Chapter 5
BAROCLINIC VORTEX FLOWS

Vorticity tendency for a baroclinic vortex v(r, z) in
a zonal shear flow U(z2).

Consider the velocity vector:
u=U(2)i+v(r,2)0 = Ucos bt + (v — Usin6)d (5.1)
The vorticity in cylindrical coordinates is
1 (Ou, Orug) . ou, Ouy\ . 1 [0rug Ou,\ »
“’:F(ae T o >r+(32 - 8r)0+;( ar ae)k’
so that for the velocity vector (5.1),

0 . . 0 . 10 ) 10 A
w = <—&(v — Usm@)) r+ <&Uc059) 0+ (;Er(v — Usinf) — ;%UCOSQ) k

or
w = (gsing—@> f‘+cfl—Ucos@§+1@f<

z r Or

Let us write o aU
w= (f—l—asm@)rJrEcos%—l—(k (5.2)
Now, in cylindrical coordinates (see Batchelor, 1970, p602)

UgWe UgWy

uwVw = <u.VwT - ) T+ <u.Vw9 + > 0+ (0.Vw,) k

r

Then for the velocity vector (5.1),
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u.Vw = uV f—}—d—Usin@ —@d—USiné T+
dz d

T az

dz

The three components of this equation are:

<u.ng + % <£ + v sin 6)) 0+ (VO k

UgWe . 8 dU .
(u.Vf— " ) = Ucos@ar (£+ P sm@)
. 10 av . (v—Usin®) dU
+ (v—Ust);% (5—1—%81116) —750089
UCOSQ%

(u.ng + ung) = U cos 02 (d—U cos 9)
r dz

or
. 10 [(dU (v—"Usin6) au .
+ (v— Usmé’);% (%COSQ) + — (§+ Esm@)
v—Usiné
o )e
r
B 9¢  (v—Usin0)0C oC
w.Vw, = UCOS@E + E— R UCOS@E
Therefore 5 U sin g 3
u.Vw = U cos 9—€f‘ + wﬁé + U cos Q—CR (5.3)
or r or
Now Wall well N
w.Vu = (w.Vur - ") £ (w.VUa Ml ) 6+ (w.Vu,) k. (5.4)

The first component of this equation is

w.Vur—we—ue: §+Qsin9 f‘—l—@cosﬁéqLCk X
r dz dz

0 10 .0 N v—UsinfdU
il f 22 il k)2 —2>70
<8T(U0086)r+ 7’89<UCOS€)0+ aZ(UCOSG) ) " 7 cos 6
:—QQCOSQSHIQ—FQ@COSQ—Mgcose
r dz dz r dz
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or, finally

wopug AU vdU _dvdU
w.VuT—T—CECOSQ—;ECOSQ—%ECOSQ (5.5)

The second component of (5.5) is

r dz

r du d .
w.Vug—l—weu = {<£+—Usm9)f"+d—Ucosﬁe+Ck] X
z

0 _ 10 . ~ 0 _ . U cos 8 dU
[ E(U — Usin0)t + ;%(U —Usin®)o + g(v - Usm@)k] + . cos 6
= §+gsin9 f—l—ﬂcoseé+<’k X
dz dz
ov. U . ov dU . . vau
{Er — ?COSQHJr <E — Esmﬁ) k} + P 0
auv . ov avu . ov auv .
= (f—i—asmé) §_<(6+58m9> = (E_C) (5—1—5811&9),
or, finally,
w.Vug + ke <£ + v sin 9) (5.6)
r r dz
The third component of (5.5) is simply
w.Vu, =0 (5.7)
The (5.4) may be written
dv dU R ) dU
w.Vu %ECOQ ——(§+Esm9)0 (5.8)
Ow
i —u-Vw +wVu
uVw = UcosH%f‘jL w & — @sine 6+ Ucose%f(
or r dz or
Ow 0. (v—Usin®) . ¢ ~
o ——(Ucos@arer . 50+Ucos€ark +
dv dU . ) dU . R
%Ecosﬁr - <§—|— Esm@) 0
B o6 dvdU . v (v—"Usin®) vdU . ¢ ~
_(_Uar+dr dz>c086r—[(r+ . )g_rdz Sln9:|9—U00898Tk,
or finally,
Ow 0 dvdU . 2v Usind vdU | . ¢ «
5 <_U8r+dr dg)cos@r— {( e )§+ R smG} O—UCOSQark

(5.9)
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Special cases:

1. Uniform flow (U = constant), barotropic vortex, v = v(r) = £ =0
Ow ¢ ~

_ ¢ .9¢
a——UCOSQEk = 5 U%

In this case there is only vertical vorticity and this is simply advected by the
basic flow as discussed in Chapter 3.

