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Equations and scaling at low latitudes

The governing equations on a sphere
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The (λ, φ, z) coordinate system
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The hydrostatic equation at low latitudes
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Introduce the buoyancy force σ:

Scales

δp ≈ 1 mb = 102 Pa over the troposphere depth ≈ 20 km

δp/(ρD) ≈ 102 Pa ÷ (1.0 × 2.0 × 104) = 0.5 × 10−2 ms−2

U ≈ 10 ms−1 , Ω ≈ 10−5 s−1 , a ≈ 6 × 106 m

U2/a ≈ 10−4 ms−2 , 2ΩU ≈ 10−4 ms−2

Dw 1 p W 1 p/ /
Dt z D

   δ δ
≈   ρ δ τ ρ   

1/τ >> f,         δp ≈ P1 = ρLU/τ

Hydrostatic equation (continued)

The question remains, how large is the ratio:

The horizontal equation of motion gives two possible 
scales for δp :

1W 1 P W D/
D U L

 
= τ ρ 

High frequency limit:

Hydrostatic balance if W << U and/or D << L, provided 
the other ratio is no more than O(1).
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Hydrostatic equation (continued)

1/τ << f,         δp ≈ P2 = ρLUf 2W 1 P W D 1/
D U L f

 
= τ ρ τ 

Low frequency limit:

Now even if W ≈ U and D ≈ L, the hydrostatic equation 
is valid (note that P2 was derived on the assumption 
that 1/τ << f).

For synoptic-scale motions (L ≈ 106 m) and planetary-scale 
motions (L ≈ a), L >> D and the hydrostatic approximation 
is valid even if (τ ≈ f), and therefore as f decreases towards 
the equator.

⇒ We are well justified in treating planetary-scale
motions as hydrostatic

Some caution is required:
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The unapproximated kinetic energy equation is:

It contains no geometric terms or Coriolis terms!

But if we simply make the system hydrostatic and assume 
that |w| << |u|, |v|, the approximate form becomes:

A spurious energy source!
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Energetic consistency
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The last term in square brackets represents a fictitious or 
spurious energy source and arises from the lack of consistency 
in scaling the system of equations.
That is, each equation is interrelated to the others and it is 
incorrect to scale one without consideration of the others. 
If the hydrostatic equation is used, energetic consistency 
requires that certain curvature and Coriolis terms must be 
omitted also.
These are the terms underlined earlier by a red line.
Similar considerations to these are necessary when "sound -
proofing" the equations (see e.g. ADM, Ch. 2).
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The equations in the (λ, φ, z) coordinate system
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Hydrostatic formulation of the momentum 
equations with friction terms included
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∂
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The energetically-consistent hydrostatic formulation 
of the momentum equations is:

Friction terms

Scaling at low latitudes
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Pressure scale height:

Hydrostatic ⇒
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Middle-latitude quasi-geostrophic scaling
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is the Rossby number

is the Froude number

Low-latitude scaling
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This is still valid for Ro ≈ 1 because δp = ρLUf  provides 
the same scale as the inertial scale δp = ρU2. 

The hydrostatic equation δzp′ = −gρ′ ⇒ δ p/D = gδρ

Assume D ≈ Hs
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Low-latitude scaling (continued)

δθ
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From the definition of θ,   (1 – κ)ln p = ln ρ + ln θ + constant

Typically: g ≈10 ms−2, Hs ≈104 m.

For U ≈ 10 ms−1, f ≈ 10−4 s−1, Ro = 0.1 and F2 = 10−3,   ⇒ in 
middle latitudes

For geostrophic motions, fluctuations in p, ρ, and θ
are small.

Low-latitude scaling (continued)

At low latitudes, f ≈ 10−5 s−1, so that for the same scales of 
motion as above, Ro = 1.  ⇒ the advection terms in the 
momentum equation are comparable with the horizontal 
pressure gradient.

But the foregoing scaling remains valid  ⇒

3

0 0 0

p 10
p

−δρ δ δθ
≈ ≈ ≈

ρ θ

In the tropics, fluctuations in p, ρ, and θ are an order 
of magnitude smaller than in middle latitudes.

