Tropical cyclones. Problem Sheet 1, SS2014

Exercise 1

Show that in a vortex in gradient wind balance and thermal wind balance, the pressure field satisfies the partial differential equation

$$
g \frac{\partial p}{\partial r}+C \frac{\partial p}{\partial z}=0
$$

where

$$
C=\frac{v^{2}}{r}+f v .
$$

Show also that an arbitrary function of pressure satisfies the same equation.
Given a tangential wind field $v(r, z)$ and the vertical pressure profile at large radius, $p_{o}(z)$,, explain how you could solve this equation to find the surface pressure distribution, $p(r, 0)$.

Exercise 2

The thermal wind equation for a vortex with a tangential wind field $v(r, z)$ is:

$$
g \frac{\partial(\ln \rho)}{\partial r}+C \frac{\partial(\ln \rho)}{\partial z}=-\frac{\partial C}{\partial z}
$$

where ρ is the density and

$$
C=\frac{v^{2}}{r}+f v
$$

Show that this equation may be rewritten as

$$
g \frac{\partial(\ln \chi)}{\partial r}+C \frac{\partial(\ln \chi)}{\partial z}=-\frac{\partial C}{\partial z} .
$$

where χ is the inverse of the potential temperature, θ.

Exercise 3

Show that the tangential momentum equation for an inviscid, axisymmetric flow in cylindrical coordinates (r, λ, z) may be written in the two forms:

$$
\frac{\partial v}{\partial t}+u \zeta_{a}+w \frac{\partial v}{\partial z}=0
$$

or

$$
\frac{\partial M}{\partial t}+u \frac{\partial M}{\partial r}+w \frac{\partial M}{\partial z}=0
$$

where ζ_{a} is the absolute vorticity and $M=r v+\frac{1}{2} f r^{2}$ is the absolute angular momentum per unit mass. Explain why vortex spin up requires that air parcels move inwards.

Exercise 4

Show that the vertical momentum equation can be written in terms of the perturbation pressure $p^{\prime}=p_{T}+p_{\text {ref }}(z)$ and buoyancy $b=-g\left(\rho-\rho_{\text {ref }}(z)\right) / \rho$ as:

$$
\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial r}+w \frac{\partial w}{\partial z}=-\frac{1}{\rho} \frac{\partial p^{\prime}}{\partial z}+b
$$

where p_{T} is the total pressure, $p_{\text {ref }}(z)$ and $\rho_{\text {ref }}(z)$ are a reference pressure and reference density, respectively, that satisfy hydrostatic balance, and g is the acceleration due to gravity.

Show that the same equation holds if $p_{\text {ref }}$ and $\rho_{\text {ref }}$ are functions of both radius r and height z, such as the balanced pressure and density fields in a baroclinic vortex. How would you decide whether a cloud within a balanced warm-cored vortex had any buoyancy?

Exercise 5

The Boussinesq forms of the thermal wind equation, tangential momentum equation and thermodynamic equation are:

$$
\begin{gather*}
\frac{\partial b}{\partial r}+\frac{\partial C}{\partial z}=0 \tag{1}\\
\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial r}+w \frac{\partial v}{\partial z}+\frac{u v}{r}+f v=\dot{V} \tag{2}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{\partial b}{\partial t}+u \frac{\partial b}{\partial r}+w N^{2}=\dot{B} \tag{3}
\end{equation*}
$$

respectively, where

$$
\xi=\frac{2 v}{r}+f, \quad S=\frac{\partial v}{\partial z}, \quad C=\frac{v^{2}}{r}+f v
$$

Show that the Boussinesq form of the Sawyer-Eliassen equation for the streamfunction of the secondary circulation is

$$
\begin{equation*}
\frac{\partial}{\partial r}\left[N^{2} \frac{1}{r} \frac{\partial \psi}{\partial r}-\frac{S \xi}{r} \frac{\partial \psi}{\partial z}\right]+\frac{\partial}{\partial r}\left[\frac{I^{2}}{r} \frac{\partial \psi}{\partial z}-\frac{S \xi}{r} \frac{\partial \psi}{\partial r}\right]=-\frac{\partial \dot{B}}{\partial r}-\frac{\partial}{\partial z}(\xi \dot{V}) \tag{4}
\end{equation*}
$$

where $I^{2}=\xi \zeta_{a}$ and ζ_{a} is the absolute vorticity.

