

References

The classical papers on this subject are:

- Matsuno (1966), J. Meteor. Soc. Japan
- Longuet-Higgins (1968) Phil. Trans. Roy. Soc.
- Webster (1972) Mon. Wea. Rev.
- Gill (1980) Quart. J. Roy. Meteor. Soc.
$>$ A relatively recent review is given by Lim and Chang (1987) In Monsoon Meteorology, Ed. C. P. Chang and T. N. Krishnamurti, Oxford Univ. Press

Tropics versus Middle Latitudes

Theory of wave motions in a divergent barotropic fluid on an f-plane

Linearized "shallow-water" equations

$$
\begin{aligned}
& \partial_{\mathrm{t}} \mathrm{u}-\mathrm{fv}=-\mathrm{c}^{2} \partial_{\mathrm{x}} \eta \\
& \partial_{\mathrm{t}} \mathrm{v}+\mathrm{fu}=-\mathrm{c}^{2} \partial_{\mathrm{y}} \eta \\
& \partial_{\mathrm{t}} \eta+\partial_{\mathrm{x}} \mathrm{u}+\partial_{\mathrm{y}} \mathrm{v}=0
\end{aligned}
$$

On an f-plane put

$$
\begin{aligned}
v & =\hat{v} \sin (k x-\omega t) \\
(u, \eta) & =(\hat{u}, \hat{\eta}) \cos (k x-\omega t)
\end{aligned}
$$

$$
\square \quad \omega\left(\omega^{2}-\mathrm{f}^{2}-\mathrm{c}^{2} \mathrm{k}^{2}\right)=0
$$

Dispersion relation

$$
\omega\left(\omega^{2}-f^{2}-c^{2} k^{2}\right)=0
$$

$$
\omega=0 \quad \text { or } \quad \omega^{2}=\mathrm{f}^{2}+\mathrm{c}^{2} \mathrm{k}^{2}
$$

Steady (geostrophic) flow
Inertia gravity waves

Inertia-gravity waves

$$
\begin{gathered}
\omega^{2}=\mathrm{f}^{2}+\mathrm{c}^{2} \mathrm{k}^{2} \\
\mathrm{c}_{\mathrm{p}}=\frac{\omega}{\mathrm{k}}= \pm \sqrt{\left(\mathrm{c}^{2}+\frac{\mathrm{f}^{2}}{\mathrm{k}^{2}}\right)}= \pm \mathrm{c} \sqrt{\left(1+\frac{1}{\mathrm{~L}_{\mathrm{R}}^{2} \mathrm{k}^{2}}\right)}
\end{gathered}
$$

$L_{R}=c / f$ is the Rossby radius of deformation

The importance of inertial effects compared with gravitational effects is characterized by the size of the parameter $L_{R}{ }^{2} k^{2}$, i.e. by the wavelength of waves compared with the Rossby radius of deformation.

Wave motions in a divergent barotropic fluid on a mid-latitude β-plane

Now f is a function of y (specifically, where $f=f_{0}+\beta y, f_{0} \neq 0$)

$$
\begin{gathered}
\partial_{\mathrm{t}} \mathrm{u}-\mathrm{f}(\mathrm{y})=-\mathrm{c}^{2} \partial_{\mathrm{x}} \eta \quad \partial_{\mathrm{t}} \mathrm{u}-\mathrm{f}_{0} \mathrm{v}=-\mathrm{c}^{2} \partial_{\mathrm{x}} \eta \\
\partial_{\mathrm{t}} \mathrm{v}+\mathrm{f}(\mathrm{y}) \mathrm{u}=-\mathrm{c}^{2} \partial_{\mathrm{y}} \eta \quad \partial_{\mathrm{t}} \zeta+\beta \mathrm{v}=\mathrm{f}_{0} \partial_{\mathrm{t}} \eta \\
\partial_{\mathrm{t}} \eta+\partial_{\mathrm{x}} \mathrm{u}+\partial_{\mathrm{y}} \mathrm{v}=0 \\
\zeta=\mathrm{v}_{\mathrm{x}}-\mathrm{u}_{\mathrm{y}} \\
\square\left(\omega^{2}-\mathrm{c}^{2} \mathrm{k}^{2}\right)(\omega \mathrm{k}+\beta)-\mathrm{f}_{0}^{2} \omega \mathrm{k}=0
\end{gathered}
$$

