
Chapter 5

TROPICAL CYCLONE MOTION

The prediction of tropical cyclone motion has improved dramatically during the last
decade as has our understanding of the mechanisms involved. Some of the basic
aspects of tropical cyclone motion can be illustrated in terms of barotropic theory,
which assumes that the vortex structure is independent of height. We begin first by
examining this theory and go on in a following section to examine baroclinic aspects
of motion.

5.1 Vorticity-streamfunction method

The vorticity-streamfunction method is a powerful way of solving two-dimensional
flow problems for a homogeneous, incompressible fluid. It is conventional to choose
a rectangular coordinate system (x, y), with x pointing eastwards and y pointing
northwards. For two-dimensional motion in the x-y-plane, the relative vorticity, ζ,
is defined as ∂v/∂x− ∂u/∂y and satisfies the equation

∂

∂t
(ζ + f) + u

∂

∂x
(ζ + f) + v

∂

∂y
(ζ + f) = 0, (5.1)

where u and v are the velocity components in the x and y directions, respectively.
For an incompressible fluid, the continuity equation is

∂u

∂x
+

∂v

∂x
= 0, (5.2)

and accordingly there exists a streamfunction ψ such that

u = −∂ψ

∂y
, v =

∂ψ

∂x
, (5.3)

and

ζ =
∂2ψ

∂x2
+

∂2ψ

∂y2
, (5.4)
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Equation (5.1) is a prediction equation for the absolute vorticity, ζ +f , and states
that this quantity is conserved following columns1 of fluid. Equation (5.4) can be
used as an expression for calculating ζ if ψ is known, or, alternatively, as an elliptic
second-order partial differential equation for ψ if ζ is known. When ψ is known, u
and v can be calculated from the expressions (5.3).

In a few simple cases it may be possible to obtain an analytic solution of Eqs.
(5.1), (5.3) and (5.4), but in general we must resort to numerical methods. The
system of equations can be solved numerically using the following steps:

• From a given initial distribution of ψ at, say t = 0, we can calculate the initial
velocity distribution from Eq. (5.3) and the initial vorticity distribution from
Eq, (5.4). Alternatively, given the initial vorticity distribution, we can solve
Eq. (5.4) for the initial streamfunction distribution ψ and then calculate the
initial velocity distribution from Eq. (5.3).

• We are now in a position to predict the vorticity distribution at a later time,
say t = ∆t, using Eq. (5.1).

• Then we can solve Eq. (5.4) for the streamfunction distribution ψ at time ∆t
and the new velocity distribution from Eq. (5.3).

• We now repeat this procedure to extend the solution forward to the time t =
2∆t, and so on.

5.2 The partitioning problem

An important issue that arises in the study of tropical cyclone motion is the so-called
partitioning problem, i.e. the problem of deciding what is the cyclone and what is its
environment. Of course, Nature makes no distinction so that any partitioning that
we make to enable us to discuss the interaction between the tropical cyclone and its
environment is necessarily non-unique.

Various methods have been proposed to isolate the cyclone from its environment
and each may have their merits in different applications. One obvious possibility
is to define the cyclone as the azimuthally-averaged flow about the vortex centre,
and the residual flow (i.e. the asymmetric component) as ”the environment”. But
then the question arises: which centre? We show below that, in general, the location
of the minimum surface pressure and the centre of the vortex circulation at any
level are not coincident. The pros and cons of various methods are discussed by
Kasahara and Platzman (1963) and Smith et al. (1990). Many theoretical studies
consider the motion of an initially symmetric vortex in some analytically-prescribed
environmental flow. If the flow is assumed to be barotropic, there is no mechanism

1In a two-dimensional flow, there is no dependence of u, v, or ζ on the z-coordinate and we can
think of the motion of thin columns of fluid of uniform finite depth, or infinite depth, analogous to
fluid parcels in a three-dimensional flow.
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to change the vorticity of air columns. In this case it is advantageous to define
the vortex to be the initial relative vorticity distribution, appropriately relocated, in
which case all the flow change accompanying the vortex motion resides in the residual
flow that is considered to be the vortex environment. We choose also the position
of the relative vorticity maximum as the ’appropriate location’ for the vortex. An
advantage of this method (essentially Kasahara and Platzman’s method III) is that
all the subsequent flow changes are contained in one component of the partition
and the vortex remains ”well-behaved” at large radial distances. Further, one does
not have to be concerned with vorticity transfer between the symmetric vortex and
the environment as this is zero, by definition. The method has advantages also for
understanding the motion of initially asymmetric vortices as discussed by Smith et
al. (1990) and in Section 4.1.

The partitioning method can be illustrated mathematically as follows. Let the
total wind be expressed as u = us + U, where us denotes the symmetric velocity
field and U is the vortex environment vorticity, and define ζs = k · ∇ ∧ us and
Γ = k · ∇ ∧ U, where k is the unit vector in the vertical. Then Eq. (5.1) can be
partitioned into two equations:

∂ζs

∂t
+ c(t) · ∇ζs = 0, (5.5)

and
∂Γ

∂t
= −us · ∇(Γ + f)− (U− c) · ∇ζs −U · ∇(Γ + f), (5.6)

noting that us · ∇ζs = 0, because for a symmetric vortex us is normal to ∇ζs.
Equation (5.5) states that the symmetric vortex translates with speed c and Eq. (5.6)
is an equation for the evolution of the asymmetric vorticity. Having solved the latter
equation for Γ(x, t), we can obtain the corresponding asymmetric streamfunction by
solving Eq. (5.4) in the form ∇2ψa = Γ. The vortex translation velocity c may
be obtained by calculating the speed Uc = k ∧ ∇ψa at the vortex centre. In some
situations it is advantageous to transform the equations of motion into a frame of
reference moving with the vortex2. Then Eq. (5.5) becomes ∂ζs/∂t ≡ 0 and the
vorticity equation (5.6) becomes

∂Γ

∂t
= −us · ∇(Γ + f)− (U− c) · ∇ζs − (U− c) · ∇(Γ + f). (5.7)

5.3 Prototype problems

5.3.1 Symmetric vortex in a uniform flow

Consider a barotropic vortex with an axisymmetric vorticity distribution embedded
in a uniform zonal air stream on an f-plane. The streamfunction for the flow has the

2See Appendix 9.1 for details.
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form:
ψ(x, y) = −Uy + ψ′(r), (5.8)

where r2 = (x− Ut)2 + y2. The corresponding velocity field is

u = (U, 0) +

(
−∂ψ′

∂y
,
∂ψ′

∂x

)
, (5.9)

The relative vorticity distribution, ζ = ∇2ψ, is symmetric about the point
(x − Ut, 0), which translates with speed U in the x-direction. However, neither
the streamfunction distribution ψ(x, y, t), nor the pressure distribution p(x, y, t), are
symmetric and, in general, the locations of the minimum central pressure, maximum
relative vorticity, and minimum streamfunction (where u = 0) do not coincide. In
particular, there are three important deductions from (5.9):

• The total velocity field of the translating vortex is not symmetric, and

• The maximum wind speed is simply the arithmetic sum of U and the maximum
tangential wind speed of the symmetric vortex, Vm = (∂ψ′/∂r)max.

