
1

The Hadley Circulation

Chapter 4

The early work on the mean meridional circulation of the 
tropics was motivated by observations of the trade winds.

Halley (1686) and Hadley (1735) concluded that the trade 
winds are part of a large-scale circulation which occurs due 
to the latitudinal distribution of solar heating.

This circulation, now known as the Hadley circulation, 
consists of upward motion at lower latitudes, poleward 
motion aloft, sinking motion at higher latitudes and low-level 
equatorial flow.

Despite the absence of upper-level observations Hadley 
deduced that the upper-level flow has a westerly component 
due to the effect of the earth's rotation.

History
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Mean Zonal Circulation

The three-cell meridional circulation pattern after Rossby (1941)
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Zonal mean winds – Annual mean
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Zonal mean winds - JJA
pr

es
su

re

SH              latitude           NH

Deviations of geopotential height from the zonal time mean, Φ′
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The Held-Hou model of the Hadley circulation 

The Held-Hou model is symmetric about the equator and 
assumes steady, linear, axisymmetric flow in hydrostatic 
balance.

The main features are

• a simplified representation of solar heating,

• the use of angular momentum conservation and thermal 
wind balance.

Aim: to predict the strength and the width of the Hadley 
circulation.

The model has two-levels on the sphere with equatorward 
flow at the surface and poleward flow at height H.

Frictionless 
upper layer

Frictional 
lower layer
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Absolute angular momentum on a sphere

φ

a cos φ

a
u

2 2
absM ua cos a cos

( a cos u)a cos
= φ+Ω φ
= Ω φ+ φ

If u = 0 at the equator, Mabs = Ωa2, 
and if Mabs is conserved,

2( a cos u)a cos aΩ φ+ φ = Ω

2 2 2a (1 cos ) a sinu
a cos cos

Ω − φ Ω φ
= =

φ φ

Radiative equilibrium

The thermal structure of the atmosphere is characterized by 
the midlevel potential temperature, θ. 

Radiative processes are represented using a 
Newtonian cooling with timescale τE given by

Eq. Pole

θ,  θΕ

D
Dt

E

E

θ θ θ
τ

=
−

θΕ prescribed for 
radiative equilibrium

( ) ( )θ ϕ θ ϕE = − −0
21

3
3 1∆θ sin

u = UM

u = 0
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Near equatorial approximation

φ
a

y

ysin , cos 1
a

φ ≈ φ ≈ φ ≈

( )θ θE Ey y
a

= −0

2

2∆θ

E0 0
1
3θ = θ + ∆θ

U
a

yM =
Ω 2

Thermal wind balance

We assume that θ (= θM) and u (= UM)
are in thermal wind balance.

Eq. Pole

θΜ ,  θΕ

θΕ prescribed for 
radiative equilibrium

u = UM

u = 0

∂
∂
u
z

U
H aH

yM= =
Ω 2

u gf
z y
∂ ∂θ

= −
∂ θ ∂

∂θ
∂

θ
y a gH

y= −
2 2

0
2

3Ω

y
2 yf 2 sin

a
Ω

= Ω φ ≈
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Solution for θM

Eq. Pole

θΜ ,  θΕ

θΕ prescribed for 
radiative equilibrium

u = UM

u = 0

∂θ
∂

θ
y a gH

y= −
2 2

0
2

3Ω

y

θ θ
θ

M M a gH
y= −0

2
0

2
4

2
Ω

the equatorial 
temperature“M” used to remind us that θ has 

been derived using conservation of 
angular momentum

Equilibrium temperature, actual temperature

From James (1994)

θ θ
θ

M M a gH
y= −0

2
0

2
4

2
Ω

( )θ θE Ey y
a

= −0

2

2∆θ

Y
cooling coolingheating
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Constraint on θM

Eq. Pole

θΜ ,  θΕ

θΕ(y) prescribed for 
radiative equilibrium

u = UM

u = 0 y

θ θ
θ

M M a gH
y= −0

2
0

2
4

2
Ω

θΜ0

( )θ θE Ey y
a

= −0

2

2∆θ

Steady state ⇒ there can be no net heating of an air parcel 
when it completes a circuit of the Hadley cell:

Y

0

D dy 0
Dt
θ

=∫
Y Y

M E
0 0

dy dyθ = θ∫ ∫E M

E

θ − θ
=

τ

Y
unknowns

Solution for θM0 and Y

Eq. Pole

θΜ ,  θΕ(y)

u = UM

u = 0 y

θ θ
θ

M M a gH
y= −0

2
0

2
4

2
Ω

θΜ0

( )θ θE Ey y
a

= −0

2

2∆θ

Y Y

M E
0 0

dy dyθ = θ∫ ∫ θ
θ

θM Ea gH
Y

a
Y0

2
0

2
4

0 2
2

10 3
− = −

Ω ∆θ

Assume that
θΜ(Y) = θΕ(Y) 

θ
θ

θM Ea gH
Y

a
Y0

2
0

2
4

0 2
2

2
− = −
Ω ∆θ

θΜ(Y) = θΕ(Y)

unknowns

Y
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Solution for θM0 and Y

Eq. Pole

θΜ ,  θΕ(y)

u = UM

u = 0 y

θΜ0

2
4 20

M0 E02 2

2
4 20

M0 E02 2

Y Y
10a gH 3a

Y Y
2a gH a

Ω θ ∆θ
θ − = θ −

Ω θ ∆θ
θ − = θ −

θΜ(Y) = θΕ(Y)

1/ 2

2
0

2

M0 E0 2 2
0

5 gHY
3

5 gH
18a

 ∆θ
=  Ω θ 

∆θ
θ = θ −

Ω θ

Take θ0 = 255 K, ∆θ = 40 K and H = 12 km ⇒ Y ≈ 2400 km and 
θΜ0 ≈ 0.9 K cooler than θΕ(0). ≈ in agreement with obs.

unknowns

Y

Meridional variation of UM

Eq. Pole

θΜ ,  θΕ(y)

u = UM(y)

u = 0 y

θΜ0

θΜ(Y) = θΕ(Y)

The zonal wind increases quadratically with y to reach a 
maximum value of approximately 66 m s-1 at y = Y.

U
a

yM =
Ω 2 for y ≤ Y.

Assume that for y > Y, UM is in thermal wind balance with θΕ(y).

U
gH

aE =
∆θ
Ω θ0

θΕ(y)

UE is 40 ms-1

unknowns

Y
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Zonal wind

UE

UM

Y

40 ms-1

66 ms-1

y

Subtropical jet!

Y ≈ 2400 km

Strength of the Hadley circulation in the model 

By symmetry v = 0 at the equator. Then 

w
z

E M

E

∂θ
∂

θ θ
τ

=
−0 0E0 M0

E

D
Dz
θ θ − θ
=

τ

Assume constant Brunt-Väisälä frequency, N. 

( )E0 M0
equator 2

0 E

gw
N

θ − θ
=
θ τ

Using τE ~ 15 days and N ~ 10-2 s-1 gives w ~ 0.27 mm s-1
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Strength of the Hadley circulation in the model 

( )E0 M0
equator 2

0 E

gw
N

θ − θ
=
θ τ

wequator ~ 0.27 mm s-1

H
z

0

wequator

w
equatorw 4w z(H z)= −

equator
z H

w 4w H
z =

∂
= −

∂

equator
z H

v 4w H
y =

∂
≈

∂ equatorz H
v 4w Hy

=
≈

equatorz H
v(Y) 4w HY 21

=
≈ ∼ cm s-1

Observations show that the strength of the meridional flow in 
the Hadley circulation is approximately 1 m s−1.

Summary

This prediction has been confirmed in more realistic 
models of planetary atmospheres.

1/ 2

2
0

5 gHY
3

 ∆θ
=  Ω θ 

Thus although the Held-Hou model provides a reasonable 
estimate of the geometry of the Hadley circulation it gives a 
very poor estimate of the strength of the circulation.

