Tropical cyclones. Problem Sheet 2, SS2011

Exercise 1

Show that for a two-dimensional incompressible flow in the (x,y)-plane, the streamfunction ψ and vorticity ζ are related by the equation

$$
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=\zeta
$$

- Sketch the streamfunction field associated with two line vortices of equal strength separated by a distance a in a large body of fluid.
- Show that the vortices will tend to rotate around each other.
[Hint: you may think of the vortices being represented by delta functions $\zeta_{o} \delta\left(x-\frac{1}{2} a\right) \delta(y)$ and $\zeta_{o} \delta\left(x+\frac{1}{2} a\right) \delta(y)$, where ζ_{o} is the strength of the vortices, and you may assume that $\psi \rightarrow 0$ as the distance from the vortices increases. Think in terms of the membrane analogy discussed in class.]
- Sketch the streamfunction field that would arise if the vortices had the same strength but opposite signs.
- Show that, in the latter case, the vortices will tend to move together at right angles to the line joining them.

Exercise 2

Show that with the coordinate transformation

$$
\begin{gathered}
X=x+v / f, \quad Z=z \\
\frac{\partial^{2} \psi}{\partial z^{2}}=\frac{\partial^{2} \psi}{\partial Z^{2}}+\frac{2 S}{f} \frac{\partial^{2} \psi}{\partial X \partial Z}+\frac{S^{2}}{f^{2}} \frac{\partial^{2} \psi}{\partial X^{2}}+\frac{1}{f} \frac{\partial S}{\partial z} \frac{\partial \psi}{\partial X}
\end{gathered}
$$

Exercise 3

In the slab-symmetric model for the Hadley circulation discussed in class, the Sawyer-Eliassen equation is:

$$
\left(N^{2}+\frac{\partial b}{\partial z}\right) \frac{\partial^{2} \psi}{\partial x^{2}}-2 f S \frac{\partial^{2} \psi}{\partial x \partial z}+f \zeta_{a} \frac{\partial^{2} \psi}{\partial z^{2}}=\frac{\partial \dot{V}}{\partial z}-\frac{\partial \dot{B}}{\partial x}
$$

- Write down the form of the equation for a barotropic vortex with zonal wind $v(x)$ and no diabatic heating when $\partial b / \partial z=0$.
- Sketch the circulation induced by a frictional force $\dot{V}=-F z$ for $z<h$ and $\dot{V}=0$ for $z>h$, where h is typical of the depth of the atmospheric boundary layer (about 1 km) when $v=v_{o} x \exp \left(-x^{2} / x_{o}^{2}\right)$. Here $F, h v_{o}$ and x_{o} are positive constants.

Exercise 4

Show that the inertial stability parameter I given by

$$
I^{2}=\frac{1}{r^{3}} \frac{\partial M^{2}}{\partial r}
$$

is equal to $\xi \zeta_{a}$, where ξ is twice the absolute angular velocity and ζ_{a} is the absolute vorticity.

Show that the potential vorticity of the axi-symmetric flow with tangential wind speed $v(r, z)$ and potential temperature $\theta(r, z)$ is positive if the slope of the M-surfaces is larger than that of the isentropic surfaces, where M is the absolute angular momentum.