• The maximum wind speed occurs on the right-hand-side of the vortex in the
direction of motion in the northern hemisphere and on the left-hand-side in the
southern hemisphere.

Figure 5.1 shows an example of the vorticity, streamfunction and wind speed
distribution for the tropical-cyclone-scale vortex in Fig. 5.6, translating in a uniform
westerly current of 10 m s−1. The maximum tangential velocity is 40 m s−1 at a
radius of 100 km.

Because the vorticity field is Galilean invariant while the pressure field and
streamfunction fields are not, it is advantageous to define the vortex centre as the
location of maximum relative vorticity and to transform the equations of motion to
a coordinate system (X,Y ) = (x − Ut, y), whose origin is at this centre3. In this
frame of reference, the streamfunction centre is at the point (0, Ys), where

U − Φ(Ys)Ys = 0, (5.10)

and Φ = ψ′(r)/r. This point is to the left of the vorticity centre in the direction of
motion in the northern hemisphere. In the moving coordinate system, the momentum
equations may be written in the form

∇p = ρΦ(Φ + f)(X, Y ) + ρf(0, U). (5.11)

The minimum surface pressure occurs where ∇p = 0, which from (5.11) is at the
point (0, Yp) where

YpΦ(Yp)(Φ(Yp) + f) = fU. (5.12)

3The transformation of the equations of motion to a moving coordinate system is derived in
Appendix 9.1.
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Figure 5.1: Contour plots of (a) total wind speed, (b) relative vorticity, and (c)
streamlines, for a vortex with a symmetric relative vorticity distribution and maxi-
mum tangential wind speed of 40 m s−1 in a uniform zonal flow with speed 10 m s−1

on an f -plane. The maximum tangential wind speed occurs at a radius of 100 km
(for the purpose of illustration). The contour intervals are: 5 m s−1 for wind speed,
2× 10−4 s−1 for relative vorticity and 1× 104 m2 s−1 for streamfunction.

We show that, although Yp and Ys are not zero and not equal, they are for practical
purposes relatively small.

Consider the case where the inner core is in solid body rotation out to the radius
rm, of maximum tangential wind speed vm, with uniform angular velocity Ω = vm/rm.
Then ψ′(r) = Ωr and Φ = Ω. It follows readily that Ys/rm = U/vm and Yp/rm =
U/(vmRom), where Rom = vm/(rmf) is the Rossby number of the vortex core which
is large compared with unity in a tropical cyclone. Taking typical values: f =
5 × 10−5 s−1, U = 10 m s−1, vm = 50 m s−1, rm = 50 km, Rom = 20 and Ys =
10 km, Yp = 0.5 km, the latter being much smaller than rm. Clearly, for weaker
vortices (smaller vm) and/or stronger basic flows (larger U), the values of Ys/rm and
Yp/rm are comparatively larger and the difference between the various centres may
be significant.
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5.3.2 Vortex motion on a beta-plane

Another prototype problem for tropical-cyclone motion considers the evolution of
an initially-symmetric barotropic vortex on a Northern Hemisphere β-plane in a
quiescent environment. The problem was investigated by a number of authors in the
late 80s using numerical models (Chan and Williams, 1987; Fiorino and Elsberry
1989; Smith et al. 1990; Shapiro and Ooyama 1990) and an approximate analytic
solution was obtained by Smith and Ulrich (1990). In this problem, the initial
absolute vorticity distribution, ζ + f is not symmetric about the vortex centre: a
fluid parcel at a distance yo poleward of the vortex centre will have a larger absolute
vorticity than one at the same distance equatorward of the centre. Now Eq. (5.1)
tells us that ζ + f is conserved following fluid parcels and initially at least these
will move in circular trajectories about the centre. Clearly all parcels initially west
of the vortex centre will move equatorwards while those initially on the eastward
side will move polewards. Since the planetary vorticity decreases for parcels moving
equatorwards, their relative vorticity must increase and conversely for parcels moving
polewards. Thus we expect to find a cyclonic vorticity anomaly to the west of the
vortex and an anticyclonic anomaly to the east.

Figure 5.2: An air parcel moving in a circular orbit of radius r with angular velocity
Ω(r) is located at the point B with polar coordinates (r, λ) at time t. At time t = 0
the parcel was located at point A with coordinates (r, λ− Ω(r)t). During this time
it undergoes a meridional displacement r[sin λ− sin(λ− Ω(r)t)].

To a first approximation we can determine the evolution of the vorticity asymme-
tries by assuming that the flow about the vortex motion remains circular relative to
the moving vortex (we discuss the reason for the vortex movement below). Consider
an air parcel that at time t is at the point with polar coordinate (r, λ) located at
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the (moving) vortex centre (Fig. 5.2). This parcel would have been at the position
(r, λ − Ω(r)t) at the initial instant, where Ω(r) = V (r)/r is the angular velocity at
radius r and V (r) is the tangential wind speed at that radius. The initial vorticity
of the parcel is ζs(r) + f0 + βr sin(λ − Ω(r)t) while the vorticity of a parcel at its
current location is ζ(r) + f0 + βr sin λ. Therefore the vorticity perturbation ζa(r, λ)
at the point (r, λ) at time t is ζ(r)− ζs(r), or

ζa(r, λ) = βr[sin λ− sin(λ− Ω(r)t)]

or
ζa(r, λ) = ζ1(r, t) cos λ + ζ2(r, t) sin λ, (5.13)

where
ζ1(r, t) = −βr sin(Ω(r)t), ζ2(r, t) = −βr[1− cos(Ω(r)t)]. (5.14)

We can now calculate the asymmetric streamfunction ψa(r, λ, t) corresponding to
this asymmetry using Eq. (5.4). The solution should satisfy the boundary condition
that ψ → 0 as r →∞. It is reasonable to expect that ψa will have the form:

ψa(r, λ) = Ψ1(r, t) cos λ + Ψ2(r, t) sin λ, (5.15)

and it is shown in Appendix 3.4.1 that

Ψn(r, t) = −r

2

∫ ∞

r

ζn(p, t) dp− 1

2r

∫ r

0

p2ζn(p, t) dp (n = 1, 2), (5.16)

The Cartesian velocity components (Ua, Va) = (−∂Ψa/∂y, ∂Ψa/∂x) are given by

Ua = cos λ sin λ

[
Ψ1

r
− ∂Ψ1

∂r

]
− sin2 λ

∂Ψ2

∂r
− cos2 λ

Ψ2

r
, (5.17)

Va = cos2 λ
∂Ψ1

∂r
+ sin2 λ

Ψ1

r
− cos λ sin λ

[
Ψ2

r
− ∂Ψ2

∂r

]
. (5.18)

In order that these expressions give a unique velocity at the origin, they must be
independent of λ as r → 0, in which case

∂Ψn

∂r

∣∣∣∣
r=0

= lim
r→0

Ψn

r
, (n = 1, 2).

