
Chapter 4

VORTEX ASYMMETRIES,
VORTEX WAVES

Observations of tropical cyclones indicate that storms that may be closely approxi-
mated as axisymmetric are rare - such storms tend to be the most intense and then it
is usually only the inner core region that is approximately axisymmetric. The outer
region of storms is invariably asymmetric, and weaker storms are usually highly
asymmetric. In the previous chapter we saw how vortex asymmetries, whether they
are considered a part of the vortex or a part of its environment, can influence the
vortex motion.

In the following section we study the motion of initially asymmetric vortices on
an f -plane. The issues to be addressed are relevant to the problem of initializing
tropical cyclone forecast models as well as to an understanding of possible track
changes as cyclones develop new asymmetries or as existing asymmetries evolve.

Asymmetries have implications not only for tropical cyclone motion, but also for
intensification. The processes involved are intimately tied up with wave motions.
Therefore in later sections we examine the dynamics of waves on vortices.

4.1 Axisymmetrization

We construct an asymmetric vortex by adding a vortex dipole to the initial vorticity
distribution shown in Fig. 3.11. The vortex dipole has the form

ζd(r, λ) = ζD(r/d)2exp(−r2/d2)cos(λ− α), (4.1)

where ζD, d and α are prescribed constants characterizing the dipole strength, scale
and orientation. Thus the vorticity maximum and minimum of the dipole occur at
(d, α) and (d, π + α), respectively.

We consider four calculations with α = 0 so that the dipole is oriented west-east.
In the first calculation, S1, d =

√
2 and ζD = 0.2ζo, the latter being the maximum

value of zeta in the symmetric vortex. In the second calculation, S2, d = 2
√

2 and
ζD = 0.1ζo so that the velocity at the origin associated with the dipole is the same as
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in S11. These two calculations are carried out on an f -plane. The third and fourth
calculations, S3 and S4, are the same as S1 and S2, but are for a β-plane. The
calculations are carried out numerically by a direct integration of Eq. 3.1 with the
initial vorticity distribution (symmetric vortex plus dipole) described above. The
Kasahara-Platzman partitioning scheme is used to analyzing the subsequent vortex
evolution so that the asymmetric component of the vortex is regarded as a part of
the environment, even at the initial instant. Figure 4.1 shows the evolution of the
asymmetric vorticity component and associated streamfunction at selected times for
the calculations S1. It can be seen that within a circle of radius about 2rmax centred
on the vortex, the asymmetric vorticity field undergoes rapid distortion due to the
relatively large shear of the tangential wind field in this region. For example, for
the flow parameters chosen, the angular velocity of the symmetric vortex decreases
monotonically with radius (see Fig. 3.3b) so that in 6 h an air parcel of 20 km radius
completes approximately 2-4 revolutions compared with 1-4 revolutions at 100 km
(i.e. rmax) and 0-5 revolutions at 200 km. Outside this circle, the distortion of the
asymmetry proceeds more slowly. Initially, the asymmetric flow across the vortex is
towards the south Fig. 4.1a, but its direction rotates counterclockwise with the gyres
of the asymmetric streamfunction as the vorticity asymmetry is rotated. Therefore
the vortex track forms a counterclockwise arc as shown in Fig. 4.2a.

As the asymmetric vorticity distribution is wound around the vortex by the angu-
lar shear of the tangential wind, the associated flow is reduced in strength and after
about 12 h, the vortex essentially stalls. The reduction in strength of the asymmet-
ric flow as the asymmetric vorticity field suffers angular shear can be understood in
terms of an analytic solution for the problem in which the motion of the basic vortex
is ignored. Then, in the same spirit as the calculation leading to (3.13), we can show
that the asymmetric vorticity distribution at time t is given by

ζa(r, λ, t) = ζD(r/d)2exp(−r2/d2)cos(λ− Ω(r)t). (4.2)

For an unbounded domain, we can solve the Poisson equation for the associated
streamfunction using 3.15. Using complex notation the velocity of the asymmetric
flow across the vortex centre, Uo + iVo, may be shown to have the form

Uo + iVo = −iζDrmax

∫ ∞

0

(ηs)2 exp[−η2s2 + i(Vmaxt/rmax)Ω
′(s)]ds, (4.3)

where η = rmax/d and Ω′(s) = rmaxΩ(r)/Vmax. For large values of t (i.e. t ≥
rmax/Vmax = 42 min), the integrand in (4.3) oscillates rapidly. As t increases, these
oscillations become more numerous and as a result of cancellation the integral itself
decreases monotonically in value.

