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Tropics versus Middle Latitudes

Middle latitudes
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Theory of wave motions in a divergent barotropic
fluid on an f-plane
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Linearized "shallow-water" equations

du—fv=—c?dn
ov+fu= —c? oM
om+0o,u+0o,v=_0

On an f-plane put v =¥ sin(kx — ot)
(u,m) = (0,7)cos(kx — t)

‘ m(o)z—fz—czkz):o

Dispersion relation

0)(0)2 —f2—¢? k2):0

‘ w=0 or w=f+c%k?

Steady (geostrophic) flow Inertia gravity waves




Inertia-gravity waves

W= 2 + k2

I S
c.=—=4= C — | =4cC —
Pk k? Lk’

Lg =c/f is the Rossby radius of deformation

The importance of inertial effects compared with gravitational
effects is characterized by the size of the parameter Ly? k?, i.e.

by the wavelength of waves compared with the Rossby radius
of deformation.

Wave motions in a divergent barotropic fluid on a
mid-latitude B-plane

Now f is a function of y (specifically, where f = f; + By, f, Z 0)

athn du—f,v=—c'dn
aW on 8L+Bv=1,0,1
om+0ou+0,v =‘(\

)
szx_uy

‘ (0 - c?k?)(ok +B) - f2ok =0




Dispersion relation

(0 —c?k?)(ok + B) - f2ok = 0

Write w=fv and k=WLy
) (V-p)(ve+e)-vp=0

€
Solution w=0 now becomes V=- = 2
I+p
Di I wo__ Pk
ivergent Rossby waves K+ 1/TA
Inertia-gravity waves W’ =2 + c?k?

Kelvin wave

A wave that owes its existence to the presence of a boundary

K

ou=—c0.n

v =0 ‘ fu=—c’9,n

on+o,u=0




ou=-c’0 N

fu - _Czay T] ‘ att n = Cz aXX T]

on+o,u=0

f= F(x—ct,y)+G(X+ct,y)

Put X=x-ct,Y=x+ct

=)

o,u=—0n=c(0xF-0,G)=c(0,F-0,G)

Integrate § u= (:(8X F-0, G)

b u=c(F-QG)

fu=—-c’0,n

K—— n= F(X_Ct7Y)+G(X+Ct’y)

b fctF -G1=—-¢*[0, F+0, G]

Since F and G are arbitrary functions

0,F+(f/c)F=0 and 9 G-(f/c)G=0




—fy/
O,F+(f/c)F=0 ) F=F (X)e yre

0.G-(f/c)G=0 =) G= ¢’

=)

n= F, (X—ct)e_fy/C

u=cF,(x- ct)e_fy/c

» The Kelvin wave is essentially a gravity wave that is
"trapped" along the boundary by the rotation.

» The velocity perturbation u is always such that geostrophic
balance occurs in the y-direction

Flow configuration in a Kelvin wave




The solution

n= GO(X+ct)efy/C

represents a trapped wave moving at speed ¢ with the
boundary on the right (left) in the Northern (Southern)
Hemisphere when f> 0 (f <0).

The equatorial beta-plane approximation

At the equator, f, = 0, but (3 is a maximum.

‘ Near the equator, set f= 3y.

This equatorial beta-plane approximation that may be derived
from the equations for motion on a sphere (see e.g. Gill, 1982).

ou—Byv=-c’on om+o,u+0,v=0
dv+Byu=—c’on 0, (E—f)+Bv=0




0, [0, v+f*v)/c? —(8,,v+0,,V)]-BO,v=0

Put v="v(y) exp[i(kx— (ot)]

4% [ (2 kK @2 2]
IV e e B BY g
dy? | ¢? o

Scale the independent variables t, x, y, using the time scale
(Bc)” and length scale (c/B)”.

"~

the equatorial Rossby radius L

Scale w=(cf)”v and k= (c/B)".

Schrodinger’s Wave Equation

—2+L\/2 —uz—%—yz}\7=0

Schrodinger’s equation - arises in quantum mechanics
Solutions that are bounded as y — + o are possible only if
vV —pz —]JV_I =2n+1 ,(nzO, 1, 2,...)

These solutions have the form of parabolic cylinder functions

)




In dimensional terms

v(x,y,t)= Hn((B /c) 1/2y) exp(—By2 / 20) cos(kx — mt)

Multiply by 272
‘ v(X,y,t)= Dn((B /) 1/2y) cos(kx —ot)

D, is the parabolic cylinder function of order n and
H, is the Hermite polynomial of order n.