Then

(Ua, Va)r=0 =

[
−∂Ψ2

∂r

∣∣∣∣
r=0

,
∂Ψ1

∂r

∣∣∣∣
r=0

]
, (5.19)

and using (5.16) it follows that

∂Ψn

∂r

∣∣∣∣
r=0

= −1

2

∫ ∞

0

ζn(p, t) dp. (5.20)
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If we make the reasonable assumption that the symmetric vortex moves with the
velocity of the asymmetric flow across its centre, the vortex speed is simply

c(t) =

[
−∂Ψ2

∂r

∣∣∣∣
r=0

,
∂Ψ1

∂r

∣∣∣∣
r=0

]
, (5.21)

which can be evaluated using (5.14) and (5.20).
The assumption is reasonable because at the vortex centre ζ À f and the gov-

erning equation (5.1) expresses the fact that ζ +f is conserved following the motion.
Since the symmetric circulation does not contribute to advection across the vortex
centre (recall that the vortex centre is defined as the location of the maximum rela-
tive vorticity), advection must be by the asymmetric component. With the method
of partitioning discussed in section 3.2, this component is simply the environmental
flow by definition. The slight error committed in supposing that ζ is conserved rather
than ζ +f is equivalent to neglecting the propagation of the vortex centre. The track
error amounts to no more than a few kilometers per day which is negligible compared
with the actual vortex displacements (e.g., see Fig. 5.6).

The vortex track, X(t) = [X(t), Y (t)] may be obtained by integrating the equa-
tion dX/dt = c(t), and using (5.20) and (5.21), we obtain

[
X(t)
Y (t)

]
=




1
2

∫∞
0

{∫ 1

0
ζ2(p, t)dt

}
dp

−1
2

∫∞
0

{∫ 1

0
ζ1(p, t)dt

}
dp


 . (5.22)

With the expressions for ζn in (5.14), this expression reduces to

[
X(t)
Y (t)

]
=


 −1

2
β

∫∞
0

r
[
t− sin(Ω(r)t)

Ω(r)

]
dr

1
2
β

∫∞
0

r
[

1−cos(Ω(r)t)
Ω(r)

]
dr


 . (5.23)

This expression determines the vortex track in terms of the initial angular velocity
profile of the vortex. To illustrate the solutions we choose the vortex profile used by
Smith et al. (1990) so that we can compare the model results with their numerical
solutions. The velocity profile V (r) and corresponding angular velocity profile Ω(r)
are shown as solid lines in Fig. 5.3. The maximum wind speed of 40 m s−1 occurs
at a radius of 100 km and the region of approximate gale force winds (> 15 m
s−1) extends to 300 km. The angular velocity has a maximum at the vortex center
and decreases monotonically with radius. Figure 5.6 shows the asymmetric vorticity
field calculated from (5.14) and the corresponding streamfunction field from (5.16)
at selected times, while Fig. 5.4 compares the analytical solutions with numerical
solutions at 24 h.

The integrals involved are calculated using simple quadrature. After one minute
the asymmetric vorticity and streamfunction fields show an east-west oriented di-
pole pattern. The vorticity maxima and minima occur at the radius of maximum
tangential wind and there is a southerly component of the asymmetric flow across
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Figure 5.3: (left) Tangential velocity profile V (r) and (right) angular velocity profile
Ω(r) for the symmetric vortex.

the vortex center (Fig. 5.4a). As time proceeds, the vortex asymmetry is rotated by
the symmetric vortex circulation and its strength and scale increase. The reasons
for this behaviour are discussed below. In the inner core (typically r < 200 km),
the asymmetry is rapidly sheared by the relatively large radial gradient of Ω (Fig.
5.4b). In response to these vorticity changes, the streamfunction dipole strengthens
and rotates also, whereupon the asymmetric flow across the vortex center increases
in strength and rotates northwestwards. Even at 24 h, the asymmetric vorticity and
streamfunction patterns show remarkable similarity to those diagnosed from the com-
plete numerical solution of Smith et al. (1990), which can be regarded as the control
calculation (see Fig. 5.5). The numerical calculation was performed on a 2000 km ×
2000 km domain with a 20 km grid size. Despite the apparent similarities between
the analytically and numerically calculated vorticity patterns in Fig. 5.5, the small
differences in detail are manifest in a more westerly oriented stream flow across the
vortex center in the analytical solution and these are reflected in differences in the
vortex tracks shown in Fig. 5.6. It follows that the analytical solution gives a track
that is too far westward, but the average speed of motion is comparable with, but a
fraction smaller than in the control case for this entire period. Even so, it is apparent
that the simple analytic solution captures much of the dynamics in the full numerical
solution.

Exercises

(3.1) Starting from Eq. 5.6 and the assumptions that air parcels move in circular
orbits about the vortex centre while conserving their absolute vorticity and that
the relative advection of vortex vorticity is small, show that the asymmetric



CHAPTER 5. TROPICAL CYCLONE MOTION 89

Figure 5.4: Asymmetric vorticity (top panels) and streamfunction fields (bottom
panels) at selected times: (a) 1 min, (b) 1 h, (c) 3 h, (d) 12 h. Contour intervals for
ζa are: 1× 10−8 s−1 in (a), 5× 10−7 s−1 in (b), 1× 10−6 s−1 in (c), and 2× 10−6 s−1

in (d). Contour intervals for ψa are: 100 m2 s−1 in (a), 6× 103 m2 s−1 in (b), 1× 104

m2 s−1 in (c), and 5× 104 m2 s−1 in (d). (continued overleaf)

vorticity approximately satisfies the equation:

∂ζa

∂t
+ Ω(r)

∂ζa

∂λ
= −βrΩ(r) sin λ. (5.24)

(3.2) Show that the equation

∂X

∂t
+ Ω(r, t)

∂X

∂λ
= −βrΩ(r, t) cos λ

has the solution
X = −βr(sin λ− sin(λ− ω)),
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Fig. 5.4 (continued)

where

ω =

∫ t

0

Ω(r, t′)dt′.