The Held-Hou model predicts that the width of the Hadley 
cell is inversely proportional to the planetary rotation rate.
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At low rotation rates the Hadley cells extend far polewards
and account for most of the heat transport from equator to 
pole.

At high rotation rates the Hadley cells are confined near the 
equator and baroclinic waves poleward of the Hadley 
circulations are responsible for a significant proportion of 
the heat transport.

For more details see, for example, James (1994, Ch. 10).

Although the Held-Hou model gives a reasonable estimate for 
the size of the Hadley circulation it gives a very poor estimate
of its strength.

Summary
1/ 2

2
0

5 gHY
3

 ∆θ
=  Ω θ 

A better model can be formulated by relaxing one of the 
assumptions of the Held-Hou model, namely that of 
symmetry about the equator.

Although the annual mean solar heating is symmetric about 
the equator, the heating at any given time is generally not. 
Thus the response to the solar forcing is not necessarily 
symmetric about the equator.

We saw earlier that although the annual mean Hadley 
circulation is symmetric about the equator, the monthly 
mean Hadley circulation may be very asymmetric. 

Lindzen and Hou (1988) extended the Held-Hou model to 
allow for such an asymmetry whilst retaining the other 
assumptions described above.

Summary
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The extended Held-Hou Model

Eq.Y- Y0 Y1 Y+

z

Summer
Cell

Winter
Cell

Solar heating maximum
Streamline dividing the 
winter and summer cells

Winter 
cell

Summer 
cell

Extensions

Radiative processes are represented again using a 
Newtonian cooling with timescale τE given by

D
Dt

E

E

θ θ θ
τ

=
−

The equilibrium potential potential temperature is

( ) 2 2
E E0 o2y (y Y )

a
∆θ

θ = θ − −

θE is a maximum at Yo

Use conservation of absolute angular momentum
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Extensions (cont)

Conservation of absolute angular momentum

( )U
a

y YM = −
Ω 2

1
2

Thermal wind balance 

( ) ( ) ( )θ θ
θ

M My Y
a gH

y Y= − −1
0

2

2
2

1
2 22

4
Ω

( )
2

2 20
12

2 y y Y
y a gH
∂θ Ω θ

= − −
∂

Extensions (cont)

D
Dt

E

E

θ θ θ
τ

=
−

( ) ( ) ( )

( )

2 22 20
M M 1 12

2 2
E E0 o2

2y Y y Y
4a gH

y (y Y )
a

θ Ω
θ = θ − −

∆θ
θ = θ − −

( ) ( )
1 1

Y Y

E M E M
Y Y

dy 0 and dy 0
+ −

θ −θ = θ −θ =∫ ∫

Four unknowns:  Y1, Y+, Y− , and θM(Y1). 

+  continuity of potential temperature at y = Y+ and y = Y−.
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The Held-Hou model for asymmetric heating. 
(From James, 1994)

maximum heating
φ0 = 6o

Y1 Y+Y0Y−

Y0

Results of the Held-Hou model for asymmetric heating with 
varying latitude of maximum heating. 

(a) Poleward extent of the summer and winter circulations and of the latitude of
the dividing streamline. (b) Mass flux carried by the winter and summer cells.

latitude of maximum heating

latitude of maximum heating →

Y1

Y+

Y0

Y−

Y0
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A recent reference:

Polvani & Sobel, 2001:
The Hadley circulation and the weak temperature 
approximation.
J. Atmos Sci., 59, 1744-1752.

About θe

Equivalent potential temperature

First law of thermodynamics

p
dq c d ln
T

= θ
p

D 1 Dqln
Dt c T Dt

θ =

sDq DwL
Dt Dt

= −
condensation rate

s s

p p

D L Dw D Lwln
Dt c T Dt Dt c T

 
θ = − ≈ −   

 

e s pln ln (Lw / c T)θ = θ +
e

D ln 0
Dt

θ =
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Equivalent potential temperature in the tropics
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