
Chapter 2

DYNAMICS OF MATURE
TROPICAL CYCLONES

2.1 The primary and secondary circulation

The mature tropical cyclone consists of a horizontal quasi-symmetric circulation on
which is superposed a thermally-direct vertical (transverse) circulation. These are
sometimes referred to as the primary and secondary circulations, respectively, terms
which were coined by Ooyama (1982). The combined spiralling circulation is ener-
getically direct because the rising branch of the secondary circulation near the centre
is warmer than the subsiding branch, which occurs at large radial distances (radii
> 500 km). In this chapter we examine the dynamics of the spiralling circulation of
tropical cyclones on the basis of the physical laws governing fluid motion and thermo-
dynamic processes that occur. In particular we study the dynamics of a stationary
axisymmetric hurricane-like vortex. In later chapters we consider the dynamics of
tropical-cyclone motion and examine the asymmetric features of storms. We begin
by giving an overall picture of the dynamics and then go into detail about particular
important aspects.

2.2 The equations of motion

To begin with we consider the full hydrostatic equations of motion, but with the
density tendency in the continuity equation omitted. The primitive equations of
motion comprising the horizontal momentum equation, the hydrostatic equation,
the continuity equation, the thermodynamic equation and the equation of states for
frictionless motion in a rotating frame of reference on an f -plane may be expressed
in cylindrical polar coordinates, (r, λ, z), as:
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where (u, v, w) is the velocity vector in component form, ρ is the air density, f is the
Coriolis parameter, p is the pressure, θ is the potential temperature θ̇ is the diabatic
heating rate, π = (p/p∗)κ is the Exner function, R is the specific gas constant,
κ = R/cp, cp is the specific heat at constant pressure, and p∗ = 1000 mb. The
temperature is defined by T = πθ. For tropical-cyclone scale motions it is a good
approximation to make the hydrostatic approximation, whereupon Eq. (2.3) reduces
to
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Multiplication of Eq. (2.2) by r and a little manipulation leads to the equation
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where

M = rv +
1

2
r2f, (2.9)

is the absolute angular momentum per unit mass of an air parcel about the rotation
axis. If the flow is axisymmetric (and frictionless), the right-hand-side of (2.8) is zero
and the absolute angular momentum is conserved.

Exercise 2.1 Assuming the most general form of the mass conservation equation:
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2.3 Buoyancy

The buoyancy of an air parcel in a density-stratified air layer is defined as the differ-
ence between the weight of air displaced by the parcel (the upward thrust according
to Archimedes principle) and the weight of the parcel itself. This quantity is normally
expressed per unit mass of the air parcel under consideration, i.e.

b = −g
(ρ− ρa)

ρ
, (2.10)

where ρ is the density of the parcel, ρa = ρa(z) is the density of the environment at
the same height z as the parcel, and g is the acceleration due to gravity. Here and
elsewhere the vertical coordinate z is defined to increase in the direction opposite to
gravity. The calculation of the upward thrust assumes that the pressure within the
air parcel is the same as that of its environment at the same level, an assumption
that may be unjustified in a rapidly-rotating vortex. In the latter case one can define
a generalized buoyancy force, which acts normal to the isobaric surface intersecting
the air parcel and which is proportional to the density difference between the parcel
and its environment along that surface (see below).