Dispersion relation

$$
\left(\omega^{2}-c^{2} k^{2}\right)(\omega k+\beta)-f_{0}^{2} \omega k=0
$$

Write $\omega=f_{0} v$ and $k=\mu / L_{R}$

$$
\square\left(v^{2}-\mu^{2}\right)(v \mu+\varepsilon)-v \mu=0
$$

Solution $\omega=0$ now becomes

Divergent Rossby waves

$$
\omega=-\frac{\beta k}{k^{2}+1 / L_{R}^{2}}
$$

Inertia-gravity waves

$$
\omega^{2}=f^{2}+c^{2} k^{2}
$$

Kelvin wave

A wave that owes its existence to the presence of a boundary

$$
\begin{aligned}
& \partial_{\mathrm{t}} \mathrm{u}=-\mathrm{c}^{2} \partial_{\mathrm{x}} \eta \\
& \mathrm{fu}=-\mathrm{c}^{2} \partial_{\mathrm{y}} \eta \\
& \partial_{\mathrm{t}} \eta+\partial_{\mathrm{x}} \mathrm{u}=0
\end{aligned} \quad \begin{aligned}
& \quad \begin{array}{l}
\mathrm{tt}
\end{array} \\
& \quad \eta=\mathrm{F}(\mathrm{x}-\mathrm{ct}, \mathrm{y})+\mathrm{G}(\mathrm{x}+\mathrm{ct}, \mathrm{y})
\end{aligned}
$$

Put $\mathrm{X}=\mathrm{x}-\mathrm{ct}, \mathrm{Y}=\mathrm{x}+\mathrm{ct}$

$$
\partial_{\mathrm{x}} \mathrm{u}=-\partial_{\mathrm{t}} \eta=\mathrm{c}\left(\partial_{\mathrm{x}} \mathrm{~F}-\partial_{\mathrm{x}} \mathrm{G}\right)=\mathrm{c}\left(\partial_{\mathrm{x}} \mathrm{~F}-\partial_{\mathrm{x}} \mathrm{G}\right)
$$

Integrate $\partial_{\mathrm{x}} \mathrm{u}=\mathrm{c}\left(\partial_{\mathrm{x}} \mathrm{F}-\partial_{\mathrm{x}} \mathrm{G}\right)$
$\mathrm{u}=\mathrm{c}(\mathrm{F}-\mathrm{G})$

$$
\begin{gathered}
\mathrm{fu}=-\mathrm{c}^{2} \partial_{\mathrm{y}} \eta \\
\square \mathrm{fc}[\mathrm{~F}-\mathrm{G}]=-\mathrm{c}^{2}\left[\partial_{\mathrm{y}} \mathrm{~F}+\partial_{\mathrm{y}} \mathrm{G}\right]
\end{gathered}
$$

Since F and G are arbitrary functions

$$
\partial_{\mathrm{y}} \mathrm{~F}+(\mathrm{f} / \mathrm{c}) \mathrm{F}=0 \quad \text { and } \quad \partial_{\mathrm{y}} \mathrm{G}-(\mathrm{f} / \mathrm{c}) \mathrm{G}=0
$$

$$
\begin{aligned}
& \partial_{\mathrm{y}} \mathrm{~F}+(\mathrm{f} / \mathrm{c}) \mathrm{F}=0 \quad \longleftrightarrow \mathrm{~F}=\mathrm{F}_{0}(\mathrm{X}) \mathrm{e}^{-\mathrm{fy} / \mathrm{c}} \\
& \partial_{\mathrm{y}} \mathrm{G}-(\mathrm{f} / \mathrm{c}) \mathrm{G}=0 \quad \longleftrightarrow \mathrm{G}=\mathrm{G}(\mathrm{r}) \mathrm{e}^{\mathrm{yy} / \mathrm{c}} \text { if } \mathrm{y} \rightarrow \infty \\
& \square \begin{array}{l}
\mathrm{\eta}=\mathrm{F}_{0}(\mathrm{x}-\mathrm{ct}) \mathrm{e}^{-\mathrm{fy} / \mathrm{c}} \\
\mathrm{u}=\mathrm{cF}_{0}(\mathrm{x}-\mathrm{ct}) \mathrm{e}^{-\mathrm{fy} / \mathrm{c}}
\end{array}
\end{aligned}
$$

The Kelvin wave is essentially a gravity wave that is "trapped" along the boundary by the rotation.
$>$ The velocity perturbation u is always such that geostrophic balance occurs in the y-direction

Flow configuration in a Kelvin wave

The solution

$$
\eta=G_{0}(x+c t) e^{f y / c}
$$

represents a trapped wave moving at speed c with the boundary on the right (left) in the Northern (Southern) Hemisphere when $\mathrm{f}>0(\mathrm{f}<0)$.