Figure 4.3 shows the evolution of the asymmetric vorticity field for calculation
S2 and Fig 4.2b shows the vortex track in this simulation. As expected, since the
asymmetry is concentrated at a larger radius than S1, it is less rapidly wound up

1See Smith et al. (1990), Appendix B, Eq. (B8)
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Figure 4.1: Evolution of the asymmetric vorticity field (ζa) and corresponding stream-
function field for the initially asymmetric vortex on an f -plane in the case of small-
scale asymmetry (calculation S1), Shown are (a) the initial fields, and the fields at
(b) 6 h and (c) 12 h. Note that only one quarter of the total flow domain is shown.
Contour intervals are 2 × 10−5 s−1 for ζa and 5 × 104 m2 s−1 for ψa. Zero contours
have been excluded.

by the radial shear of the basic vortex. Accordingly, the asymmetric component of
flow across the streamfunction centre rotates less rapidly and decays less rapidly in
strength. As a result, the vortex moves farther from its initial position than in S1
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Figure 4.2: Tracks of initially asymmetric vortices in the calculations Sl to S4 defined
in the text. (a) Small asymmetry, f -plane; (b) large asymmetry, f -plane; (c) small
asymmetry, β-plane; and (d) large asymmetry, β-plane.

and its track rotates only slowly towards the east after the first three hours, As might
be anticipated from the results of section 3.3.2. the effect of a nonzero beta would
be to induce an east-west vorticity tendency in addition to the existing asymmetry.
This is confirmed by the calculations S3 and S4, the vortex tracks for which are
shown in panels (c) and (d) of Fig. 4.2. In S3 the vortex no longer stalls after 12 h,
but recurves to move along a north-westwards track as the beta-induced asymmetries
begin to dominate. In S4, the beta effect becomes important also, but not so rapidly,
and again the track turns north-westwards as it does so. These calculations show
that the importance of vortex asymmetry on the track depends strongly on the scale
of the asymmetry. The larger this scale, the less rapidly can the asymmetry be wound
up by the vortex circulation and the more persistent is the effect of the asymmetry.
It is evident that initial asymmetries concentrated outside the radius of maximum
tangential wind can have a significant effect on subsequent vortex positions and would
need to be resolved or somehow represented in tropical-cyclone forecast models.

The asymmetries we investigated analytically in Chapter 3 were associated wholly
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Figure 4.3: Evolution of the asymmetric vorticity field (Γ) for the initially asymmetric
vortex on an f -plane in the case of large-scale asymmetry (simulation S2). Shown
are (a) the initial field, and the fields at (b) 6 h and (c) 12 h. Contour interval is
1 × 10−5 s−1. Note: the domain size is twice that shown in Fig. 11. Zero contours
have been excluded.

with advective processes since we made the assumption that to a first approximation,
the vorticity perturbation is advected by the tangential velocity of the initial axisym-
metric vortex. This assumption precludes the existence of waves that propagate on
the vorticity gradient of the basic vortex. However, in some situations, wave mo-
tions may be important to the dynamics and in this section we review the pertinent
aspects of waves on vortices. We begin with two-dimensional non-divergent inviscid
flow on an f -plane as the prototype model and go on in later sections to examine
waves in a shallow-water model.
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4.2 Vortex Rossby waves

We consider here the linear theory of waves on a circular vortex in gradient balance.
In a stationary cylindrical coordinate-system, the linearized vorticity-equation is

(
∂

∂t
+

v̄

r

∂

∂λ

)
ζ ′ − 1

r

∂ψ′

∂λ

dη̄

dr
= 0, (4.4)

where ψ′ denotes the perturbation streamfunction, ζ ′ = ∇2ψ′ is the perturba-
tion vorticity, V (r) the basic-state tangential velocity at radius r, and η̄ = f +
(1/r)(d(rV )/dr) the basic-state absolute vorticity. If f is a constant, it does not
appear in the problem. When (4.4) has been solved for ψ′, the perturbation radial
and azimuthal winds are obtained from

u′ = −1

r

∂ψ′

∂λ
, v′ =

∂ψ′

∂r
. (4.5)

The solution to (4.4) may be obtained by an azimuthal Fourier analysis. Let

ψ′ = ψ̂n(r, t)einλ,

where ψ̂n(r, t) denotes the Fourier amplitude of the azimuthal wave-number n, and
let Ω̄ = v̄/r be the local angular rotation rate of the basic-state vortex. Then the
linearized vorticity equation in Fourier space becomes

(
∂

∂t
+ inΩ̄

) [
1

r

∂

∂r

(
r
∂ψ̂n

∂r

)
− n2

r2
ψ̂n

]
− in

r
ψ̂n

dη̄

dr
= 0. (4.6)

Under certain circumstances n turns out to be complex, in which case there exist
unstable solutions. It can be shown that a necessary condition for the existence
of unstable solutions is that the radial gradient of the basic state vorticity, dη̄/dr
changes sign somewhere within the flow. We defer consideration of the unstable case
until section 4.4.