A similar expression for the buoyancy force given in (2.10) may be obtained by
starting from the vertical momentum equation and replacing the pressure p by the
sum of a reference pressure pref and a perturbation pressure, p′. The former is taken
to be in hydrostatic balance with a prescribed reference density ρref , which is often
taken, for example, as the density profile in the environment. In real situations, the
environmental density is not uniquely defined, but could be taken as the horizontally-
averaged density over some large domain surrounding the air parcel. Neglecting
frictional forces, the vertical acceleration per unit mass can be written alternatively
as
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where w is the vertical velocity, D/Dt is the material derivative, and t is the time
presents a similar derivation, but makes the anelastic approximation (Ogura and
Phillips, 1962), in which the density in the denominator of (2.10) is approximated
by that in the environment. Clearly, the sum of the vertical pressure gradient and
gravitational force per unit mass acting on an air parcel is equal to the sum of the
vertical gradient of perturbation pressure and the buoyancy force, where the latter
is calculated from Eq. (2.10) by comparing densities at constant height. The expres-
sion for b in (2.11) has the same form as that in (2.10), but with ρref in place of
ρa. However, the derivation circumvents the need to assume that the local (parcel)
pressure equals the environmental pressure when calculating b. The foregoing de-
composition indicates that, in general, the buoyancy force is not uniquely defined
because it depends on the (arbitrary) choice of a reference density. However, the
sum of the buoyancy force and the perturbation pressure gradient per unit mass
is unique. If the motion is hydrostatic, the perturbation pressure gradient and the
buoyancy force are equal and opposite, but they remain non-unique.
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Using the gas law (p = ρRT , where R is the specific gas constant) and the usual
definition of virtual potential temperature, the buoyancy force per unit mass can be
written as

b = g

[
(θ − θref )

θref

− (κ− 1)
p′

pref

]
, (2.12)

where θ is the virtual potential temperature of the air parcel in K and θref is the
corresponding reference value. The second term on the right-hand-side of (2.12)
is sometimes referred to as the “dynamic buoyancy”, but in some sense this is a
misnomer since buoyancy depends fundamentally on the density perturbation and
this term simply corrects the calculation of the density perturbation based on the
virtual potential temperature perturbation. If the perturbation pressure gradient
terms in (2.11) are written in terms of the Exner function and/or its perturbation, the
second term in (2.12) does not appear in the expression for buoyancy. The expression
(2.12) is valid also in a rapidly rotating vortex, but as shown in section 2.5, there
exists then a radial component of buoyancy as well. When clouds are involved it may
be advantageous to include the drag of hydrometeors in the definition of buoyancy,
but we omit this additional effect here.

2.4 The primary circulation

Figure 2.1: Schematic diagram illustrating the gradient wind force balance in the
primary circulation of a tropical cyclone.

To begin with we assume that the flow is steady (∂/∂t ≡ 0) and we ignore the
secondary circulation, i.e. we assume that the radial velocity is identically zero (see
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Fig. 2.1). Then Eq. (2.1) reduces to the gradient wind equation:
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In the data for Hurricane Gilbert shown in Fig. 1.11b, the strongest radial gradi-
ent of the 700 mb geopotential height roughly coincides with the maximum swirling
wind, which suggests that the wind may be in gradient balance with the mass field.
In fact gradient balance prevailed in the mid-troposphere in Gilbert to within a
root-mean-squared deviation of ±4m s−1 (Willoughby, 1995, p28).

Taking (∂/∂z)[ρ× Eq. (2.13)] and (∂/∂r)[Eq. (2.2)] and eliminating the pressure
we obtain the thermal wind equation
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where we have defined

C =
v2

r
+ fv (2.15)

to represent the sum of the centrifugal and Coriolis forces per unit mass. This is
a linear first-order partial differential equation for ln ρ. The characteristics of the
equation satisfy

dz
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=

C

g
. (2.16)

The characteristics are just the isobaric surfaces, because a small displacement
(dr, dz) along an isobaric surface satisfies (∂p/∂r)dr+(∂p/∂z)dz = 0. Using the equa-
tions for hydrostatic balance, ∂p/∂z = −gρ, and gradient wind balance, ∂p/∂r = Cρ,
gives the equation for the characteristics. Alternatively, note that the pressure gradi-
ent per unit mass, (1/ρ)(∂p/∂r, 0, ∂p/∂z) = (C, 0,−g), which defines the ”generalized
gravity”, ge; see Fig. 2.2. The density variation along the characteristics is governed
by the equation
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Given the vertical density profile, ρa(z), these Eqs. (2.16) and (2.17) can be inte-
grated inwards along the isobars to obtain the balanced axisymmetric density and
pressure distributions. Thus Eq. (2.16) gives the height of the pressure surface that
has the value pa(z), say, at radius R.