The analytic theory can be considerably improved by taking account of the con-
tribution to the vorticity asymmetry, ζa1, by the relative advection of symmetric
vortex vorticity, ζs. This contribution is represented by the term −(Ua − c) · ∇ζs

in Eq. 5.6 (the second term on the right-hand-side). Again, with the assumption
that air parcels move in circular orbits about the vortex centre while conserving their
absolute vorticity, ζa1 satisfies the equation:

∂ζa1

∂t
+ Ω(r)

∂ζa1

∂λ
= −(Ua − c) · ∇ζs, (5.25)

where the components of Ua are given by Eqs. (5.17) and (5.18), and c is given by
Eq. (5.21). Further details of this calculation are given in Appendix 3.4.2. With
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this correction there is excellent agreement between the numerically and analytically
calculated tracks (compare the tracks AC and N in Fig. 5.6).

Figure 5.5: Comparison of the analytically-computed asymmetric vorticity and
streamfunction fields (upper right and lower right) with those for the corresponding
numerical solutions at 24 h. Only the inner part of the numerical domain, centred
on the vortex centre, is shown (the calculations were carried out on a 2000 km ×
2000 km domain). Contour intervals are 5 × 10−6 s−1 for ζa and 105 m2 s−1 for ψa.
The tropical cyclone symbol represents the vortex centre.

The foregoing analytical solution shows that the vorticity asymmetry is domi-
nated by a pair of orthogonal dipoles with different radial profiles and strengths and
that these profiles evolve with time. These profiles are characterized by the func-
tions Ψn(r, t) in Eq. (5.15), which are shown in Fig. 5.7 at 24 h. At this time the
maximum amplitude of the vorticity asymmetry is located more than 350 km from
the vortex centre, where the tangential wind speed of the vortex is only about one
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Figure 5.6: Comparison of the analytically calculated vortex track (denoted by A)
compared with that for the corresponding numerical solution (denoted by N). The
track by AC is the analytically corrected track referred to in the text.

quarter of its maximum value. As time proceeds, the strength of the asymmetry
and the radius at which the maximum occurs continue to increase until about 60 h
when the radius of the maximum stabilizes (see Smith et al. 1990, Fig. 5). This
increase in the strength and scale of the gyres in the model is easy to understand if
we ignore the motion of the vortex. As shown above, the change in relative vorticity
of a fluid parcel circulating around the vortex is equal to its displacement in the
direction of the absolute vorticity gradient times the magnitude of the gradient. For
a fluid parcel at radius r the maximum possible displacement is 2r, which limits the
size of the maximum asymmetry at this radius. However, the time for this displace-
ment to be achieved is π/Ω(r), where Ω(r) is the angular velocity of a fluid parcel at
radius r. Since Ω is largest at small radii, fluid parcels there attain their maximum
displacement relatively quickly, and as expected the maximum displacement of any
parcel at early times occurs near the radius of maximum tangential wind (Fig. 5.8a).
However, given sufficient time, fluid parcels at larger radii, although rotating more
slowly, have the potential to achieve much larger displacements than those at small
radii; as time continues, this is exactly what happens (Fig 5.8b). Ultimately, of
course, if Ω(r) decreases monotonically to zero, there is a finite radius beyond which
the tangential wind speed is less than the translation speed of the vortex. As the
maximum in the asymmetry approaches this radius the vortex motion can no longer
be ignored (see Smith and Ulrich 1990, Fig. 12).

Since the absolute vorticity is the conserved quantity in the barotropic flow prob-
lem it is instructive to examine the evolution of the isolines of this quantity as the
flow evolves. At the initial time the contours are very close to circular near the vortex
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Figure 5.7: Radial profiles of Ψn/Ψmax (n = 1, 2) at 24 hh where Ψmax is the
maximum absolute value of Ψn. Solid line is Ψ1, dashed line is Ψ2. Here, Ψ1max =
4.8× 105 m2 s−1; Ψ1max = 4.2× 105 m2.

centre and are oriented zonally far from the centre. The pattern after 24 h, shown
in Fig. 5.9, illustrates how contours are progressively wound around the vortex with
those nearest the centre drawn out into long filaments. This filamentation process
is associated with the strong angular shear of the tangential wind profile (see Fig.
5.3b). In reality, the strong gradients of asymmetric relative vorticity would be re-
moved by diffusive processes. The filamentation is comparatively slow at larger radial
distances so that coherent vorticity asymmetries occur outside the rapidly-rotating
and strongly-sheared core. One consequence of these processes is that it is the larger-
scale asymmetries that have the main effect on the vortex motion. On account of the
filamentation process, there is a natural tendency for vortices to axisymmetrize dis-
turbances in their cores. The axisymmetrization process in rapidly-rotating vortices
is analyzed in more detail in section 4.1.

The analytic theory described above can be extended to account for higher-order
corrections to the vorticity asymmetry. These corrections involve higher-order az-
imuthal wavenumber asymmetries. Mathematically an azimuthal wavenumber-n vor-
ticity asymmetry has the form

ζa(r, λ, n) = ζ1(r, t) cos(nλ) + ζ2(r, t) sin(nλ) (n = 1, 2, . . .),

which may be written

ζa(r, λ, n) = ζn(r, t) cos(nλ + α). (5.26)
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Figure 5.8: Approximate trajectories of fluid parcels which, for a given radius, give
the maximum asymmetric vorticity contribution at that radius. The figures refer ro
the case of motion of an initially-symmetric vortex on a β-plane with zero basic flow
at (a) 1 h, (b) 24 h. The particles arc assumed to follow circular paths about the
vortex centre (e.g. AB) with angular velocity Ω(r), where Ω decreases monotonically
with radius r. Solid lines denote trajectories at 50 km radial intervals. Dashed
lines marked ’M’ and ’m’ represent the trajectories giving the overall axisymmetric
vorticity maxima and minima, respectively. These maxima and minima occur at the
positive and negative ends of the relevant lines.

The associated streamfunction asymmetry has a similar form:

ψa(r, λ, n) = ψn(r, t) cos(nλ + α),

where(see Appendix 3.4.1)

ψ0 =

∫ r

0

dp

p

∫ s

0

sζ0(s, t)ds

ψn =
1

2n

[
rn

∫ ∞

r

p1−nζn(p, t)dp− r−n

∫ r

0

p1+nζn(p, t)dp

]
, (n 6= 0).