Dispersion relation
o/t —k*—Bk/o=02n+1)B/c

A cubic equation for w for each value of n

> A whole range of wave modes is possible:
% The equatorial Kelvin wave

“+ Equatorial gravity waves

“*Rossby waves

% The mixed gravity-Rossby wave




The equatorial Kelvin Wave

v=0
ou=—-c'on du=—con
Byu=—c’ o,n cf fu = —c? o,
on+ou=0 onm+ou=0

‘ attnzczaxxn
‘ n:F(x—ct,y)+G(x+ct,y)

0,F+(By/c)F=0

As before
0,G—(By/c)G=0

- F=F,(X) exp(—By2 / 20)

Note that G - © as y - +

-
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The equatorial Kelvin wave

n(x,y,t)=F(x— ct)exp(—By2 /2c)
u(x;y,t)=cF (x— ct)exp(—By2 /2¢
v(x,y,t)=0

» The wave is an eastward propagating gravity wave that is
trapped in the equatorial waveguide by Coriolis forces.

» Note that it is nondispersive and has a meridional scale on
the order of L; = (c/B)"2.

Equatorial Gravity Waves

Dispersion relation
o/t -k*—Bk/o=02n+1)B/c

For n = 1, the waves subdivide into two classes of
solutions:

Case [k/w small:
o’ ~(2n+1)Be+k’c’

These waves are equatorially-trapped gravity
waves, or equatorially-trapped Poincaré waves.
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Equatorial Rossby Waves

Case o?/c? small:

Dispersion relation o’ /c’*-k*>—Bk/o=(2n+1)p/c

O~ il
'S +(2n+1)B/c

These waves are equatorially-trapped planetary waves,
or equatorially-trapped Rossby waves.

The mixed Rossby - Gravity Wave

Whenn=0

vi-p’—pv'=2n+1, (n=0,1,2,..)

) (v+)lv-p-1/9=0

Indeterminate solution for u

~—_,

13



1,
o, =1ke+[1k’c’ +c[3]4

- an eastward propagating gravity wave

o_ =fke—[yk’c’ + CB]% - a gravity wave if k is small
- a Rossby wave if k is large

» ask - 0, w - —(cB) /2, which agrees with the limit of the
gravity wave solution.

» as k - oo, 0= — [¥k, which agrees with the limit of the
Rossby wave solution.

» The solution n = 0 is called a mixed Rossby-gravity wave.

» The phase velocity of this mode can be either eastward or
westward, but the group velocity is always eastward.

> The Kelvin wave solution is sometimes called the n = —1
wave because

o’ /c* -k’ —Bk/o=2n+1)p/c

is satisfied by the Kelvin-wave dispersion relation
(i.e. w=kc) when n = —1 (last term is then —k/w).

Dispersion relation diagram
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Structure of wave modes
Substitute V=V sin(kX — cot)

(u,m) = (0,7)cos (kx — wt)

in

atu - ByV = _02 axn

)

ol — Byv = ke*i

om+o,u+o,v=0

)

P 4\
on—-ku+—=0
dy

Solve for

U,N
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dv
2 2)a -
vVi—plu=vYV-u——
(v =) h gy
Scale and put y=L;Y

(v2 —pz)ﬁz uYf/—vﬁ

dY
Now V(Y)=¥, =exp(-1Y*)H,_ (Y)
dv . dH,
and d—Y——YVnJrexp(—%Yz) e
Properties of the dH, =2nH_ (Y)
Hermite polynomials dy

H,,(Y)=2YH,(Y)-2nH, ,(Y)

l VvV —pHli, =tv+wv, , +nv-wv,

(v =pHN, =3V Y, v Y,
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Eastward Moving

Equ

Westward Maving

|

n=0 Mixed R-G wave
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Horizontal structure of the Kelvin wave and of a westward

propagating Mixed Rossby-gravity wave.

The equatorial Kelvin Wave

(n=—1), k*=1,
T

Kelvin
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The mixed Rossby-gravity wave

Mixed Rossby-gravity

1

0, k*=

n—=

0.400E+QT

/2

The equatorial Rossby wave

n=1, k*=1, Equatorial Rossby
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End
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