The adjustment to a pressure gradient imbalance is 
less constrained by rotation in the tropics .
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Adiabatic scaling
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Adiabatic form of ( ) ( )t h z pln w ln Q / c T∂ + ⋅∇ θ + ∂ θ =V

put Q = 0
Scaling   ⇒

Define the Brunt-Väisälä frequency

Define the Richardson number

valid for Ro ≈ 1

Vertical velocities tiny

For the same scales of motion and in the absence of 
convective processes of substantial magnitude, we may 
expect the vertical velocity in the equatorial regions to 
be considerably smaller than in the middle latitudes.

W U 1
D L Ro Ri

≈

Typical values for synoptic scale systems:

U = 10 ms−1, D = 10 km, L = 1000 km, Hs = 10 km, N = 10−2 s−1, 
R = 102 ⇒ W = 10−3 / Ro ms−1.  In the tropics, Ro ≈ 1
⇒ vertical velocities on the order of 1 mm/s (exceedingly tiny!)
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Diabatic processes

In the tropics it is important to consider diabatic processes.

Consider first the diabatic contribution in regions away from 
active convection.

Then the net diabatic heating is associated primarily with 
radiative cooling to space alone. 

The next figure shows the annual heat balance of the earth´s 
atmosphere. 

The atmospheric heat balance

Units are percent of incoming solar radiation. The solar fluxes are 
shown on the left-hand side, and the long wave (thermal IR) fluxes 
are on the right-hand side.

(from Lindzen, 1990)
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Distribution of incoming solar radiation

1360

Wm-2

2aarea π

area
4π a2

The incoming solar radiation of 1360 Wm-2 (the solar constant) 
intercepted by the earth  (πa2 × 1360 W) is distributed, when 
averaged over a day or longer, over an area 4πa2 . 

Outgoing terrestrial radiation

∆T K day= −
× × × ×

× ×
≈ −

0 31 0 25 1360 24 3600
1005 1 013 10

0 94

. .
.

. /

The atmosphere loses heat by radiation over 1 day or 
longer at the rate ∆Q = 0.31 × 0.25 × 1360 Wm−2. 

In unit time, this corresponds to a temperature change 
∆T given by ∆Q = cpM∆T, where M is the mass of a 
column of atmosphere 1 m2 in cross-section.

Since M = (mean surface pressure) /g, we find that

Actually, the rate of cooling varies with latitude. 
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Latitudinal variation in radiative cooling

From the surface to 150 mb (i.e. for ≈ 85% of the 
atmosphere´s mass):

∆T = −1.2 K/day from 0 - 30° lat.,
∆T = −0.88 K/day from 30 - 60° lat.,
∆T = −0.57 K/day from 60 - 90° lat.

The stratosphere and mesosphere warm a little on 
average, but even together they have relatively little mass.

( )10 10 10 10 10 10 104 6 4 8 2 3 1× ÷ × × ÷ ≈− − −( ) ms

3

0 0 0

p 10
p

−δρ δ δθ
≈ ≈ ≈

ρ θ

The estimate

suggests that for synoptic scale systems in the tropics, we can 
expect potential temperature changes associated with 
adiabatic changes of no more than a fraction of a degree.

shows that associated vertical motions are on the order 
DU/(LRi) which is typically

The estimate W U 1
D L Ro Ri

≈
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( )2
pWN / g Q / c / T≈

W g
N

cm≈ − ×
⋅

×
×

= −2
1 2
300

1
24 3600

0 5. / sec

Radiative cooling at the rate Q/cp = −1.2 K/day would lead 
to a subsidence rate which we estimate from

( ) ( )t h z pln w ln Q / c T∂ + ⋅∇ θ + ∂ θ =V

as

We may expect slow subsidence over much of the tropics 
and the vertical velocities associated with radiative cooling 
are somewhat larger than those arising from synoptic scale 
adiabatic motions.

