum period of 31 days for

a �rst baroclinic ocean mode with c = 2:8 ms�1, 74 days for a higher mode

with c = 0:5 ms�1, and 12 days for an atmospheric mode with c = 20 ms�1.

For waves with wavelength shorter than 2�=k, the group velocity (@!=@k)

is positive (i.e. eastward) and therefore in the direction opposite to the

phase velocity. The maximum group velocity is cg =
1
8
c= (2n+ 1) when k =

[3 (2n + 1) =L2
E
]
1=2

. Thus only short waves can carry information eastwards

and then at only one eighth of the speed at which long waves can carry
information westwards.
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5.7 Baroclinic motions in low latitudes

The equations for small amplitude perturbations to an incompressible strat-

i�ed uid at rest are

@u

@t
� fv = �

@P

@x
; (5.73)

@v

@t
+ fu = �

@P

@y
; (5.74)

@�

@t
+N2! = 0; (5.75)

@P

@z
� � = 0; (5.76)

@u

@x
+
@v

@y
+
@w

@z
= 0; (5.77)

where P = p=�. Elimination of w and � from (5.75) - (5.77) gives

@u

@x
+
@v

@y
�

@

@t

�
@

@z

�
N�2@P

@z

��
= 0: (5.78)

If we choose P to satisfy the equation (5.79)

@

@z

�
1

N2

@P

@z

�
+

P

c2
= 0 (5.79)

then (5.32) becomes

@P

@t
+ c2

�
@u

@x
+
@v

@y

�
= 0; (5.80)

whereupon Eqs. (5.73), (5.74) and (5.80) have exactly the same form as the
shallow-water equations (5.1) - (5.3) if we identify c2� in the latter with P in

the former. Equation (5.79) with appropriate boundary conditions leads to
an eigenvalue problem for the vertical structure of wave perturbations and the
corresponding eigenvalue c. Consider the case of an isothermal atmosphere

with N2 = constant. Then di�erentiating (5.79) with respect to z and t and

using (5.75) and (5.76) to eliminate P in preference to w gives

@2w

@z2
+
N2

c2
w = 0: (5.81)
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For a liquid layer bounded by rigid horizontal boundaries at z = 0 and z = H,

where w = 0, Eq. (5.81) has the solution

w = ŵn(x; y; t) sin
�n�z

H

�
; (n = 1; 2; 3; :::) ; (5.82)

and the corresponding eigenvalues are

c = cn =
NH

n�
; (n = 1; 2; 3; :::)

As usual, the gravest mode (the one with the largest phase speed, the

case n = 1) has a single vertical velocity maximum in the middle of the

layer, z = 1=2H.
Taking typical values for N(= 10�2s�1) and H (the tropical tropopause

= 16 km), the phase speed of the gravest mode c1 = 51 ms�1.

It is easily veri�ed that (5.81) holds even if N is a function of z, but the
eigenvalue problem will then be more diÆcult to solve.

In an unbounded vertical domain and when N is a constant, Eq. (5.81)
has solutions proportional to exp(�imz), where m2 = N2=c2. Therefore, the

system of equations (5.73) - (5.77) have solutions in which, for example,

v = Dn

h
(2�=c)1=2 y

i
exp [i (kx +mz � !t)] ; (5.83)

where

c = N= jmj : (5.84)

Note that c is a property of the mode in question and is equal to the

phase speed only in special cases such as the Kelvin wave. For an isothermal

compressible atmosphere, Eq. (5.81) is a little more complicated, but is

still given by (5.84) to a good approximation provided that 1=(4m2H2
s
) <<

1, where Hs is the scale height. Even for vertical wavelength of 20 km,

this number is only about 0.03, so that the incompressible approximation is

reasonable.
Now consider the dispersion relation ! = !(k) for the various types of

waves with vector wavenumber k = (k;m). It is convenient to scale the

wavenumber components by writing k = (�=!)k? and m = (�N=!2)m?.
Then, the dispersion relation for the Kelvin wave, ! = kc becomes

m? = k?: (5.85)

For the mixed Rossby- gravity wave (n = 0), !m=N � k � �=! = 0 from

(5.46], which becomes,
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m? = k? + 1: (5.86)

The remaining waves satisfy (5.36)

m2
�
� (2n+ 1)m

�
= k2

�
+ k

�
;

or

m
�
= n+

1

2
+
h�
k
�
+ 1

2

�2
+ n (n+ 1)

i1=2
: (5.87)

It can be shown that modes corresponding with the positive root in (5.87)

are gravity waves while those corresponding with the negative root are plane-

tary waves. The full set of dispersion curves is shown in Fig. 5.7. The gravity
wave curves are the hyperbolae in the upper part of the diagram. The plane-

tary wave curves are hyperbolae also and are shown on the expanded plot in
the inset. The corresponding curves in the k-plane are the curves of constant

frequency. The group velocity cg = rk! is at right angles to these curves
and in the direction of increasing !. The corresponding directions are shown

in Fig. 5.7.