It follows from (2.17) that for a barotropic vortex (∂v/∂z = 0), ρ is constant
along an isobaric surface, i.e. ρ = ρ(p), whereupon Tv is a constant also. Note that
∂C/∂z = (2v/r + f)(∂v/∂z).

The thermal wind equation (2.14) or (2.17) shows also that for a cyclonic vortex
(v > 0) with dv/dz < 0, log(ρ/ρa) and hence ρ decrease with decreasing radius along
the isobaric surface so that the virtual temperature Tv(r, z) and θ increase. Thus the
vortex is warm cored. Conversely, if dv/dz > 0, the vortex is cold cored. Certainly
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Figure 2.2: Schematic radial-height cross-section of isobaric surfaces in a rapidly-
rotating vortex showing the forces on an air parcel including the gravitational force
g, per unit mass, and the sum of the centrifugal and Coriolis forces C = v2/r + fv
per unit mass. Note that the isobaric surfaces are normal to the local ”generalized
gravitational force” ge = (C, 0,−g). The Archimedes force −geρref slopes upwards
and inwards while the weight geρ slopes downwards and outwards. Thus the net
buoyancy force acting on the parcel per unit mass is |ge|(ρref − ρ)/ρ in the direction
shown.

Eq. (2.14) is consistent with the observation that tropical cyclones are warm-cored
systems (i.e. ∂Tv/∂r < 0), and that the tangential wind speed decreases with altitude
(∂v/∂z < 0). Note that on account of Eq. (2.16), the characteristics dip down as the
axis is approached. The reason for the warm core structure is discussed in section
2.5.

The analysis above shows that any steady vortical flow with velocity field u =
(0, v(r, z), 0) is a solution of the basic equation set (2.1) - (2.6), when the density field
satisfies (2.14). Willoughby (1990) has shown from observations that the primary
circulation of a hurricane is approximately in gradient wind balance so the foregoing
analysis is a good start in understanding the structure of this circulation. However
the solution neglects the secondary circulation associated with nonzero u and w and
it neglects the effects of friction near the sea surface. These are topics of subsequent
subsections.

Exercise 2.2 Show that in terms of the Exner function, Eqs. (2.13) and (2.7)

may be written as

χC = cp
∂π

∂r
and − χg = cp

∂π

∂z
, (2.18)
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respectively.

Exercise 2.3 Show that Eq. (2.14) may be reformulated as

g
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∂z
= −∂C

∂z
. (2.19)

where χ = 1/θ.

It is instructive to compare the magnitude of the centrifugal and Coriolis terms
in Eq. (2.1), their ratio being

Ro(r) =
v

fr
. (2.20)

This equation defines a local Rossby number for the flow. At the radius of maxi-
mum tangential wind speed, rm, the tangential wind speed at this radius, vm, Ro is
typically on the order of 40÷ (40× 103 × 5× 10−5) = 20, typical values for rm and
vm being 40 km and 40 m s−1, respectively. It follows that the inner core region of
a tropical cyclone is approximately in cyclostrophic balance, i.e. the Coriolis forces
are relatively small. However, at a radius of 200 km, where the wind speeds may be
on the order of 10 m s−1, Ro ≈ 1 and Coriolis forces are comparable with centrifu-
gal forces. As the radius increases further, the circulation becomes more and more
geostrophic, i.e. Ro becomes small compared with unity.

