
Chapter 4

Frictional effects, vortex spin-down

To understand spin-up of a tropical cyclone it is instructive to consider first the
spin-down problem, which requires a consideration of frictional effects. We examine
first the essential dynamics of the problem and proceed then to a scale analysis of
the equations with the friction terms included.

4.1 Spin-down of a rotating vortex

The classic vortex spin down problem considers the evolution of an axisymmetric
vortex above a rigid boundary normal to the axis of rotation. We will show that
the spin down is intimately connected to the Coriolis torques associated with the
secondary circulation induced by friction. The direct effect of the frictional diffusion
of momentum to the surface is of secondary importance in the parameter regimes
relevant to tropical cyclones.

In a shallow layer of air near the surface, typically 500 - 1000 m deep, frictional
stresses reduce the tangential wind speed and thereby the centrifugal and Coriolis
forces, while it can be shown that the force associated with the radial increase of
pressure remains largely unchanged. We call this layer the friction layer. The result
of the force imbalance is a net inward force that drives air parcels inwards in this
layer. One can demonstrate this effect by placing tea leaves in a beaker of water
and vigorously stirring the water to set it in rotation. After a short time the tea
leaves congregate near the bottom of the beaker near the axis as shown in Fig. 4.1:
they are swept there by the inflow in the friction layer. Slowly the rotation in the
beaker declines because the inflow towards the rotation axis in the friction layer is
accompanied by radially-outward motion above this layer. The depth of the friction
layer depends on the viscosity of the water and the rotation rate and is typically
only on the order of a millimetre or two in this experiment. Because the water is
rotating about the vertical axis, it possess angular momentum about this axis. Here
angular momentum is defined as the product of the tangential flow speed and the
radius. As water particles move outwards above the friction layer, they conserve
their angular momentum and as they move to larger radii, they spin more slowly.
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Figure 4.1: The beaker experiment showing the effects of frictionally-induced inflow
near the bottom after the water has been stirred to produce rotation. This inflow
carries tea leaves to form a neat pile near the axis of rotation.

The same process would lead to the decay of a hurricane if the frictionally-induced
outflow were to occur just above the friction layer, as in the beaker experiment.
What then prevents the hurricane from spinning down, or, for that matter, what
enables it to spin up in the first place? Clearly, if it is to intensify, there must be
a mechanism capable of drawing air inwards above the friction layer, and of course,
this air must be rotating about the vertical axis and possess angular momentum so
that as it converges towards the axis it spins faster. The only conceivable mechanism
for producing inflow above the friction layer is the upward ”buoyancy force” in the
clouds, the origins of which we examine below.

4.2 Scale analysis of the equations with friction

We repeat now the scale analysis of the dynamical equations (3.1) - (3.3) with the
friction terms K(∇2u,∇2v,∇2w) added to the right-hand-sides. We have assumed a
particularly simple form for friction with K an eddy diffusivity, assumed to be con-
stant. We assume that the air is homogeneous and that the motion is axisymmetric
and define velocity scales (U, V,W ), length scales (R,Z), and an advective time scale
T = U/R as before. Now we assume that p is perturbation pressure and take Δp
to be a scale for changes in this quantity. The continuity equation, (3.4), yields the
same relation between W/Z ∼ U/R as before. Then the terms in Eqs. (3.1) to (3.3)
have nondimensional scales as shown in Table 4.1.

As in section 3.5 we divide terms in line (2a) by V 2/R to obtain those in line
(2b) and divide terms in line (3a) by UV/R to obtain those in line (3b). The
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terms in line (4a) are divided by g to obtain those in line (4b). The terms in
lines (b) are then nondimensional. We define a Reynolds number, Re = V Z/K,
which is a nondimensional parameter that characterizes the importance of the inertial
to frictional terms, and an aspect ratio A = Z/R, that measures the ratio of the
boundary-layer depth to the radial scale.
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Table 4.1: Scaling of the terms in Eqs. (3.1) to (3.3) with frictional terms added.
Here ∇2

h = (∂/∂r)(r∂/∂r).

Typically, the boundary layer is thin, not more than 500 m to 1 km in depth and
the aspect ratio is small compared with unity. Moreover, typical values of K are on
the order of 10 m s−2. Therefore taking V = 50 m s−1, R = 50 km, and Z = 500 m,
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Re = 2.5×103 and A = 10−2. It follows from line (3b) in Table 4.1 that Δp/(ρV 2) ≈
max(S2A2, SAR−1

e ) = 4×10−4, assuming that S ≈ 1 in the boundary layer. Thus the
vertical variation of p across the boundary layer is only a tiny fraction of the radial
variation of p above the boundary layer. In other words, to a close approximation,
the radial pressure gradient within the boundary layer is the same as that above the
boundary layer.