A formal solution to the general initial value problem for Eq. (4.6) may be
obtained using Laplace transform techniques. The Laplace transform of an arbitrary
function χ(r, t) is defined by

χ̂(r, s) =

∫ ∞

0

e−stχ(r, t)dt, (4.7)

and if χ̂(r, s) is known, the inverse transform is obtained as a contour integral in the
complex plane:

χ(t) =
1

2πi

∫ c+i∞

c−i∞
estχ̂(s)dt, (4.8)

where c is a constant so that the contour of integration in the complex s-plane lies
to the right of all singularities of χ̂(s). It is easy to show that the Laplace transform
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of ∂χ/∂t is sχ̂(r, s) − χ(r, 0) and it follows that the Laplace transform of Eq. (4.6)
satisfies the ordinary differential equation

(s + inΩ(r))

[
1

r

∂

∂r

(
r

∂

∂r

)
− n2

r2

]
ψ̂(r, s)−in

dη̄

dr
ψ̂(r, s) =

[
1

r

∂

∂r

(
r

∂

∂r

)
− n2

r2

]
ψ(r, 0)

(4.9)
Dividing by s + inΩ(r) and noting that the right-hand-side of (4.9) is the initial
vorticity ζ̂o of the n-th Fourier component, we obtain

[
1

r

∂

∂r

(
r

∂

∂r

)
− n2

r2

]
ψ̂(r, s)− in

dη̄

dr

ψ̂(r, s)

(s + inΩ(r))
=

ζ(r, 0)

(s + inΩ(r))
(4.10)

In principle, when this equation has been solved for ψ̂(r, s), the inverse transform
must be obtained for ψ(r, t). This inverse transform involves the evaluation of contour
integrals in the complex plane. Using the calculus of residues we know that that the
general solution consists of:

• a sum of discrete exponentials (or normal modes) associated with the zeros of
the Wronskian,

• an integral along branch cuts associated with the zeros of (s + inΩ(r)) that
characterizes the continuous spectrum.

Explicit solutions have been obtained only in a few special cases, but an examination
of these cases is instructive.

Case I: Bounded Rankine vortex: v̄ = Γ/r, Ω̄ = Γ/r2, Γ = constant, a ≤ r ≤ b.
In this case dη̄/dr = 0 and Eq. (4.6) becomes

(
∂

∂t
+

inΓ

r2

) [
1

r

∂

∂r

(
r
∂ψ̂n

∂r

)
− n2

r2
ψ̂n

]
= 0. (4.11)

The inverse Laplace transform of (4.11) is

[
∂

∂r

(
r

∂

∂r

)
− n2

r

]
ψ(r, t) = rζ(r, 0)e−iant/r2

. (4.12)

The solution of this equation in the domain a ≤ r ≤ b is

ψ(r, t) =

∫ b

a

G(r, x)ζ(r, 0)e−iant/x2

xdx, (4.13)

where the Green’s function is given by

G(r, x) =
1

2nrn(a2n − b2n)

{
(xn − b2nx−n)(a2n − r2n), a ≤ r ≤ x
(xn − a2nx−n)(b2n − r2n), x ≤ r ≤ b

(4.14)
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Figure 4.4: Perturbation streamfunction field for ζ(r, 0) = 1/r3 for the hounded
Rankine vortex in the region a = 1, b = 10. The columns show contours at times
t = 0, t = 3.6 and t = 7.2, respectively. Panels (a)-(c) show contours for n = 1 where
the contour interval is 1.1× 10−2. Panels (d)-(f) show contours for n = 2 where the
contour interval it 5.67 × 10−3. Panels (g) - (i) show contours for n = 3 where the
contour interval is 3.31× 10−3.

Finally, the Fourier inversion for wavenumber n is

ψn(r, λ, t) = einλ

∫ b

a

G(r, x)ζ(r, 0)e−iant/x2

xdx. (4.15)

Some solutions for various initial distributions of ζ(r, 0) and n are given by Smith
and Montgomery (1995). Figure 4.4 shows shows the streamfunction fields for an
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upright distribution of initial vorticity ζ(r, 0) = 1/r3 and Fig. 4.5 shows the corre-
sponding vorticity fields. The rows represent wavenumbers n = 1, 2 and 3 respec-
tively, while the columns designate times t = 0, t = 3.6 and t = 7.2, respectively.
These figures show how the initial disturbances are sheared out preferentially in the
inner region of the vortex by the large angular shear of the vortex. However, unlike
in the calculations in Chapter 3, wave dynamics are involved on account of the term
u(dη̄/dr) that is retained at first-order in Eq. (4.4). The solutions are cylindrical ana-
logues of plane wave solutions describing sheared disturbances in rectangular simple
shear flow (see e.g. Smith and Montgomery, 1995). Physically pertinent properties
of these solutions, such as the dependence of integrated kinetic energy on azimuthal
wave-number, are examined by Smith and Montgomery op. cit..