2. No basic flow (U = 0), baroclinic vortex, v = v(r, z)

Ow 20 .
ot ol
% o . X

ot

In this case there are initially two components of vorticity, a radial component
and vertical vertical component, but in general, the vortex does not remain
stationary as there is generation of toroidal vorticity. The exception is, of
course, when the vortex is in thermal-wind balance in which case there is
generation of toroidal vorticity of the opposite sign by the horizontal density
gradient so that the net rate-of-generation of toroidal vorticity is everywhere
ZEero.

3. Uniform flow (U = constant), baroclinic vortex, v = v(r, z)

Ow o€ .. 2v  Usinf\ _. (¢ ~
a——UCOSGaTr—<T— " >§0—U00898Tk
0,06 0 (w Usno), % _
ot or Ot r r ot Ox

Again there are initially two components of vorticity, a radial component and
vertical vertical component, and again there is generation of toroidal vorticity
unless the vortex is in thermal-wind balance. However, even in the latter
case there would appear to be a generation of toroidal vorticity at the rate
(Usin6/r)E. It can be shown that this rate-of-generation is associated with the
coordinate system represented by the unit vectors r, é, 1A<, is fixed (see Exercise
5.1). Thus as the vortex moves away from the origin of coordinates, the radial

component of vorticity in the moving frame projects onto the -component in
the fixed frame.
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4. Uniform shear flow (dU/dz = constant = U’), barotropic vortex, v = v(r) =

£=0

Ow dvdU vdU oC ~
i %ECOSQI‘+ . sin 66 + Ucos@a—k
o5 o0& dvdU on vdU i o¢ oC
ot U@x T dr dz cost 5 ot  rdz 2 S ot U@x

Translation of the balanced density field

Let p = po(r, z) at time ¢t = 0. Then
dp
ot

Now the velocity field u = (U(z) cosf, v — U(z) sin 6, 0) is nondivergent (V - u = 0)

and therefore

—V-(pu) =—-u-Vp—p(V-u).

dp — () cos@ap (v —U(z)sind) dp

ot or r 00’
The second term on the right-hand-side is zero because p is dependent of § whereupon
op dp
o~ Vg,

and the density field is simply advected at speed U(z) at height z.

Exercise 5.1 Show that the term (Usin®/r)¢ in Eqs. (77?) is the rate-of-
generation of toroidal vorticity in the fixed coordinate system represented by the

unit vectors T, é, k due to the subsequent displacement of the vortex centre from the
coordinate origin.

Exercise 5.2 Show that

g—ﬁa—x—kg@ 6’2—1-81119a
or  0xOr Oyor ox oy’
and
10 _1o0r 100y 0 0
r00  rozdl ' royol ar oy
Deduce that
0 0 sinf 0

— =cost— —

or or 00
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ad

Figure 5.1: See text for discussion.

and
0 ) 0 cos@ O
— =sinf— + —

oy or r 00

Solution to Exercise 5.1

Let the vortex be centred at the origin at time ¢ = 0 and at a position Ut from the
origin at time ¢ (Fig. 5.1). At time ¢, the radial component of vorticity is w/.i¥' = &
and we are interested in the projection of this vector in the A’ direction. In
particular we want to calculate its rate of change

d " d
A: —_ A/- — £ qj
dt(fr A) édt sin ¢

Consider r A1/ = |r||r'| sin ¢k, where k is a unit vector normal to the plane of r and
t' and note that r' = r — Xi, where i is a unit vector in the z-direction

. XinrY X
ksing = L/r =k—sin A\
x| [r'] 7|
so that p . IX I
Esingb = ;SIHAE = ?Sin)\
and therefore o7
A= —Esin A
r

as required.