From lines (1a) and (2a) in Table 4.1, we see that a vertical scale Z which makes

friction important compared with the other large terms is (K/f)
1
2 if Ro << 1 and

(K/(V/R))
1
2 if Ro ≈ 1 or larger. The former result gives us the appropriate scaling

for the Ekman layer.

4.3 The Ekman boundary layer

The scale analysis of the u- and v-momentum equations in Table 4.1 show that for
small Rossby numbers (Ro << 1), there is an approximate balance between the net
Coriolis force and the diffusion of momentum, expressed by the equations:

f(vg − v) = K
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(4.1)

and

fu = K
∂2v

∂z2
, (4.2)

where we have used the fact deduced from the scale analysis of the w-momentum
equation that the horizontal pressure gradient in the boundary layer is essentially
the same as that above it. Thus we have replaced the radial pressure gradient in Eq.
(4.1) by the geostrophic wind, vg, above the boundary layer. We assume also that
the radial flow above the boundary layer is zero.

Equations (4.1) and (4.2) are linear in u and v and may be readily solved by
setting V = v + iu, where i =

√
(−1). Then they reduce to the single differential

equation

K
d2V

dz2
− ifV = −ifVg, (4.3)

where Vg = vg. This equation has the particular integral V = Vg and there are two
complementary functions proportional to exp(±(1−i)z/δ), where δ =

√
2K/f . Since

we require a solution that remains bounded as z → ∞ we reject the solution with a
positive exponent so that the solution has the form

V = Vg[1 −A exp(−(1 − i)z/δ), ] (4.4)

where A is a complex constant determined by a suitable boundary condition at z = 0.
For a laminar viscous flow, the flow at z = 0 is zero giving A = 1. This is the classical
Ekman solution. The profiles of u and v are shown in Fig. 4.2a and the hodograph
thereof is the Ekman spiral shown in Fig. 4.2b. Two interesting features of the
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solution are the fact that the boundary-layer thickness, measured by δ is a constant
and there are regions in the boundary layer where the flow is supergeostrophic,
i.e. v > Vg. These are unusual features of boundary layers which are typically
regions where the flow is retarded and which grow in thickness downstream as more
and more fluid is retarded. In the Ekman layer, the fluid that is retarded in the
downstream direction, but is re-energized in the cross-stream direction by the net
pressure gradient force in that direction. The latter occurs because friction reduces
the Coriolis force in the boundary layer whereas the radial pressure gradient remains
effectively unchanged. The height range where the flow is supergeostrophic is one in
which the net radial flow is outwards. The fact that the radial flow is inwards over
this range is a result of the upward diffusion of u-momentum, which is largest at low
levels.

The existence of a region of supergeostrophic winds may be made plausible by
considering the spin-down problem in which there is initially a uniform geostrophic
flow, Vg, at large radius. If the frictional stress is switched on at the surface at time
zero, the tangential flow will be reduced near the surface leading to a net pressure
gradient in the radial direction. This will drive a radial flow that is largest near the
surface where the net pressure gradient is largest. The Coriolis force acting on the
radial flow will tend to accelerate the tangential flow as part of an inertial oscillation.
Whether or not the tangential flow becomes supergeostrophic after some time will
depend subtly on the vertical diffusion of momentum in the radial and tangential
directions, but the Ekman solution indicates that it does.

The classical Ekman solution with a no-slip boundary condition at the surface is a
poor approximation in the atmospheric boundary layer. A better one is to prescribe
the surface stress, τ0, as a function of the near-surface wind speed, normally taken
to be the wind speed at a height of 10 m, and a drag coefficient, CD. The condition
takes the form

τ0
ρ

= K
∂V

∂z
= CD |V |V (4.5)

and we shall apply it at z = 0 instead of 10 m. Substituting (4.4) into (4.10) and
tidying up the equation gives

(1 − i)A = ν|1 − A|(1 − A) (4.6)

where ν = CDRe and Re = Vgδ/K is a Reynolds’ number to the boundary layer.
Setting 1−A = Beiβ gives after a little algebra an equation for B and an expression
for β in terms of B (see Exercise 4.1). The equation for B may be solved using a
Newton-Rapheson algorithm. Profiles of u(z) and v(z) obtained for values Vg = 10
m s−1, f = 10−4 s−1, K = 10 m2 s−2 and CD = 0.002 are shown in Fig. 4.2a also and
the corresponding hodograph is shown in Fig. 4.2b. For these values, the boundary
layer depth scale, δ = 450 m and the surface values of v and u are about 0.7Vg and
0.2Vg, respectively.
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(a)

(b)

Figure 4.2: (a) Vertical profiles of tangential and radial wind components for the
Ekman layer (red curves) and the modified Ekman layer based on a surface drag
formulation (blue curves). (b)Hodograph of the two solutions showing the spiral of
the wind vector.