Case II: Unbounded Rankine vortex: η̄ discontinuous at r = rmax

The Rankine vortex is defined by the profile

V (r) =

{
r/a, r ≤ a,
a/r, a ≤ r,

(4.16)

where a is the radius of maximum winds. The corresponding profile of basic-state
vorticity is

ζ̄(r) =

{
2/a, r < a,
0, a < r,

(4.17)

The profile of absolute vorticity is

ζ̄(r) =

{
Ro−1 + 2/a, r < a,
Ro−1, a < r,

(4.18)

where Ro is the Rossby number = Vm/Rm. The discontinuity in the mean-state
vorticity at r = a effectively introduces another boundary to the system. Since
this boundary lies in the interior of the fluid, kinematic and dynamic boundary
conditions must be satisfied at the disturbed interface r = a + ξ, where ξ is the
interface displacement. The kinematic boundary condition requires that the normal
velocity be continuous at r = a + ξ while the dynamic boundary condition requires
that the pressure be continuous at this radius. Consistent with the linearization
of the equations, the matching conditions can be evaluated at r = a. Once u is
determined, the evolution of the disturbed interface may be found by integrating

(
∂

∂t
+

v

r

∂

∂λ

)
ξ = u (4.19)

for ξ at r = a.
For the full Rankine profile (4.17) the linearized vorticity equation (4.4) is mod-

ified to (
∂

∂t
+

v

r

∂

∂λ

)
ζ = 0 r 6= a. (4.20)
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Figure 4.5: Perturbation vorticity-field corresponding to Fig. 9. The contour interval
is 6.9× 10−2.

To solve (4.20), the discontinuity in the basic-state vorticity at r = a must be
accounted for. Since the problem is linear, the superposition principle may be used
to separate the solution into two parts by letting ζ = ζs + ζ1, where ζs. is defined to
be smooth for all r and ζi accounts for the discontinuity in the basic-state vorticity
at r = a. The vorticity equation (4.20) is then split into two parts

(
∂

∂t
+

v

r

∂

∂λ

)
ζs = 0 ∀ r (4.21)

(
∂

∂t
+

v

r

∂

∂λ

)
ζ1 = 0 r 6= a. (4.22)
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Equation (4.21) is formally identical to the system solved in Case I, but with the
foregoing boundary conditions. The corresponding solution in Fourier space is

ψ̂s(r, t) =

∫ ∞

0

G(r, ρ)ζ̂s0(ρ)e−inv̄/ρρdρ (4.23)

where the appropriate Green’s function is

G(r, t) = − 1

2n

{
ρ−nrn, 0 ≤ r ≤ ρ
ρnr−n, ρ ≤ r ≤ ∞ (4.24)

and ζ̂s0(ρ) is the smooth component of ζ̂ throughout the vortex at time t = 0.
The Fourier-space equivalent to (4.22) is

(
∂

∂t
+

inv̄

r

)
ζ̂1 = 0, r 6= a. (4.25)

Anticipating that the solution to (4.25) will yield the discrete normal modes which
are irrotational on both sides of the mean-state vorticity discontinuity, ζ̂1 is assumed
to be separable and of the form

ζ̂1 = γ(t)δ(r − a). (4.26)

Here, γ is an undetermined temporal multiplier for ζ̂1, and δ(r−a) is the Dirac delta
function. In terms of the perturbation streamfunction, (4.26) becomes

∇2ψ̂1 = γ(t)δ(r − a). (4.27)

The streamfunction is also assumed to be separable and of the form ψ̂1 = γ(t)Ψ̂1(r).
Thus, (4.27) becomes

(
1

r

d

dr

(
r

d

dr

)
− n2

r2

)
Ψ̂1 = δ(r − a). (4.28)

For r 6= a, (4.28) is Euler’s equation. Two conditions are needed to match the
solutions in each region across r = a. The first is the kinematic boundary condition
requiring that the radial velocity u be continuous at r = a. Consequently, the Fourier
streamfunction amplitude must be continuous across r = a. The second condition
results from integrating (5.12) over a small interval that includes r = a. This yields
the following jump condition for ψ̂1

d

dr
Ψ̂1r(a

+)− d

dr
Ψ̂1r(a

−) = 1. (4.29)

Applying the boundary conditions, and the continuity and jump conditions at r = a,
yields

Ψ̂1 = − a

2n

{
a−nrn, 0 ≤ r ≤ a
anr−n, a ≤ r ≤ ∞,

(4.30)