2.5 Generalized buoyancy

In a rapidly-rotating, axisymmetric vortex, an air parcel experiences not only the
gravitational force, but also the radial force C = v2/r +fv, where v is the tangential
wind component at radius r. If the vortex is in hydrostatic and gradient wind
balance, the isobaric surfaces slope in the vertical and are normal to the effective
gravity, ge = (C, 0,−g), expressed in cylindrical coordinates (r, λ, z) (see Fig. 2.2).
The Archimedes force acting on the parcel is then −geρref and the effective weight of
the parcel is geρ, where ρref is now the far-field (reference-) density along the same
isobaric surface as the parcel. Accordingly, we may define a generalized buoyancy
force per unit mass :

b = ge
ρ− ρref

ρ
, (2.21)

analogous to the derivation of (2.10). Note that unless v(v + rf) < 0, fluid parcels
that are lighter than their environment have an inward-directed component of gen-
eralized buoyancy force as well as an upward component, while heavier parcels have
an outward component as well as a downward component. This result provides the
theoretical background for a centrifuge.
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2.6 The tropical-cyclone boundary layer

It turns out that the effects of surface friction in a tropical cyclone have a dramatic
influence not only on the flow in the layer where friction acts, the so-called boundary
layer, but also on the flow above this layer. The boundary layer is typically about 500
m deep. One obvious effect of friction is to reduce the tangential wind speed near the
surface. However, a scale analysis shows that it has little effect on the pressure field
so that the radial pressure gradient in the boundary layer is approximately the same
as that immediately above the layer (see e.g. Smith 1968). However, the centrifugal
and Coriolis forces are reduced by friction leaving a net inward force on air parcels
within the boundary layer, which leads to inflow within the layer (Fig. 2.3). Far
from the rotation axis, both the inflow velocity and the radial mass flux increase with
decreasing radius and this leads to forced subsidence above the boundary layer. At
inner radii, where the inflow and mass flux begin to decline, air is discharged from the
boundary layer into the vortex above. In other words, the presence of the boundary
layer forces vertical motion in the vortex above the boundary layer. In the tropical
cyclone, the air in the boundary layer is moistened as it spirals inwards over the
warm ocean. The moistening elevates the pseudo-equivalent potential temperature
of the boundary-layer air, θeb, so that ∂θeb/∂r < 0. We consider now the fate
of this moist air and return in section 2.9 to examine in detail the dynamics and
thermodynamics of the boundary layer. There we show that given the tangential
wind speed distribution for a steady axisymmetric vortex, one can determine the
radial distribution of the vertically-averaged wind speed components in the boundary
layer as functions of radius as well as the induced vertical velocity at the top of the
boundary layer. Given also the vertically-averaged temperature and specific humidity
at some large radius and the sea surface temperature beneath the vortex, one can
determine the radial variation of the vertically-averaged θeb in the boundary layer.

2.7 Moist convection and the sloping eyewall

When the inward-spiralling moisture-laden air is forced upwards out of the bound-
ary layer in the inner core region, it expands and cools and condensation rapidly
occurs. As the air continues to rise in the eyewall clouds, latent heat is released
and a significant fraction of the condensed water falls out of the clouds as precip-
itation. The latent heat release is responsible for the warm core in the cyclone,
but only a small fraction of the heat released appears as an elevated temperature
perturbation at a particular height; most of it is balanced by the adiabatic cooling
that occurs as air parcels continue to rise and expand. We may think of the effect
on the temperature field as follows. To a first approximation, ascending air parcels
conserve their θe as indicated in Fig. 2.4. Since the air in the eyewall clouds is
saturated, the virtual temperature of an air parcel at a particular pressure level is a
monotonically-increasing function of its θe, which, in turn, is equal to the θe it had
when it left the boundary layer. Therefore, at least in the eyewall cloud region the
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Figure 2.3: Schematic diagram illustrating the disruption of gradient wind balance
by friction in the boundary layer leaving a net inward pressure gradient that drives
the secondary circulation with inflow in the boundary layer and outflow above it.

radial gradient of Tv(p) is determined by the radial gradient of θe at the top of the
boundary layer, which as noted above is negative. In other words, at any level in the
cloudy region, (∂Tv/∂r)p < 0, which explains why the tropical cyclone has a warm
core outside the eye. The reason that the eye is warm also is discussed in the next
section. The discussion in section 2.4 indicates that the boundary layer in a mature
hurricane controls not only the rate at which air ascends at a particular radius, but
determines also the radial gradient of virtual temperature (and hence density) above
the boundary layer, at least in regions of ascent.

