Balanced Dynamical Theory
The primary and secondary
~circulations

Chapter 3




Inviscid equations of motion
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§ is the diabatic heating rate (1 /c,p?r)Dh/Dt (see Eq. 1.13), and m = (p/p.)" is the
Exner function. The temperature is defined by 1" = =#.




Absolute angular momentum

OM _ OM  vOM oM __10p 37)
Ot or  roN 9z poXN |

M =rv+ %f’rz, (3.8)

Eq. (3.7) follows from r times Eq. (3.2)




Tropical cyclone intensification

Basic principle: conservation of absolute angular momentum:

M =rv+1ifr’

vl 1fp ‘ If r decreases, v increases!

‘ Spin up requires radial convergence




Conventional view of intensification: axisymmetric

Thermally-forced secondary circulation leads to spin up
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M not conserved, inflow feeds the clouds with moisture

Is that it? See later for a surprise
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FiG. 9. Trajectories formed by particles released at various radii and pressure levels at ¢ = (). Most particles
that reach the outflow level are transported outward by the outflow jet. Most particles released at radii of

20 km (A) and 100 km (B) are “trapped” inside the radius of the maximum wind and only rise slowly and
drift toward the NW.,



Primary circulation
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Physical interpretation

Thermal wind equation
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Balance in toroidal circulation tendency
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Thermal wind equation
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Generalized buoyancy
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A typical vortex

Tangential wind speed, Pressure
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AAM In a typical vortex
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Barotropic stability

The parcel at A conserves its
angular momentum
during its radial displacement to B
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Net radial force on a displaced air parcel

Radial pressure gradient at B

1 dp v2
= = —= Ug. 3.18
p dr - T + v ( )

Net force on parcel at B

F' = centrifugal 4+ Coriolis force — radial pressure gradient
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Net radial force on a displaced air parcel
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In the special case of solid body rotation, v = Qr, and for a small displacement
from radius r = r to ro = r+ 17, (3.19) gives
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A scale analysis

continuity
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A scale analysis
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A scale analysis

v-momentum
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A scale analysis
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The secondary circulation

Thermal wind equation
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Exercise 3.2 Show that Eq. (3.12) may be reformulated as

Ad(In x) Ad(In x) aC
or +0 8z Oz

where y = 1/6.

(3.17)




The secondary circulation

A balanced theory: The Sawyer-Eliassen equation
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A balanced theory: The Sawyer-Eliassen equation

o/ot (thermal wind equation)
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A balanced theory: The Sawyer-Eliassen equation

o/ot (thermal wind equation)
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The Sawyer-Eliassen equation
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The Sawyer-Eliassen equation
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Figure 3.11: Streamfunction responses to point sources of: (a) Heat in a barotropic
vortex with weak inertial stability, (b) heat in a barotropic vortex with strong inertial
stability, (c¢) heat in a baroclinic vortex, (d) momentum in a barotropic vortex with
weak inertial stability, (e) momentum in a barotropic vortex with strong inertial
stability, and (f) momentum in a baroclinic vortex. (Based on Figs. 8, 9, 11, and 12

(d)




The Sawyer-Eliassen equation

Height

(a) Heat source Radius (b) Momentum source Radius

Figure 3.12: Secondary circulation induced in a balanced vortex by (a) a heat source
and (b) a cyclonic momentum source showing the distortion induced by variation
in inertial stability, I? and thermodynamic stability. N?, and baroclinicity S?. The
strong motions through the source follow lines of constant angular momentum for a
heat source and of constant potential temperature for a momentum source. From

Willoughby (1995)




The toroidal vorticity equation

The A-component of vorticity, or toroidal vorticity is

du  ow

The equation for n is derived as follows. Consider
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This expression may be written
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With some algebraic manipulation this becomes

-rD 7 _13(7_|_ 1 /oydp OxOop +1 oF, OF,
Dt \rp) pdz p2x \0z0r Oroz p\ 0z or )|

(3.68)




3.8.1 The Sawyer-Eliassen equation and toroidal vorticity
equation
The Sawyer-Eliassen equation is an approximate form of the local time derivative of

equation for the toroidal vorticity n = du/0z — dw/0r. Assuming the most general
form of the continuity equation
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the toroidal vorticity equation may be written as
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where D/Dt = 9/0t + u -V and n/(rp) is a 'potential toroidal vorticity’, where
the analogous ‘depth’ is ‘r’, the radius of a toroidal vortex ring (see appendix). If
thermal wind balance exists, the right-hand-side of (3.68) may be written as
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The Sawyer-Eliassen equation
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Then the time derivative of (3.63) is
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The right-hand-side of (3.64) gives the Sawyer-Eliassen equation when the thermal
wind equation (3.12) is satisfied for all time. Then consistency requires that the
lett-hand-side 15 1dentically zero.

Exercise 3.12  Starting from the Boussinesq system of equations, show that
the Sawyer-Eliassen equation takes the form
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where dotB is the source of buoyancy in the Boussinesq form of the thermodynamic
equation and I? is defined in Eq (3.33).




More on buoyancy

See 3.8.2 Buoyancy relative to a balanced vortex

3.8.3 Buoyancy in axisymmetric balanced vortices

Axisymmetric balanced models of tropical cyclone intensification appear to capture
many important observed features of tropical cyclone behaviour. However, in an
axisymmetric model that assumes exact thermal wind balance, bg(r, 2z, t)= 0 and
the corresponding dp’/dz = 0, even though there may be heat sources or sinks present
that generate buoyancy b. It is clear from the foregoing discussion that any diabatic
heating or cooling in such models is incorporated directly into the balanced state,
changing b(r, z,t), while bg(r, z, t) remains identically zero by definition. Obviously;,
nonzero values of bg relate to unbalanced motions provided that the appropriate
reference state as defined above has been selected for the definition of buoyancy at
any given time. It may be helpful to think of b as characterizing the system buoyancy
and by as characterizing the local buoyancy.

See 3.9 Origins of buoyancy in tropical cyclones







Thermal wind equation

Gradient wind balance Hydrostatic balance
2
: \%
Write @:p —+1v @:_pg
or r Oz

Eliminate p using %(%j B %(%j

0 1( v’ 0 1(2v ov
—Inp+—| —+tv|—Inp=—-| —+1f |—
or gl 1 0z g\ T 0z

Thermal wind equation




Mathematical solution
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Characteristics are 1sobaric surfaces
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Inferences
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Summary

» A barotropic vortex is cold cored if temperature contrasts
are measured at constant height.

» A baroclinic vortex is warm cored if temperature contrasts
are measured at constant height and If —ov/oz Is large
enough.

A sample calculation =>