We carry out the calculations for the Kelvin wave and mixed Rossby-
gravity waves.

Kelvin wave

! =
Nk

jmj
=

N

m
k sgn (m)

Then

cg1 =
@!

@k
=

N

jmj
= c3p ; say ; and cg3 =

@!

@m
= �

N

m2
k sgn (m) ;

whereupon

cg =

�
@!

@k
;
@!

@m

�
=

N

jmj

�
1; �

k

m

�
:

Note that cg3 > 0 if m < 0, i.e. the Kelvin wave solution that propagates

energy vertically upwards has phase lines that slope upward in the eastward

direction (5.8). Figure 5.8 shows the structure of this mode.

Mixed Rossby-gravity wave

! satis�es

!m

N
sgn (m)� k �

�

!
= 0; (5.88)
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Figure 5.7: Dispersion curves for vertically-propagating equatorially-trapped

waves. m is the vertical wavenumber and � the eastward wavenumber. The

curves collapse into a single set when scaled with the frequency !, buoyancy
frequency N , and beta as indicated. The direction of the group velocity,
being the gradient of frequency in wavenumber space, is as indicated. The

curves for m negative are obtained by reection in the k� axis and have an
upward-directed group velocity. The inset at the left is a blowup of the region

near the origin to show the planetary waves n = 1, 2. The upper n = 1, 2
curves are the corresponding gravity waves. The circles represent observed

waves.

whereupon

@!

@k
= 1=

�
jmj
N

+
�

!2

�
;

i.e.

c
g
=
�
1; �

!

N
sgn (m)

�
=

�
jmj
N

+
�

!2

�
: (5.89)

Now (5.88) gives

! = 1
2
k
N

jmj
�
�
1
4
k2

N2

jmj2
+ �

N

jmj

�1=2
;
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Figure 5.8: Longitudinal-height section along the equator showing pressure,

temperature and perturbation wind oscillations in the Kelvin wave. Thick
arrows indicate direction of phase propagation. (After Wallace, 1973).

from which it follows that the mixed Rossby-gravity wave, i.e. the solution
for the negative square root, has ! < 0. From (5.89) we see that this has an

upward-directed group velocity if m > 0. Thus the phase lines of the mixed
Rossby-gravity wave tilt westward with height (Fig. 5.9). Figure ref�g4-9
shows the structure of this mode also. Note that poleward-moving air is

correlated with positive temperature perturbations so that the eddy heat
ux v`T' averaged over a wave is positive. The mixed Rossby-gravity wave
removes heat from the equatorial region.

Both Kelvin wave and mixed Rossby-gravity wave modes have been iden-

ti�ed in observational data from the equatorial stratosphere. The observed

Kelvin waves have periods in the range 12-20 days and appear to be pri-
marily of zonal wavenumber 1. The corresponding observed phase speeds of
these waves relative to the ground are on the order of 30 ms�1. In apply-

ing our theoretical formulas for the meridional and vertical scales, however,

we must use the Doppler-shifted phase speed cp � U , where U is the mean

zonal wind speed. Assuming u = �10 ms�1, cp � U = 40 ms�1, whereupon
LE =

p
[(cp � U) =�] � 1300 km. This corroborates with observational ev-

idence that the Kelvin waves have signi�cant amplitude only within about
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Figure 5.9: Longitudinal-height section at a latitude north of the equator

showing pressure, temperature and perturbation wind oscillations in the
mixed Rossby-gravity wave. Meridional wind components are indicated by

arrows pointed into the page (northward) and out of the page (southward).

Thick arrows indicate direction of phase propagation.

20Æ latitude of the equator. Knowledge of the observed phase speed also al-

lows one to calculate the theoretical vertical wavelength of the Kelvin wave.
Assuming that N = 2� 10�2 s�1 (a stratospheric value) we �nd that

2�

jmj
= 2�

(cp � U)

N
� 12 km;

which agrees with the vertical wavelength deduced from observations. (Note

that for the Kelvin wave, cp = c).