Implications of the scaling

( ) [ ]

( ) ( )

t z zw w f f
A B C D

1/ 1/ p

E

∂ + ⋅∇ ζ + ζ∇ ⋅ + ∂ ζ + ⋅∇ ∧∂ + ⋅∇ + ∇ ⋅

= ∧ ρ ∇ρ ∧ ρ ∇  

V V k V  V V

k

Vertical component of the vorticity equation

Compare the scales of each term with the scale for term A 
for Ro  << 1 and Ro ≈ 1.
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F2( .. )1Ro ≈ 1

( .. )1Ro << 1

1General

EDCBATerm
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10−310−2110−21Ro ≈ 1

10−11110−11Ro << 1

EDCBATerm

Typical values:  Ri = 102, F2 = 10−3

( ) ( )t f f 0∂ + ⋅∇ ζ + + ∇⋅ =V V

( ) ( )t f 0∂ + ⋅∇ ζ + =V

Middle latitudes:  Ro << 1  ⇒

Low latitudes:  Ro ≈ 1  ⇒



15

( ) ( )t f f 0∂ + ⋅∇ ζ + + ∇⋅ =V V

( ) ( )t f 0∂ + ⋅∇ ζ + =V

Middle latitudes:  Ro << 1  ⇒

Low latitudes:  Ro ≈ 1  ⇒

Barotropic versus baroclinic

Or, using continuity, ( )( )t
ff ( w)

z
∂

∂ + ⋅∇ ζ + = ρ
ρ ∂

V

⇒ Vertical gradients of vertical mass flux can generate
absolute vorticity.

⇒ There is no generation of absolute vorticity in the absence of 
diabatic processes. Air parcels are confined to a particular level, 
where they move around conserving their absolute vorticity.

Latent heat release

( )2
pWN / g Q / c / T≈

( ) ( )t h z pln w ln Q / c T∂ + ⋅∇ θ + ∂ θ =V

Budget studies ⇒ three quarters of the radiative cooling of 
the tropical troposphere is balanced by latent heat release.
From figures given earlier, this means for 0-30° latitude, 
the warming rate is about 0.9 K/day.
Gray (1973) estimated that tropical weather systems cover 
about 20% of the tropical belt.
This would imply a warming rate Q/cp ≈ 5 × 0.9 = 4.5 K/day 
in weather systems.
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Implied rainfall

A rainfall rate of 1 cm/day (i.e. 10−2 m/day) implies 10−2

m/day per unit area (i.e. m2) of vertical column.
This would imply a latent heat release ∆Q ≈ L∆m per unit 
area per day, where L = 2.5 × 106 J/kg is the latent heat of 
condensation and ∆m is the mass of condensed water.
Since the density of water is 10 kg/m−3, we have

6 2 3 3
3

7

J kgQ 2.5 10 10 m 10
kg m

2.5 10 J / unit area / day

−∆ ≈ × × ×

= ×

Implied temperature rise

A heating rate of 2.5 × 107 J/unit area/day is equivalent to a 
mean temperature rise ∆T in a column extending from the 
surface to 150 mb given by cpma∆T ≈ 2.5 × 107 J/unit 
area/day.

ma = (1000 – 150) mb/g = mass of 
air unit area in the column

With cp = 1005 J/K/kg  we obtain ∆T ≈ 2.9°/day.

Therefore, a heating rate of 0.9° K/day requires a rainfall of 
about 1/3 cm/day averaged over the tropics, or 1.5 cm/day 
averaged over weather systems.
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Implied vertical velocities

Again using  WN2/g ≈ (Q/cpT) with the same parameters as 
before ⇒ a heating rate Q = 4.5 K/day ⇔ vertical velocity 
of about 1.5 cm/sec.

But note that the effective N is smaller in regions of moist
convection ⇒ the estimate for w is a conservative one.

Area occupied by precipitation

We can use these simple concepts to obtain an estimate for the 
horizontal area occupied by precipitating disturbances 

From mass conservation, the ratio of the area of ascent to 
descent must be inversely proportional to the ratio of the 
corresponding vertical velocities.