The tracks obtained from the extended analytic theory agreed with considerable
accuracy with those obtained from a numerical solution of the problem to at least
72 h, showing that theory captures the essential features of the dynamics (see Smith
and Weber 1993).

5.3.3 The effects of horizontal shear and deformation

The analytic theory can be extended also to zonal basic flows of the form U =
(U(y, t), 0) (Smith, 1991) and to more general flows with horizontal deformation
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Figure 5.9: Analytically calculated absolute vorticity distribution at 24 h correspond-
ing with the vorticity asymmetry in the upper right panel of Fig. 5.5.

(Krauss et al. 1995). For simplicity we consider here the case where U is a quadratic
function of y only, i.e. U = Uo + U ′y + 1

2
U ′′y2. Let us partition the environmental

flow at time t into two parts: the initial zonal flow, U, and the part associated
with the vortex-induced asymmetries, Ua and define the corresponding vorticities:
Γ = k · ∇∧U and ζa = k · ∇∧Ua. Then, noting that U is normal to ∇(Γ + f), Eq.
(5.6) may be written:

∂ζa

∂t
= −us · ∇(Γ + f)− (U + Ua − c) · ∇ζs −Ua · ∇(Γ + f). (5.27)

Let us define c = Uc + c′, and U = Uc(t) + Uo, where Uc(t) is the speed of the
zonal flow at the meridional position of the vortex and Uo contains the meridional
variation of U, then Eq. (5.27) becomes

∂ζa

∂t
= −us · ∇(Γ + f)−Uo · ∇ζs + (Ua − c′) · ∇ζs −Ua · ∇(Γ + f). (5.28)

The first term on the right-hand-side of this equation represents the asymmetric
vorticity tendency, ∂ζa1/∂t, associated with the advection of the absolute vorticity
gradient of the basic flow by the symmetric vortex circulation. The second term,
∂ζa2/∂t, is the asymmetric vorticity tendency associated with the basic shear acting
on the symmetric vortex. The third term, ∂ζa3/∂t, is the asymmetric vorticity ten-
dency associated with the advection of symmetric vorticity by the relative asymmet-
ric flow; and the last term, ∂ζa4/∂t, is the asymmetric vorticity tendency associated
with the advection of the absolute vorticity gradient of the basic flow by the asym-
metric flow. Let ζan(n = 1 . . . 4) be the contribution to ζa from ∂ζan/∂t. Then ζa1
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has an azimuthal wavenumber-1 structure like ζa in Eq. (5.13) and the solution has
the same form as (5.14), but with β replaced with the absolute vorticity gradient of
the background flow, β − U ′′.

Case I: Uniform shear

For a linear velocity profile (i.e. for uniform shear, U ′ = constant), k·∇Γ = −U ′′ = 0,
so that the main difference compared to the calculation in the previous section is the
emergence of an azimuthal wavenumber-2 vorticity asymmetry from the term ζa2,
which satisfies the equation

∂ζa2

∂t
= −Uo · ∇ζs = −U ′y

∂ζs

∂x
.

This result is easy to understand by reference to Figs. 5.10 and 5.11. The vorticity
gradient of the symmetric vortex is negative inside a radius of 255 km (say ro) and
positive outside this radius (Fig. 5.10). Therefore ∂ζs/∂x is positive for x > 0 and
r > ro and negative for x < 0 and r < ro. If U = U ′y, U∂ζs/∂x is negative in the
first and third quadrants for r > ro and positive in the second and fourth quadrants
(Figs. 5.11). For r < ro, the signs are reversed.

Figure 5.10: (left) Radial profile of vortex vorticity, ζ(r), corresponding with the
tangential wind profile in Fig. 5.3.

Figure 5.12 shows the calculation of ζa2 at 24 h when U ′ = 5 m s−1 per 1000
km. Since the vorticity tendency is relative to the motion of a rotating air parcel
(Eq. (4.1)), the pattern of ζa2 at inner radii is strongly influenced by the large radial
shear of the azimuthal wind and consists of interleaving spiral regions of positive and
negative vorticity. The maximum amplitude of ζa2 (1.1× 10−5 s−1 at 24 h) occurs at
a radius greater than ro. Note that azimuthal wavenumber asymmetries other than
wavenumber-1 have zero flow at the origin and therefore have no effect on the vortex



CHAPTER 5. TROPICAL CYCLONE MOTION 97

Figure 5.11: Schematic depiction of the azimuthal wavenumber-2 vorticity tendency
arising from the term −U · ∇ζs = −U ′y∂ζs/∂x in the case of a uniform zonal shear
U = U ′y. (a) shows the sign of the vorticity gradient ∂ζs/∂x in each quadrant for
0 < r < ro and ro < r where ro is the radius at which the vorticity gradient dζs/dr
changes sign (see Fig. 5.11) and (b) shows the vorticity tendency −U∂ζs/∂x in the
eight regions.

motion. In the case of uniform shear, there is a small wavenumber-1 contribution to
the asymmetry from the term ζa4, which satisfies the equation

∂ζa4

∂t
= −Ua · ∇(Γ + f).

Case II: Linear shear

We consider now the case of a quadratic velocity profile (i.e. linear shear) in which
U ′ is taken to be zero ∂Γ/∂y = −U ′′ is nonzero. Linear shear has two particularly
important effects that lead to a wavenumber-1 asymmetry, thereby affecting the
vortex track. The first is characterized by the contribution to the absolute-vorticity
gradient of the basic flow (the first term on the right-hand-side of Eq. (5.28), which
directly affects the zero-order vorticity asymmetry, ζa1. The second is associated
with the distortion of the vortex vorticity as depicted in Fig. 5.13 and represented
mathematically by ζa2, which originates from the second term on the right-hand-side
of Eq. (5.28).

Vortex tracks

Figure 5.14 shows the vortex tracks calculated from the analytic theory of Smith
(1991) with the corresponding numerical calculations of Smith and Ulrich (1991).
The broad agreement between the analytical and numerical calculations indicates
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Figure 5.12: Asymmetric vorticity contribution for the case of a uniform zonal shear
with U ′ = 5 m s−1 per 1000 km. Contour interval is 5 × 10−6 s−1. Dashed lines
indicate negative values. The vortex centre is marked by a cyclone symbol.