Figure (5.10) shows an example of zonal wind oscillations associated with

the passage of Kelvin waves at a station near the equator. During the obser-

vational period shown in the westerly phase of the so-called quasi-biennial

oscillation is descending so that at each level there is a general increase of the
mean zonal wind with time. Superposed on this trend is a large uctuating

component with a period between speed maxima of about 12 days and a ver-

tical wavelength (computed from the tilt of the oscillations with height) of
about 10-12 km. Observations of the temperature �eld for the same period
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reveal that the temperature oscillation leads the zonal wind oscillation by one

quarter of a cycle (that is, the maximum temperature occurs one-quarter of a

period prior to maximum westerlies), which is just the phase relationship re-
quired for Kelvin waves (see Fig. 5.8). Furthermore, additional observations

from other stations indicate that these oscillations do propagate eastward

at about 30 ms�1. Therefore there can be little doubt that the observed
oscillations are Kelvin waves.

Figure 5.10: Time-height section of zonal wind at Kwajalein (9Æ latitude).
Isotachs at intervals of ms�1. Westerlies are shaded. (After Wallace and

Kousky, 1968).

The existence of the mixed Rossby-gravity mode has been con�rmed also

in observational data from the equatorial Paci�c. This mode is most easily
identi�ed in the meridional wind component, since v is a maximum for it at

the equator. The observed waves of this mode have periods in the range of 4-5

days and propagate westward at about 20 ms�1. The horizontal wavelength
appears to be about 10,000 km, corresponding to zonal wavenumber-4. The

observed vertical wavelength is about 6 km, which agrees with the theoreti-
cally derived wavelength within the uncertainties of the observations. These

waves appear to have signi�cant amplitudes only within about 20Æ latitude of

the equator also, which is consistent with the e-folding width
p
2LE = 2300

km. Note that in this case, c = cp, but using (5.88) and (5.84), for the mixed
Rossby-gravity wave mode. At present it appears that both the Kelvin waves

and the mixed Rossby-gravity waves are excited by oscillations in the large-
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scale convective heating pattern in the equatorial troposphere. Although

these waves do not contain much energy compared with typical tropospheric

disturbances, they are the predominant disturbances of the equatorial strato-
sphere. Through their vertical energy and momentum transport they play a

crucial role in the general circulation of the stratosphere.

Exercises

5.1 The linearized momentum equations for a Boussinesq uid on an equa-

torial �-plane are (see Gill, 1982, p449):

@u

@t
+ 2
w � � y v = � (1=�o)

@p

@x
;

@v

@t
+ �yu = � (1=�o)

@p

@y

@w

@t
� 2
u = � (1=�o)

@p

@z
+ �;

Consider the following scaling: horizontal length scale L = (c=�)1=2,
time scale T = (�c)�1=2, horizontal velocity scale U, pressure scale
P = �ocU , vertical length scale H = c=N , vertical velocity scale

w = (!=N)U , where ! is a frequency. Show that the Coriolis accel-
eration associated with the horizontal component of rotation 2
w can

be neglected if 2
 < N . Show that in this case the vorticity equation
reduces to

@�

@t
+ f

�
@u

@x
+
@v

@y

�
+ �v = 0;

where f = �y. Give an interpretation of this equation in the case
of steady motions. Note that the foregoing scaling is suggested by a

linearized wave analysis of the approximated equation set (see Gill op.

cit.).

5.2 The dispersion relation for the mixed Rossby-gravity wave is

! = 1
2
kc�

�
1
4
k2c2 + c�

�1/2 :
Show that ! ! ��=k as k! 0 and ! ! 1

2
kc as k !1.

Show also that although the phase velocity is westward for all wavenum-

bers, the group velocity is eastward.



Chapter 6

Forced Equatorial Waves

6.1 Response to steady forcing

Consider homogeneous ocean layer of mean depth H forced by a surface

wind stress X = (X; Y ) per unit area. We assume that through the process
of turbulent mixing in the vertical, this wind stress is distributed uniformly
with depth as body force X=(�H) per unit mass. Suppose that there is also

a drag per unit mass acting on the water, modelled by the linear friction law
�ru per unit mass. Then the equations analogous to (3.21) and (3.22) are

��yv = �gH
@�

@x
+X=(�H)� ru; (6.1)

�yu = �gH
@�

@y
+ Y=(�H)� rv: (6.2)

The continuity equation analogous to (3.23) takes the form

c2
@u

@x
+
@v

@y
= �gE=�� c2r�; (6.3)

where E may be interpreted as an evaporation rate (i.e. rate of mass re-

moval) and r� with r > 0 represents a linear damping of the free surface
displacement. In the atmospheric situation, a positive/negative evaporation
rate is equivalent to the e�ect of convective heating/cooling (see Chapter 5)

and the damping term represents Newtonian cooling due, for example, to

infra-red radiation space. Although formally obtained for a shallow homo-

geneous layer, we have shown that these equations apply for each normal
mode, but with a value of appropriate to that mode. Also, the magnitude of
the forcing is then determined by expanding the forcing function in normal

modes.

95