From mass continuity, the air that converges in the boundary layer must flow
outwards above the boundary layer, a fact that accounts for the outward slope of the
eyewall and of air parcel trajectories. Ascending air parcels approximately conserve
their absolute angular momentum, M , as well as their θe so that (absolute) angular
momentum surfaces and the moist isentropes are approximately coincident (at least
where there is cloud) and these surfaces slope outwards with height as indicated
schematically in Fig. 2.4.

2.8 The tropical cyclone eye

As we have seen, the eye is a cloud free region surrounding the storm axis where the
air temperature is warmest. Therefore, it would be reasonable to surmise that the air
within it has undergone descent during the formative stages of the cyclone, and that
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Figure 2.4: Schematic diagram of the secondary circulation of a mature tropical
cyclone showing the eye and the eyewall clouds. Air spirals inwards in a shallow
boundary layer near the sea surface, picking up moisture as it does so. The absolute
angular momentum, M , and equivalent potential temperature, θe of an air parcel is
conserved after the parcel leaves the boundary layer and ascends in the eyewall clouds.
The precise values of these quantities depend on the radius at which the parcel exits
the boundary layer. At radii beyond the eyewall cloud, shallow convection plays an
important role in moistening and cooling the lower troposphere above the boundary
layer and warming and drying the boundary layer as indicated.

possibly it continues to descend. The question then is: why doesn’t the inflowing air
spiral in as far as the axis of rotation. We address this question later, but first note
that eye formation is consistent with other observed features of the tropical cyclone
circulation. The following discussion is based on that of Smith (1980). Assuming that
the primary circulation is in gradient wind balance, we may integrate Eq. (2.13) with
radius to obtain a relationship between the pressure perturbation at a given height
z on the axis to the tangential wind field distribution, i.e:

p(0, z) = p(∞, z)−
∫ ∞

0

ρ(
v2

r
+ fv)dr, (2.22)

where p(∞, z) is the environmental pressure at the same height. Differentiating Eq.
(2.22) with respect to height and dividing by the density gives the perturbation
pressure gradient per unit mass along the vortex axis:
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Observations in tropical cyclones show that the tangential wind speed decreases
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with height above the boundary layer and that the vortex widens with height in the
sense that the radius of the maximum tangential wind speed increases with height
(see Fig. 1.11). This behaviour, which is consistent with outward-slanting absolute
angular momentum surfaces as discussed above, implies that the integral on the
right-hand-side of Eq. (2.23) decreases with height. Then Eq. (2.23) shows that
there must be a downward-directed perturbation pressure gradient force along the
vortex axis. This perturbation pressure gradient tends to drive subsidence along and
near to the axis to form the eye. However, as this air subsides, it is compressed
and warms relative to air at the same level outside the eye and thereby becomes
locally buoyant (i.e. relative to the air outside the eye). This upward buoyancy
approximately balances the downward directed (perturbation) pressure gradient so
that the actual subsidence results from a small residual force. In essence the flow
remains close to hydrostatic balance.

As the vortex strengthens, the downward pressure gradient must increase and the
residual force must be downwards to drive further subsidence. On the other hand, if
the vortex weakens, the residual force must be upwards, allowing the air to re-ascend.
In the steady state, the residual force must be zero and there is no longer a need for
up- or down motion in the eye, although, in reality there may be motion in the eye
associated with turbulent mixing across the eyewall or with asymmetric instabilities
within the eye.

It is not possible to measure the vertical velocity that occur in the eye, but one
can make certain inferences about the origin of air parcels in the eye from their ther-
modynamic characteristics, which can be measured (see e.g. Willoughby, 1995).Note
that ∂T/∂p)s∗ is just the temperature lapse rate as a function of pressure along a
moist adiabat.