Figure 5.13: Schematic depiction of the wavenumber-1 vorticity tendency arising
from the term −U · ∇ζs = −U∂ζs/∂x in the case of linear basic shear U = −1

2
U ′′y2.

(a) shows the profile U(y) and (b) shows the vorticity tendency −U∂ζs/∂x, in the
eight regions defined in Fig. 5.10. The sign of ∂ζs/∂x in these regions is shown in
Fig. 5.10a.

that the analytic theory captures the essence of the dynamics involved, even though
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the analytically-calculated motion is a little too fast. The eastward or westward
displacement in the cases with zonal shear are in accordance with expectations that
the vortex is advected by the basic flow and the different meridional displacements
are attributed to the wavenumber-1 asymmetry, ζa4 discussed above.

Panel (b) of Fig. 5.14 shows a similar comparison for two cases of a linear shear:
SNB with U ′′ = βo and β = 0; SHB U ′′ = 1

2
βo and β = 1

2
βo; and the case of zero basic

flow (ZBF) with β = βo. Here βo is the standard value of β. These three calculations
have the same absolute vorticity gradient, βo, but the relative contribution to it
from U ′′ and β is different. Note that the poleward displacement is reduced as U ′′

increases in magnitude. Again this effect can be attributed to the wavenumber-one
asymmetry ζa2 discussed above.

Figure 5.14: Analytically calculated vortex track (denoted by A) compared with
the corresponding numerical solution (denoted by N): (a) uniform shear flow cases
and [b) linear shear flow cases. Each panel includes the analytically and numerically
calculated track for the case of zero basic; flow (denoted ZBF). Cyclone symbols mark
the vortex position at 12-h intervals. (See text for explanation of other letters.)

5.4 The motion of baroclinic vortices

As a start to examining the motion of baroclinic vortices it is instructive to consider
first the vorticity tendency for a baroclinic vortex v(r, z) in a zonal shear flow U(z).

5.4.1 Vorticity tendency for a baroclinic vortex v(r, z) in a
zonal shear flow U(z).

Consider the velocity vector:

u = U(z)̂i + v(r, z)θ̂ = U cos θr̂ + (v − U sin θ)θ̂ (5.29)
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The vorticity in cylindrical coordinates is

ω =
1

r

(
∂uz

∂θ
− ∂ruθ

∂z

)
r̂ +

(
∂ur

∂z
− ∂uz

∂r

)
θ̂ +

1

r

(
∂ruθ

∂r
− ∂ur

∂θ

)
k̂,

so that for the velocity vector (5.29),

ω =

(
− ∂

∂z
(v − U sin θ)

)
r̂+

(
∂

∂z
U cos θ

)
θ̂ +

(
1

r

∂

∂r
r(v − U sin θ)− 1

r

∂

∂θ
U cos θ

)
k̂

or

ω =

(
dU

dz
sin θ − ∂v

∂z

)
r̂ +

dU

dz
cos θθ̂ +

1

r

∂rv

∂r
k̂

Let us write

ω =

(
ξ +

dU

dz
sin θ

)
r̂ +

dU

dz
cos θθ̂ + ζk̂ (5.30)

Now, in cylindrical coordinates (see Batchelor, 1970, p602)

u.∇ω =
(
u.∇ωr − uθωθ

r

)
r̂ +

(
u.∇ωθ +

uθωr

r

)
θ̂ + (u.∇ωz) k̂

Then for the velocity vector (5.29),
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u.∇ω =

(
u.∇

(
ξ +

dU

dz
sin θ

)
− uθ

r

dU

dz
sin θ

)
r̂ +

(
u.∇ωθ +

uθ

r

(
ξ +

dU

dz
sin θ

))
θ̂ + (u.∇ζ) k̂

The three components of this equation are:

(
u.∇ξ − uθωθ

r

)
= U cos θ

∂

∂r

(
ξ +

dU

dz
sin θ

)

+ (v − U sin θ)
1

r

∂

∂θ

(
ξ +

dU

dz
sin θ

)
− (v − U sin θ)

r

dU

dz
cos θ

= U cos θ
∂ξ

∂r

(
u.∇ωθ +

uθωr

r

)
= U cos θ

∂

∂r

(
dU

dz
cos θ

)

+ (v − U sin θ)
1

r

∂

∂θ

(
dU

dz
cos θ

)
+

(v − U sin θ)

r

(
ξ +

dU

dz
sin θ

)

=
(v − U sin θ)

r
ξ

u.∇ωz = U cos θ
∂ζ

∂r
+

(v − U sin θ)

r

∂ζ

∂θ
= U cos θ

∂ζ

∂r

Therefore

u.∇ω = U cos θ
∂ξ

∂r
r̂ +

(v − U sin θ)

r
ξθ̂ + U cos θ

∂ζ

∂r
k̂ (5.31)

Now

ω.∇u =
(

ω.∇ur − ωθuθ

r

)
r̂ +

(
ω.∇uθ +

ωθur

r

)
θ̂ + (ω.∇uz) k̂. (5.32)

The first component of this equation is

ω.∇ur − ωθuθ

r
=

[(
ξ +

dU

dz
sin θ

)
r̂ +

dU

dz
cos θθ̂ + ζk

]
×

(
∂

∂r
(U cos θ)r̂ +

1

r

∂

∂θ
(U cos θ)θ̂ +

∂

∂z
(U cos θ)k̂

)
− v − U sin θ

r

dU

dz
cos θ

= −U

r

dU

dz
cos θ sin θ + ζ

dU

dz
cos θ − v − U sin θ

r

dU

dz
cos θ



CHAPTER 5. TROPICAL CYCLONE MOTION 102

or, finally

ω.∇ur − ωθuθ

r
= ζ

dU

dz
cos θ − v

r

dU

dz
cos θ =

dv

dr

dU

dz
cos θ (5.33)

The second component of (5.33) is

ω.∇uθ +
ωθur

r
=

[(
ξ +

dU

dz
sin θ

)
r̂ +

dU

dz
cos θθ̂ + ζk

]
×

[
∂

∂r
(v − U sin θ)r̂ +

1

r

∂

∂θ
(v − U sin θ)θ̂ +

∂

∂z
(v − U sin θ)k̂

]
+

U cos θ

r

dU

dz
cos θ

=

[(
ξ +

dU

dz
sin θ

)
r̂ +

dU

dz
cos θθ̂ + ζk

]
×

[
∂v

∂r
r̂− U

r
cos θθ̂ +

(
∂v

∂z
− dU

dz
sin θ

)
k̂

]
+

U

r

dU

dz
cos2 θ

=

(
ξ +

dU

dz
sin θ

)
∂v

∂r
− ζ

(
ξ +

dU

dz
sin θ

)
=

(
∂v

∂r
− ζ

) (
ξ +

dU

dz
sin θ

)
,

or, finally,

ω.∇uθ +
ωθur

r
= −v

r

(
ξ +

dU

dz
sin θ

)
(5.34)