The equatorial beta-plane approximation

At the equator, $\mathrm{f}_{0}=0$, but β is a maximum.

Near the equator, set $\mathrm{f}=\beta \mathrm{y}$.
This equatorial beta-plane approximation that may be derived from the equations for motion on a sphere (see e.g. Gill, 1982).

$$
\begin{array}{ll}
\partial_{\mathrm{t}} \mathrm{u}-\beta \mathrm{yv}=-\mathrm{c}^{2} \partial_{\mathrm{x}} \eta & \partial_{\mathrm{t}} \eta+\partial_{\mathrm{x}} \mathrm{u}+\partial_{\mathrm{y}} \mathrm{v}=0 \\
\partial_{\mathrm{t}} \mathrm{v}+\beta \mathrm{yu}=-\mathrm{c}^{2} \partial_{\mathrm{y}} \eta & \partial_{\mathrm{t}}(\zeta-\mathrm{f} \eta)+\beta \mathrm{v}=0
\end{array}
$$

$$
\partial_{\mathrm{t}}\left[\left(\partial_{\mathrm{tt}} \mathrm{v}+\mathrm{f}^{2} \mathrm{v}\right) / \mathrm{c}^{2}-\left(\partial_{\mathrm{xx}} \mathrm{v}+\partial_{\mathrm{yy}} \mathrm{v}\right)\right]-\beta \partial_{\mathrm{x}} \mathrm{v}=0
$$

$$
\text { Put } \quad \mathrm{v}=\hat{\mathrm{v}}(\mathrm{y}) \exp [\mathrm{i}(\mathrm{kx}-\omega \mathrm{t})]
$$

$$
\square \frac{d^{2} \hat{v}}{d y^{2}}+\left[\frac{\omega^{2}}{c^{2}}-k^{2}-\frac{\beta k}{\omega}-\frac{\beta^{2} y^{2}}{c^{2}}\right] \hat{\mathrm{v}}=0
$$

Scale the independent variables t, x, y, using the time scale $(\beta \mathrm{c})^{-1 / 2}$ and length scale $(\mathrm{c} / \beta)^{1 / 2}$.
the equatorial Rossby radius L_{E} Scale $\omega=(c \beta)^{1 / 2} v$ and $k=\mu(c / \beta)^{-1 / 2}$.

Schrödinger's Wave Equation

$$
\frac{\mathrm{d}^{2} \hat{\mathbf{v}}}{\mathrm{dy}}{ }^{2}+\left[v^{2}-\mu^{2}-\frac{\mu}{v}-\mathrm{y}^{2}\right] \hat{\mathrm{v}}=0
$$

Schrödinger's equation - arises in quantum mechanics

Solutions that are bounded as $\mathrm{y} \rightarrow \pm \infty$ are possible only if

$$
v^{2}-\mu^{2}-\mu v^{-1}=2 n+1,(\mathrm{n}=0,1,2, \ldots)
$$

These solutions have the form of parabolic cylinder functions

In dimensional terms

$$
v(x, y, t)=H_{n}\left((\beta / c)^{1 / 2} y\right) \exp \left(-\beta y^{2} / 2 c\right) \cos (k x-\omega t)
$$

Multiply by $2^{-n / 2}$

$$
v(x, y, t)=D_{n}\left((\beta / c)^{1 / 2} y\right) \cos (k x-\omega t)
$$

D_{n} is the parabolic cylinder function of order n and H_{n} is the Hermite polynomial of order n.