Using the figures given above, this ratio is 1/3, but allowing for 
a smaller N in convective regions will decrease this somewhat, 
closer to Gray´s estimate of 1/5.

z
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Additional notes on the scaling at low latitudes (1)

In mid-latitudes Ro << 1 and it is a convenient small parameter 
for asymptotic expansion.

Generally at low latitudes as f → 0, Ro ≈ 1 and we must seek 
other parameters.

One such parameter, (RiRo)−1 is always << 1, even if L ≈ 107 m.

The vorticity equation gives useful information: it states that 
synoptic-scale phenomena (L ≈ 106 m) are nearly uncoupled in 
the vertical except under circumstances that limit the 
derivation. These are:

When Q/cp is large. Then w is scaled using wN2/g  ≈ Q/(cpT).

Additional notes on the scaling at low latitudes (2)

For planetary-scale motions (L ≈ 107) of the type discussed in 
Chapter 1. Then, again Ro << 1 and if D ≈ Hs as before, the 
quasi-geostrophic scaling applies once more. Moreover, the 
appropriate vorticity equation includes the divergence term 
and coupling in the vertical is re-established; i.e.

If the motions involve vertically-propagating gravity waves 
with D << Hs, but still with L ≈ 107 and if U → 0, then again 
Ro <<1 and vertical coupling occurs.

( ) ( )t f f 0∂ + ⋅∇ ζ + + ∇⋅ =V V
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Barotropic features

( ) ( )t f 0∂ + ⋅∇ ζ + =VAs a consequence of

the atmosphere is governed by barotropic processes. 

⇒ the usual baroclinic way of producing kinetic energy from 
potential energy, i.e., the lifting of warm air and the lowering
of cold air, does not occur.

⇒ energy transfers are strictly limited.

How then can the kinetic energy be generated in the tropics?

The answer lies in convective processes.

But if this is so, why are the thermal gradients so small?  

Rate of potential energy production

( )2
pw 'T g Q T / N c T′< ′ > ≈ < ′ >

Íf w is approximated by  wN2/g  ≈ Q/(cpT),  then

the rate of production of kinetic energy

As <Q´T´> is proportional to the rate of production of 
potential energy (i.e. there is heating where it is hot and 
cooling where it is cold) the statement [*] is a reflection of 
the fact that in the tropics, potential energy is converted to 
kinetic energy as soon as it is generated:

⇒ there is no storage of potential energy. 

[*]
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The weak temperature gradient approximation

Dw S
z Dt θ
∂θ θ

= ≡
∂

A balanced theory for motions in the deep tropics:

Assume that  ∂θ/∂t and V ⋅∇ θ are much less than w(∂θ/∂z) 

pS Q /(c )θ = π

(p / p*)κπ =

( )f (f )D
t
∂ + ⋅∇ ζ + = + ζ ∂ 

V

Vorticity equation

1D ( w)
z
∂

= ∇⋅ = − ρ
ρ ∂

V

The weak temperature gradient approximation

( ) (f ) Sf
t z / z

θ∂ + ζ ∂ ρ   + ⋅∇ ζ + =   ∂ ρ ∂ ∂θ ∂   
V

If there were no diabatic heating (Sθ = 0), the RHS would 
be zero  ⇒ the absolute vorticity is simply advected 
around by the horizontal wind.

Heating produces horizontal divergence  ⇒
D > 0 ⇒ ζ + f decreases, D < 0 ⇒ ζ + f increases

Solution method
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The weak temperature gradient approximation

( ) ( ) (f ) Sf f
t z / z

θ∂ + ζ ∂ ρ ζ + = − ⋅∇ ζ + +  ∂ ρ ∂ ∂θ ∂ 
V

Given the diabatic heating Sθ = 0, update ζ + f in time using:

k= ∧∇ψ +∇χV

Diagnose ψ and χ by solving the two Elliptic PDEs:

2∇ ψ = ζ

2 D∇ χ =
1 SD

z / z
θ∂ ρ = ∇⋅ = −  ρ ∂ ∂θ ∂ 

V

The End