The third component of (5.33) is simply

ω.∇uz = 0 (5.35)

The (5.32) may be written

ω.∇u =
dv

dr

dU

dz
cos θr̂ − v

r

(
ξ +

dU

dz
sin θ

)
θ̂ (5.36)

∂ω

∂t
= −u·∇ω + ω·∇u

u.∇ω = U cos θ
∂ξ

∂r
r̂ +

(v − U sin θ)

r

(
ξ − dU

dz
sin θ

)
θ̂ + U cos θ

∂ζ

∂r
k̂

∂ω

∂t
= −

(
U cos θ

∂ξ

∂r
r̂ +

(v − U sin θ)

r
ξθ̂ + U cos θ

∂ζ

∂r
k̂

)
+

dv

dr

dU

dz
cos θr̂ − v

r

(
ξ +

dU

dz
sin θ

)
θ̂

=

(
−U

∂ξ

∂r
+

dv

dr

dU

dz

)
cos θr̂−

[(
v

r
+

(v − U sin θ)

r

)
ξ − v

r

dU

dz
sin θ

]
θ̂−U cos θ

∂ζ

∂r
k̂,

or finally,

∂ω

∂t
=

(
−U

∂ξ

∂r
+

dv

dr

dU

dz

)
cos θr̂−

[(
2v

r
− U sin θ

r

)
ξ +

v

r

dU

dz
sin θ

]
θ̂ − U cos θ

∂ζ

∂r
k̂

(5.37)
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Special cases:

1. Uniform flow (U = constant), barotropic vortex, v = v(r) ⇒ ξ = 0

∂ω

∂t
= −U cos θ

∂ζ

∂r
k̂ ⇒ ∂ζ

∂t
= −U

∂ζ

∂x

In this case there is only vertical vorticity and this is simply advected by the
basic flow as discussed in Chapter 5.

2. No basic flow (U = 0), baroclinic vortex, v = v(r, z)

∂ω

∂t
= −2v

r
ξθ̂

∂ξ

∂t
= 0,

∂η

∂t
= −2v

r
ξ,

∂ζ

∂t
= 0

In this case there are initially two components of vorticity, a radial component
and vertical vertical component, but in general, the vortex does not remain
stationary as there is generation of toroidal vorticity. The exception is, of
course, when the vortex is in thermal-wind balance in which case there is
generation of toroidal vorticity of the opposite sign by the horizontal density
gradient so that the net rate-of-generation of toroidal vorticity is everywhere
zero.

3. Uniform flow (U = constant), baroclinic vortex, v = v(r, z)

∂ω

∂t
= −U cos θ

∂ξ

∂r
r̂−

(
2v

r
− U sin θ

r

)
ξθ̂ − U cos θ

∂ζ

∂r
k̂

∂ξ

∂t
= −U

∂ξ

∂x

∂η

∂t
= −

(
2v

r
− U sin θ

r

)
ξ

∂ζ

∂t
= −U

∂ζ

∂x

Again there are initially two components of vorticity, a radial component and
vertical vertical component, and again there is generation of toroidal vorticity
unless the vortex is in thermal-wind balance. However, even in the latter
case there would appear to be a generation of toroidal vorticity at the rate
(U sin θ/r)ξ. It can be shown that this rate-of-generation is associated with the
coordinate system represented by the unit vectors r̂, θ̂, k̂, is fixed (see Exercise
5.1). Thus as the vortex moves away from the origin of coordinates, the radial
component of vorticity in the moving frame projects onto the θ̂-component in
the fixed frame.
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4. Uniform shear flow (dU/dz = constant = U ′), barotropic vortex, v = v(r) ⇒
ξ = 0

∂ω

∂t
=

dv

dr

dU

dz
cos θr̂ +

v

r

dU

dz
sin θθ̂ + U cos θ

∂ζ

∂r
k̂

∂ξ

∂t
= −U

∂ξ

∂x
+

dv

dr

dU

dz
cos θ

∂η

∂t
=

v

r

dU

dz
sin θ

∂ζ

∂t
= −U

∂ζ

∂x

Translation of the balanced density field

Let ρ = p0(r, z) at time t = 0.
Then

∂ρ

∂t
= −∇ · (ρu) = −u · ∇ρ− ρ(∇ · u).

Now the velocity field u = (U cos θ, v − U sin θ, 0) is nondivergent (∇ · u = 0)
and therefore

∂ρ

∂t
= −U cos θ

∂ρ

∂r
− (v − U sin θ)

r

∂ρ

∂θ
.

The second term on the right-hand-side is zero because ρ is dependent of θ whereupon

∂ρ

∂t
= −U

∂ρ

∂x

and the density field is simply advected at speed U .

Exercise 5.1 Show that the term (U sin θ/r)ξ in Eqs. (??) is the rate-of-

generation of toroidal vorticity in the fixed coordinate system represented by the
unit vectors r̂, θ̂, k̂ due to the subsequent displacement of the vortex centre from the
coordinate origin.

Exercise 5.2 Show that

∂

∂r
=

∂

∂x

∂x

∂r
+

∂

∂y

∂y

∂r
= cos θ

∂

∂x
+ sin θ

∂

∂y
,

and
1

r

∂

∂θ
=

1

r

∂

∂x

∂x

∂θ
+

1

r

∂

∂y

∂y

∂θ
= − sin θ

∂

∂x
+ cos θ

∂

∂y
,

Deduce that
∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
,
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and
∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
.

Figure 5.15: See text for discussion.

Solution to Exercise 5.1
Let the vortex be centred at the origin at time t = 0 and at a position Ut from the
origin at time t (Fig. 5.15). At time t, the radial component of vorticity is
ω′rr̂

′ = ξr̂′ and we are interested in the projection of this vector in the λ̂
′
direction.

In particular we want to calculate its rate of change

Λ =
d

dt
(ξr̂′ · λ̂) = ξ

d

dt
sin φ

Consider r ∧ r′ = |r||r′| sin φk̂, where k̂ is a vector normal to the plane of r and r̂′

and note that r′ = r−Xi. Then

k̂ sin φ =
Xi ∧ r′

|r| |r′| = k̂
X

|r| sin λ

so that
d

dt
sin φ =

1

r
sin λ

dX

dt
=

U

r
sin λ

and therefore

Λ =
U

r
ξ sin λ

as required.
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5.4.2 The effects of vertical shear

Discuss Jones (1995, 2000a, 2000b, 2004), Smith and Ulrich (2000) and Reasor and
Montgomery (2004).
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5.5 Appendices to Chapter 5

5.5.1 Derivation of Eq. 5.16

We require the solution of ∇2ψa = ζ, when ζa(r, θ) = ζ̂(r)einθ. Now

∇2ψa =
∂2ψa

∂r2
+

1

r

∂ψa

∂r
+

1

r2

∂2ψa

∂θ2
= ζ̂(r)einθ

Put ψ = ψ̂(r)einθ, then

d2ψ̂

dr2
+

1

r

dψ̂

dr
− n2

r2
ψ̂ = ζ̂(r). (5.38)

When ζ̂(r) = 0, the equation has solutions ψ̂ = rα where

[α(α− 1) + α− n2]rα−2 = 0,

which gives
α2 − n2 = 0 or α = ±n.