Dispersion relation

$$
\omega^{2} / c^{2}-k^{2}-\beta k / \omega=(2 n+1) \beta / c
$$

A cubic equation for ω for each value of n

A whole range of wave modes is possible:

* The equatorial Kelvin wave
* Equatorial gravity waves
* Rossby waves
* The mixed gravity-Rossby wave

The equatorial Kelvin Wave

$$
\begin{gathered}
\begin{array}{l}
\partial_{\mathrm{t}} \mathrm{u}=-\mathrm{c}^{2} \partial_{\mathrm{x}} \eta \\
\beta \mathrm{y} \mathbf{u}=-\mathrm{c}^{2} \partial_{\mathrm{y}} \eta \\
\partial_{\mathrm{t}} \eta+\partial_{\mathrm{x}} \mathrm{u}=0
\end{array} \\
\begin{array}{l}
\text { cf } \\
\partial_{\mathrm{tt}} \eta=c^{2} \partial_{\mathrm{xx}} \eta
\end{array} \\
\begin{array}{l}
\partial_{\mathrm{t}} \mathrm{u}=-\mathrm{c}^{2} \partial_{\mathrm{x}} \eta \\
\mathrm{fu}=-\mathrm{c}^{2} \partial_{\mathrm{y}} \eta \\
\partial_{\mathrm{t}} \eta+\partial_{\mathrm{x}} \mathrm{u}=0
\end{array} \\
\eta=\mathrm{F}(\mathrm{x}-\mathrm{ct}, \mathrm{y})+\mathrm{G}(\mathrm{x}+\mathrm{ct}, \mathrm{y})
\end{gathered}
$$

As before

$$
\begin{aligned}
& \partial_{\mathrm{y}} \mathrm{~F}+(\beta \mathrm{y} / \mathrm{c}) \mathrm{F}=0 \\
& \partial_{\mathrm{y}} \mathrm{G}-(\beta \mathrm{y} / \mathrm{c}) \mathrm{G}=0
\end{aligned}
$$

$$
\square \quad F=F_{0}(X) \exp \left(-\beta y^{2} / 2 c\right)
$$

Note that $\mathrm{G} \rightarrow \infty$ as $\mathrm{y} \rightarrow \pm \infty$

The equatorial Kelvin wave

$$
\begin{aligned}
& \eta(x, y, t)=F_{0}(x-c t) \exp \left(-\beta y^{2} / 2 c\right) \\
& u(x ; y, t)=c F_{0}(x-c t) \exp \left(-\beta y^{2} / 2 c\right. \\
& v(x, y, t)=0
\end{aligned}
$$

The wave is an eastward propagating gravity wave that is trapped in the equatorial waveguide by Coriolis forces.
$>$ Note that it is nondispersive and has a meridional scale on the order of $L_{E}=(c / \beta)^{1 / 2}$.

Equatorial Gravity Waves

Dispersion relation

$$
\omega^{2} / c^{2}-k^{2}-\beta k / \omega=(2 n+1) \beta / c
$$

For $\mathrm{n} \geq 1$, the waves subdivide into two classes of solutions:

Case $\beta \mathrm{k} / \omega$ small:

$$
\omega^{2} \approx(2 \mathrm{n}+1) \beta \mathrm{c}+\mathrm{k}^{2} \mathrm{c}^{2}
$$

These waves are equatorially-trapped gravity waves, or equatorially-trapped Poincaré waves.

Equatorial Rossby Waves

Case $\omega^{2} / \mathrm{c}^{2}$ small:
Dispersion relation $\omega^{2} / c^{2}-k^{2}-\beta k / \omega=(2 n+1) \beta / c$

$$
\square \omega \approx \frac{-\beta \mathrm{k}}{\mathrm{k}^{2}+(2 \mathrm{n}+1) \beta / \mathrm{c}}
$$

These waves are equatorially-trapped planetary waves, or equatorially-trapped Rossby waves.

The mixed Rossby - Gravity Wave

When $\mathrm{n}=0$

$$
v^{2}-\mu^{2}-\mu v^{-1}=2 n+1, \quad(\mathrm{n}=0,1,2, \ldots)
$$

$(v+\mu)(v-\mu-1 / v)=0$

Indeterminate solution for u
$\omega_{+}=\frac{1}{2} k c+\left[\frac{1}{4} k^{2} c^{2}+c \beta\right]^{1 / 2}$

- an eastward propagating gravity wave
$\omega_{-}=\frac{1}{2} k c-\left[\frac{1}{4} k^{2} c^{2}+c \beta\right]^{1 / 2} \quad-$ a gravity wave if k is small
- a Rossby wave if k is large
as $\mathrm{k} \rightarrow 0, \omega \rightarrow-(\mathrm{c} \beta)^{1 / 2}$, which agrees with the limit of the gravity wave solution.
$>$ as $\mathrm{k} \rightarrow \infty, \omega \approx-\beta / \mathrm{k}$, which agrees with the limit of the Rossby wave solution.
\Rightarrow The solution $\mathrm{n}=0$ is called a mixed Rossby-gravity wave.
$>$ The phase velocity of this mode can be either eastward or westward, but the group velocity is always eastward.

