

The govern	gequations on a sphere			
Equations of motion fo	r a dry atmosphere:			
Momentum	$\frac{D\boldsymbol{u}}{Dt} = -\frac{1}{\rho}\nabla p + \boldsymbol{g} - \boldsymbol{\Omega} \wedge \boldsymbol{u} + \frac{1}{\rho}\boldsymbol{F}$			
Continuity	$\frac{\mathrm{D}\rho}{\mathrm{D}t} = -\rho\nabla\cdot\mathbf{u}$			
Thermodynamic	$\frac{\mathrm{D}}{\mathrm{Dt}}\ln\theta = \frac{\mathrm{Q}}{\mathrm{c_pT}}$			
State	$p = \rho RT$			
Definition of θ	$\theta = T \left(\frac{p^*}{p}\right)^{\kappa}$			

The equations in the
$$(\lambda, \phi, z)$$
 coordinate system

$$\frac{Du}{Dt} - \frac{uv \tan \phi}{a} + \frac{uw}{a} = -\frac{1}{\rho a \cos \phi} \frac{\partial p}{\partial \lambda} + 2\Omega v \sin \phi - 2\Omega w \cos \phi$$

$$\frac{Dv}{Dt} + \frac{Dw}{Dt} - \frac{u^2 + v^2}{a} = -\frac{1}{\rho} \frac{\partial p}{\partial z} - g + 2\Omega u \cos \phi$$

$$\frac{Dw}{Dt} - \frac{u^2 \tan \phi}{a} + \frac{vw}{a} = -\frac{1}{\rho a} \frac{\partial p}{\partial \phi} - 2\Omega u \sin \phi$$

$$\frac{D\rho}{Dt} = -\frac{\rho}{a \cos \phi} \left[\frac{\partial u}{\partial \lambda} + \frac{\partial}{\partial \phi} (v \cos \phi) \right] - \rho \frac{\partial w}{\partial z} - 2\rho \frac{w}{a}$$

$$\mathbf{u} = a \cos \phi \frac{d\lambda}{dt} \mathbf{i} + r \frac{d\phi}{dt} \mathbf{j} + \frac{dz}{dt} \mathbf{k} = u\mathbf{i} + v\mathbf{j} + w\mathbf{k}$$

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla$$

Low frequency limit:

 $1/\tau \ll f$, $\delta p \approx P_2 = \rho L U f$ $\frac{W}{\tau} / \left(\frac{1}{\rho} \frac{P_2}{D}\right) = \frac{W}{U} \frac{D}{L} \frac{1}{\tau f}$

Now even if $W \approx U$ and $D \approx L$, the hydrostatic equation is valid (note that P_2 was derived on the assumption that $1/\tau \ll f$).

For synoptic-scale motions (L $\approx 10^6$ m) and planetary-scale motions (L \approx a), L >> D and the hydrostatic approximation is valid even if ($\tau \approx f$), and therefore as f decreases towards the equator.

⇒ We are well justified in treating planetary-scale motions as hydrostatic

The estimate $\frac{\delta p}{\rho_0} \approx \frac{\delta p}{p_0} \approx \frac{\delta \theta}{\theta_0} \approx 10^{-3}$ suggests that for synoptic scale systems in the tropics, we can
expect potential temperature changes associated with
adiabatic changes of no more than a fraction of a degree.The estimate $\frac{W}{D} \approx \frac{U}{L} \frac{1}{Ro Ri}$ shows that associated vertical motions are on the order
DU/(LRi) which is typically $10^4 \times 10 \div (10^6 \times (10^{-4} \times 10^8 \div 10^2)) \approx 10^{-3} ms^{-1}$

$\mathbf{A} = \mathbf{k} \wedge \left[\left(1 \right) \right]$	′ρ)∇ρ∧(1/ Ε	B (p)∇p]		С	D
Term	А	В	C	D	E
General	1	$\frac{L}{U}\frac{W}{D}$	$\frac{2\Omega}{U}\frac{L^2}{a}\cos\phi$	$\frac{L}{U}\frac{W}{D}\frac{1}{Ro}$	$\frac{F^2}{Ro^2}$
Ro << 1	1	1 Ri Ro	()	$\frac{1}{\operatorname{Ri}\operatorname{Ro}^2}$	$\frac{F^2}{Ro^2}$
Ro ≈ 1	1	$\frac{1}{\text{Ri}}$	()	$\frac{1}{\text{Ri}}$	F ²

$(\partial_t + \mathbf{V} \cdot \mathbf{V})$	<mark>∇)ζ+[ζ∇·</mark>	$\mathbf{V} + \mathbf{w}\partial_z \zeta +$	- <mark>k</mark> ·∇w∧∂	$\left[\mathbf{V} \right] + \mathbf{V} \cdot \nabla \mathbf{f}$	f+f∇· V		
Α	, - L -	В		C	D		
$= \mathbf{k} \wedge \left[\left(1/\rho \right) \nabla \rho \wedge \left(1/\rho \right) \nabla p \right]$							
E							
Typical values: $Ri = 10^2$, $F^2 = 10^{-3}$							
Term	А	В	С	D	Е		
Ro << 1	1	10-1	1	1	10-1		
Ro ≈ 1	1	10-2	1	10-2	10-3		
Middle latitudes: Ro $\ll 1 \implies (\partial_t + \mathbf{V} \cdot \nabla)(\zeta + f) + f \nabla \cdot \mathbf{V} =$					$fV \cdot \mathbf{V} = 0$		
Low latitudes: Ro $\approx 1 \Rightarrow$			$\left(\partial_{t} + \mathbf{V} \cdot \nabla\right) \left(\zeta + f\right) = 0$				

Implied rainfall

- A rainfall rate of 1 cm/day (i.e. 10⁻² m/day) implies 10⁻² m/day per unit area (i.e. m²) of vertical column.
- ➤ This would imply a latent heat release $\Delta Q \approx L\Delta m$ per unit area per day, where $L = 2.5 \times 10^6$ J/kg is the latent heat of condensation and Δm is the mass of condensed water.
- Since the density of water is 10 kg/m⁻³, we have

$$\Delta Q \approx 2.5 \times 10^6 \frac{J}{kg} \times 10^{-2} \,\mathrm{m}^3 \times 10^3 \frac{kg}{\mathrm{m}^3}$$

$$= 2.5 \times 10^7$$
 J/unit area/day

Implied vertical velocities

Again using $WN^2/g \approx (Q/c_pT)$ with the same parameters as before \Rightarrow a heating rate Q = 4.5 K/day \Leftrightarrow vertical velocity of about 1.5 cm/sec.

But note that the effective N is smaller in regions of moist convection \Rightarrow the estimate for w is a conservative one.

Barotropic features

As a consequence of $(\partial_t + \mathbf{V} \cdot \nabla)(\zeta + f) = 0$

the atmosphere is governed by barotropic processes.

- ➤ ⇒ the usual baroclinic way of producing kinetic energy from potential energy, i.e., the lifting of warm air and the lowering of cold air, does not occur.
- $ightarrow \Rightarrow$ energy transfers are strictly limited.
- > How then can the kinetic energy be generated in the tropics?
- > The answer lies in convective processes.
- > But if this is so, why are the thermal gradients so small?