Therefore, for a solution of (5.38), try ψ̂ = rnφ(r). Then

ψr = rnφr + nrn−1φ, ψrr = rnφrr + 2nrn−1φr + n(n− 1)rn−2φ (5.39)

whereupon (5.38) gives

rnφrr + 2nrn−1φr + n(n− 1)rn−2φ

+ rn−1φr + nrn−2φ− n2rn−2φ = ζ̂ ,

or
rnφrr + (2n + 1)rn−1φr = ζ̂ .

Multiply by rβ and choose β so that n + β = 2n + 1, i.e., β = n + 1. Thus rn+1 is
the integrating factor. Then

d

dr

[
r2n+1φ(r)

]
= rn+1ζ̂(r), (5.40)

which may ne integrated to give

r2n+1dφ

dr
=

∫ ∞

r

pn+1ζ̂(p)dp + A,

where A is a constant. Therefore

dφ

dr
=

1

r2n+1

∫ ∞

r

pn+1ζ̂(p)dp +
A

r2n+1
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Figure 5.16: The domain of integration for the integral (5.41) is the shaded region.

Finally,

φ =

∫ ∞

r

dq

q2n+1

∫ ∞

q

pn+1ζ̂(p)dp +

∫ ∞

q

Adq

q2n+1
+ B, (5.41)

where B is another another constant. The domain of the double integral is the shaded
region shown in Fig. 5.16 in which p goes from q to ∞ then q goes from r to ∞. If
we change the order of integration in (5.41), q goes from r to p and then p goes from
r to ∞, i.e.

φ =

∫ ∞

r

pn+1ζ(p)dp

∫ p

r

dq

q(2n+1)
− A

2nr2n
+ B

=
1

2n

[∫ ∞

r

pn+1ζ̂(p)dp− A

]
1

r2n
+ B − 1

2n

∫ r

0

p1−nζ̂(p)dp.

Finally

ψ̂(r) = − rn

2n

∫ r

0

p1−nζ̂(p)dp + Brn +
1

2nrn

[∫ ∞

r

pn+1ζ̂(p)dp− A

]
.

Now ψ̂(r) finite at r = 0 requires that

A =

∫ ∞

0

pn+1ζ̂(p)dp

and ψ̂(r) finite as r →∞ requires that

B =

∫ ∞

0

p1−nζ̂(p)dp
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Therefore

ψ̂(r) = − rn

2n

∫ ∞

r

p1−nζ̂(p)dp− r−n

2n

∫ 0

r

pn+1ζ̂(p)dp, (5.42)

as required.

5.5.2 Solution of Eq. 5.25

The asymmetric flow Ua is obtained from Eqs. (5.17) and (5.18) and c is obtained
from (5.21). We can calculate the streamfunction Ψ′

a of the vortex-relative flow
Ua − c, from

ψ′n = ψa − ψc,

where

ψ′c = r(Va cos λ− Ua sin λ) = r

[
∂Ψ1

∂r

∣∣∣∣
r=0

cos λ +
∂Ψ2

∂r

∣∣∣∣
r=0

sin λ

]
. (5.43)

Then using (5.15), (5.16), (5.20) and (5.43) we obtain

ψ′a = Ψ′
1(r, t) cos θ + Ψ′

2(r, t) sin θ, (5.44)

where

Ψ′
n(r, t) = Ψn − r

[
∂Ψn

∂r

]

r=0

, (n = 1, 2)

=
1

2
r

∫ r

0

(
1− p2

r2

)
ζn(p, t)dp. (5.45)

After a little more algebra it follows using (5.17), (5.18), (5.21) and (5.45) that

−(Ua − c) · ∇ζs = χ1(r, t) cos λ + χ2(r, t) sin λ, (5.46)

where [
χ1(r, t)
χ2(r, t)

]
=

1

r

dζs

dr
×

[
ψ′2(r, t)
−ψ′1(r, t)

]
. (5.47)

Now using (5.46) and (5.47), Eq. (5.45) can be written as

dζa1

dT
=

1

r

dζs

dr
(Ψ′

2(r, t) cos λ−Ψ′
1(r, t) sin λ) ,

where d/dt denotes integration following a fluid parcel moving in a circular path of
radius r about the vortex centre with angular velocity Ω(r). It follows that

ζa1 =
1

r

dζs

dr

∫ t

0

[Ψ′
2(r, t

′) cos λ(t′)−Ψ′
1(r, t

′) sin λ(t′)]dt′,
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where λ(t′) = λ− Ω(r)(t− t′). Using Eq. (5.45), this expression becomes

ζa1 =
1

2

dζs

dr

∫ t

0

∫ r

0

(
1− p2

r2

)
× [ζ2(p, t

′) cos λ(t′)− ζ1(p, t
′) sin λ(t′)] dpdt′,

and it reduces further on substitution for ζn from (5.14) and the above expression
for λ(t′) giving

ζa1 =
1

2
β

dζs

dr

∫ r

0

p

(
1− p2

r2

)

×
∫ t

0

[cos {λ− Ω(r)(t− t′)} − cos {λ− Ω(r)(t− t′)− Ω(p)t′}]dt′dp.

On integration with respect to t′ we obtain

ζa1(r, θ, t) = ζ11(r, t) cos λ + ζ12(r, t) sin λ (5.48)

where

ζ1n(r, t) =

∫ t

0

χn(r, t)dt

= −1

2
β

dζs

dr

∫ r

0

p

(
1− p2

r2

)
ηn(r, p, t)dp, (5.49)

and

η1(r, p, t) =
sin {Ω(r)t}

Ω(r)
− sin {Ω(r)t} − sin {Ω(p)t}

Ω(r)− Ω(p)
, (5.50)

η2(r, p, t) =
1− cos {Ω(r)t}

Ω(r)
+

cos {Ω(r)t} − cos {Ω(p)t}
Ω(r)− Ω(p)

, (5.51)

The integrals in (5.50) can be readily evaluated using quadrature.