4.4 The modified Ekman layer

From the scale analysis in Table 4.1, the full u− and v−momentum equations in the
boundary layer are:
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where V (r) is the gradient wind speed above the boundary layer. With the substi-
tution v = V (r) + v′, these equations become:
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We carry out now a scaling of the terms in these equations as shown in Table 4.2.

Let U , V ∗ and V ′ be scales for u, V and v′, respectively. Examination of the u-
and v-profiles for the case with a surface drag coefficient in Fig. 4.2 suggests that
U ≈ V ′ ≈ 0.2V ∗−0.3V ∗. Accordingly we assume that U = V ′ and define S∗ = U/V ∗,
which may be as large as 0.3.
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Table 4.2: Scaling of the terms in Eqs. (4.9) to (4.10). Here S∗ = U/V ∗ = V ′/V ∗,
Ro = V ∗/(fR) and Re = V Z/K.

With the background gradient wind balance removed, there is less of a scale sep-
aration between the various terms in the boundary-layer equations. If ζ∗ is regarded
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as small compared with unity, we could linearize Eqs. (4.9) and (4.9) to obtain
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It is interesting to examine this approximation even though the neglect of terms of
magnitude 0.2-0.3 compared with unity is unlikely to be very accurate. For one thing
the equations (4.11) and (4.12) are relatively easy to solve and thy are a generalization
of the Ekman layer theory derived in the previous subsection. The difference in the
coefficients of v′ and u on the left-hand-side of the equations precludes the method
used for the Ekman equations (4.1) and (4.2). Now we differentiate one of the
equations twice with respect to z and use the remaining equation to eliminate either
u or v′. Then each of these quantities satisfies the equation
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The solutions have the form x = aeαz where α4 = (I2/K2)eiπ+2nπi, (n = 0, 1, 2, 3),
and a is a constant. Thus the four roots are α = ±(1± i)/δ, where δ = (2K/I)1/2 is
the boundary-layer scale thickness. The solutions for v′ andu which decay as z → ∞
can be written succinctly in matrix form(

v′

u

)
= V e−z/δ

(
a1 a2

b1 b2

) (
cosz/δ

sinz/δ

)
(4.14)

where a1, a2, b1, b2 are constants. Two relations between these constants may be
determined by applying the boundary condition (4.5), remembering that this applies
to the total surface wind field (V +v′, u). Two further relationships may be obtained
by substituting for v′ and u in Eq. (4.12). The details form the basis of Exercise
(4.2). Given a radial profile of V (r) such as that shown in Fig. 4.3, it is possible
to calculate the full boundary-layer solution (u(r, z), v(r, z), w(r, z)) on the basis of
Eq. (4.14). The vertical velocity, w(r, z) is obtained by integrating the continuity
equation (see Exercise 4.3).

Figure 4.4 shows the isotachs of u and v and the vertical velocity at the top of the
boundary layer for the tangential wind profile shown in Fig. 4.3. It shows also the
radial variation of the boundary layer depth scale, δ. Note that δ decreases markedly
with decreasing radius, while the inflow increases. The maximum inflow occurs in
this case at a radius of 90 km, 50 km outside the radius of maximum wind speed
above the boundary layer, rm. In contrast, the maximum vertical velocity at ”large
heights” peaks just outside rm. There is a region of weak outflow above the inflow
layer coinciding roughly with the region where tangential flow becomes subgradient.
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Figure 4.3: Tangential wind profile as a function of radius used in the calculations
for Fig. 4.4.

(a) (b)

(c) (d)

Figure 4.4: Isotachs of (a) radial wind, and (b) tangential wind in the r − z plane
obtained by solving Eqs. (4.11) and (4.12) with the tangential wind profile shown
in Fig. 4.4. (c) Vertical velocity at the top of the boundary layer, and (d) radial
variation of boundary-layer scale depth, δ(r).
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Exercise 4.1

Show that the substitution A = 1 −Beiβ in eq (4.6) leads to the equation[
(νB + 1)2 + 1

] [
B2

{
(νB + 1)2 + 1

} − 2
]

= 0

and the β is given by

tanβ = − νB

νB + 1

[Hint: after substitution, equate real and imaginary parts to obtain a pair of
simultaneous equations for cosβ and sin β.]

Exercise 4.2

Show that the substitution (4.14) into the boundary condition (4.5) gives the two
relationships
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[
(1 + a1) + b21

] 1
2 (1 + a1),

and
b2 − b1 = ν

[
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] 1
2 b1

and that the substitution into Eq. (4.12) gives two more relationships

b1 = − 2K
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a2 and b2 =
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where ξa = ζ + f . Show the points (a1, a2) lie on a circle centred at the point
(−1

2
,−1

2
) with radius
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and may be expressed as a
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1

V 2
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2
,
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1

V 2
sin θ − 1

2
.

Hence derive an equation for θ.
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