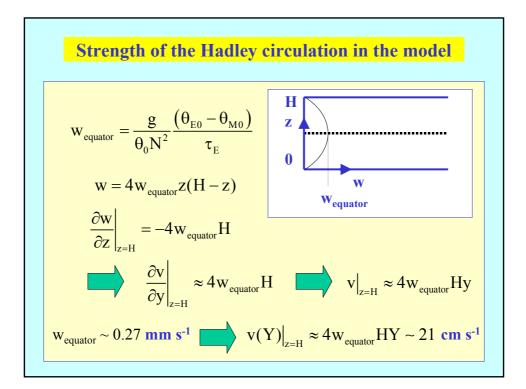
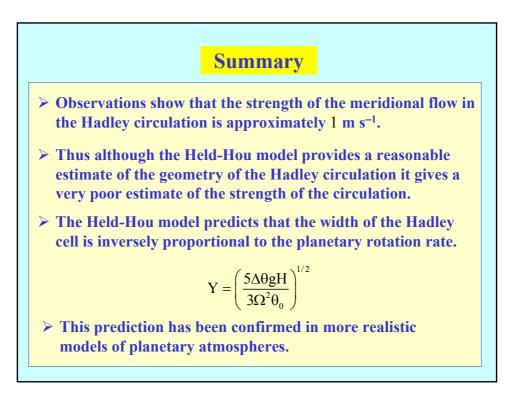


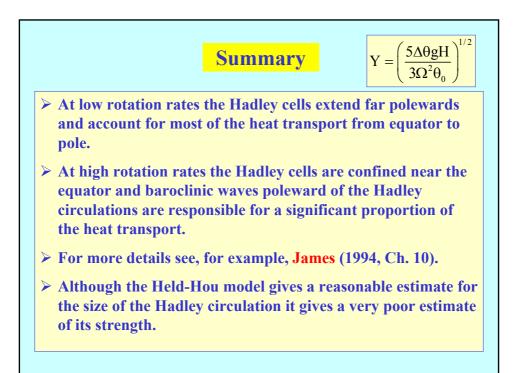
Strength of the Hadley circulation in the model
By symmetry
$$v = 0$$
 at the equator. Then

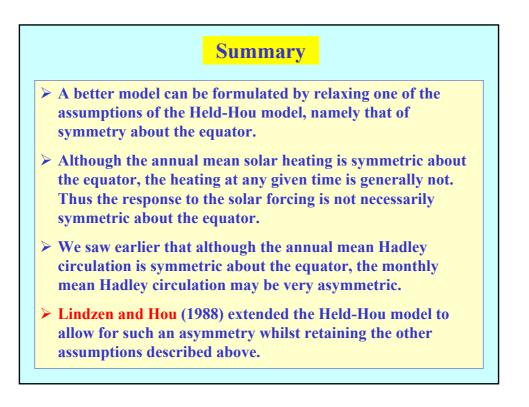
$$\frac{D\theta}{Dz} = \frac{\theta_{E0} - \theta_{M0}}{\tau_E} \quad \bigoplus \quad w \frac{\partial \theta}{\partial z} = \frac{\theta_{E0} - \theta_{M0}}{\tau_E}$$
Assume constant Brunt-Väisälä frequency, N.

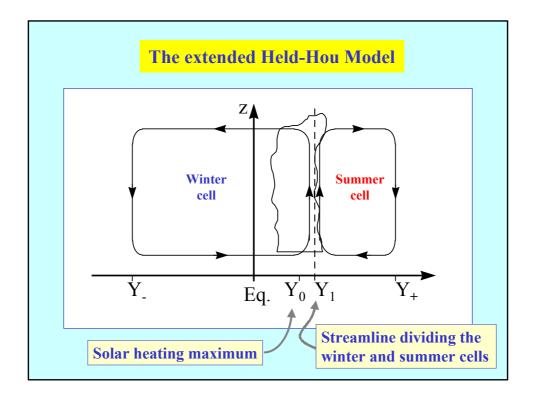
$$i = \frac{g}{\theta_0 N^2} \frac{(\theta_{E0} - \theta_{M0})}{\tau_E}$$
Using $\tau_E \sim 15$ days and $N \sim 10^{-2}$ s⁻¹ gives $w \sim 0.27$ mm s⁻¹

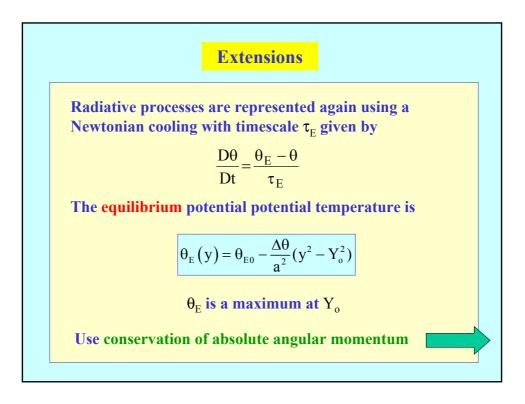












Extensions (cont)

$$\theta_{M}(y) = \theta_{M}(Y_{1}) - \frac{2\theta_{0}\Omega^{2}}{4a^{2}gH}(y^{2} - Y_{1}^{2})^{2}$$

$$\theta_{E}(y) = \theta_{E0} - \frac{\Delta\theta}{a^{2}}(y^{2} - Y_{0}^{2})$$

$$\int_{Y_{1}}^{Y_{+}} (\theta_{E} - \theta_{M}) dy = 0 \text{ and } \int_{Y_{1}}^{Y_{-}} (\theta_{E} - \theta_{M}) dy = 0$$
+ continuity of potential temperature at $y = Y_{+}$ and $y = Y_{-}$.
Four unknowns: $Y_{1}, Y_{+}, Y_{-}, \text{ and } \theta_{M}(Y_{1})$.