The Kelvin wave solution is sometimes called the $\mathrm{n}=-1$ wave because

$$
\omega^{2} / \mathrm{c}^{2}-\mathrm{k}^{2}-\beta \mathrm{k} / \omega=(2 \mathrm{n}+1) \beta / \mathrm{c}
$$

is satisfied by the Kelvin-wave dispersion relation (i.e. $\omega=\mathrm{kc}$) when $\mathrm{n}=-1$ (last term is then $-\beta \mathrm{k} / \omega$).

Structure of wave modes

Substitute $\quad v=\hat{v} \sin (k x-\omega t)$

$$
(\mathrm{u}, \eta)=(\hat{\mathrm{u}}, \hat{\eta}) \cos (\mathrm{kx}-\omega \mathrm{t})
$$

in $\quad \partial_{t} u-\beta y v=-c^{2} \partial_{x} \eta$

$$
\omega \hat{u}-\beta y \hat{v}=\mathrm{kc}^{2} \hat{\eta}
$$

$$
\partial_{\mathrm{t}} \eta+\partial_{\mathrm{x}} \mathrm{u}+\partial_{\mathrm{y}} \mathrm{v}=0
$$

$$
\omega \hat{\eta}-\mathrm{k} \hat{\mathrm{u}}+\frac{\mathrm{d} \hat{\mathrm{v}}}{\mathrm{dy}}=0
$$

Solve for
$\hat{\mathrm{u}}, \hat{\eta}$

Scale and put $y=L_{E} Y\left\{\begin{array}{l}\left(v^{2}-\mu^{2}\right) \hat{u}=v Y \hat{v}-\mu \frac{d \hat{v}}{d Y} \\ \left(v^{2}-\mu^{2}\right) \hat{\eta}=\mu Y \hat{v}-v \frac{d \hat{v}}{d Y}\end{array}\right.$
Now

$$
\begin{aligned}
& \hat{\mathrm{v}}(\mathrm{Y})=\hat{v}_{\mathrm{n}}=\exp \left(-\frac{1}{2} Y^{2}\right) H_{\mathrm{n}}(Y) \\
& \frac{d \hat{\mathrm{v}}}{d Y}=-Y \hat{v}_{\mathrm{n}}+\exp \left(-\frac{1}{2} Y^{2}\right) \frac{d H_{n}}{d Y}
\end{aligned}
$$

and

Properties of the
Hermite polynomials

$$
\left\{\begin{array}{c}
\frac{d H_{n}}{d Y}=2 \mathrm{nH}_{\mathrm{n}-1}(\mathrm{Y}) \\
H_{\mathrm{n}+1}(\mathrm{Y})=2 \mathrm{YH}_{\mathrm{n}}(\mathrm{Y})-2 \mathrm{nH}_{\mathrm{n}-1}(\mathrm{Y})
\end{array}\right.
$$

$$
\int\left\{\begin{array}{l}
\left(v^{2}-\mu^{2}\right) \hat{u}_{\mathrm{n}}=\frac{1}{2}(v+\mu) \hat{\mathrm{v}}_{\mathrm{n}+1}+\mathrm{n}(v-\mu) \hat{\mathrm{v}}_{\mathrm{n}-1} \\
\left(v^{2}-\mu^{2}\right) \hat{\eta}_{\mathrm{n}}=\frac{1}{2}(v+\mu) \hat{\mathrm{v}}_{\mathrm{n}+1}-\mathrm{n}(v-\mu) \hat{\mathrm{v}}_{\mathrm{n}-1}
\end{array}\right.
$$

The equatorial Kelvin Wave

The mixed Rossby-gravity wave

The equatorial Rossby wave