2.9 A model for the boundary layer

We consider now a simple model for the tropical cyclone boundary layer as described
by Smith (2003). The boundary layer equations for a steady axisymmetric vortex in
a homogeneous fluid on an f -plane are:
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where (u, v, w) is again the velocity vector in a stationary cylindrical coordinate
system (r, φ, z), vgr(r) is the tangential wind speed at the top of the boundary layer,
ϕ is a scalar quantity, taken here to be the dry static energy or the specific humidity,
and K is an eddy diffusivity, which we assume here to be the same for momentum,
heat and moisture. Let us assume that condensation does not occur in the boundary
layer: we can check that saturation does not arise in the calculations. Taking the
integral of Eqs. (2.24) - (2.27) with respect to z from z = 0 to the top of the boundary
layer, z = δ, and assuming that δ is a constant, we obtain:

d
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Now
[ruw]z=δ = rubwδ+ + rugrwδ− ,

where ugr is the radial component of flow above the boundary layer, taken here to
be zero, wδ+ = 1

2
(wδ + |wδ|), and wδ− = 1

2
(wδ − |wδ|). Note that wδ+ is equal to wδ

if the latter is positive and zero otherwise, while wδ− is equal to wδ if the latter is
negative and zero otherwise. The assumption that δ is a constant may have to be
reassessed later, but allowing it to vary with radius precludes the relatively simple
approach that follows. A bulk drag law is assumed to apply at the surface:

K
∂u

∂z

∣∣∣∣
z=0

= CD|ub|ub,

where CD is a drag coefficient and ub = (ub, vb). Here ub and vb denote the values
of u and v in the boundary layer, which are assumed to be independent of depth. A
similar law is taken for ϕ:

K
∂ϕ

∂z

∣∣∣∣
z=0

= Cϕ|ub|(ϕb − ϕs),

where ϕb and ϕs are the values of ϕ in the boundary layer and at the sea surface,
respectively. In the case of temperature ϕs is the sea surface temperature and in the
case of moisture it is the saturation specific humidity at this temperature. Following
Shapiro (1983, p1987) we use the formula CD = CD0 + CD1|ub|, where CD0 =
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1.1 × 10−3 and CD1 = 4 × 10−5. Further, we assume here that Cϕ = CD, although
there is mounting evidence that they are not the same and that neither continue to
increase linearly with wind speed at speeds in excess of, perhaps, 25 m s−1 (Emanuel,
1995b).

Carrying out the integrals in Eqs. (2.28) - (2.31) and dividing by δ gives
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wδ−
δ

rvgr − r2fub − CD

δ
r2(u2

b + v2
b )

1/2vb, (2.33)

d

dr
(rubϕb) = −wδ+

δ
rϕb − r

wδ−
δ

ϕδ+ +
Cϕ

δ
r(u2

b + v2
b )

1/2(ϕs − ϕb), (2.34)

and

d

dr
(rub) = −r

wδ

δ
, (2.35)

which may be written
dub

dr
= −wδ

δ
− ub

r
. (2.36)

Moreover, for any dependent variable η

d

dr
(rubη) = rub

dη

dr
+ η

d

dr
(rub) = rub

dη

dr
− wδ

δ
rη,

where η is either ub, vb or ϕb. Then Eqs. (2.32) and (2.33) become

ub
dub

dr
= ub

wδ−

δ
− (v2

gr − v2
b )

r
− f(vgr − vb)− CD

δ
(u2

b + v2
b )

1/2ub, (2.37)

ub
dvb

dr
=

wδ−

δ
(vb − vgr)− (

vb

r
+ f)ub − CD

δ
(u2

b + v2
b )

1/2vb. (2.38)

Equation (2.34) becomes

ub
dϕb

dr
=

wδ−

δ
(ϕb − ϕδ+) +

Cϕ

δ
(u2

b + v2
b )

1/2(ϕs − ϕb)−Rb, (2.39)

where ϕδ+ is the value of ϕ just above the boundary layer. The term −Rb is added
to the equation when ϕ is the dry static energy and represents the effects of radiative
cooling, respectively.

Equations (2.37) - (2.39) form a system that may be integrated radially inward
from some large radius R to find ub, vb, ϕb and wδ as functions of r, given values of
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these quantities at r = R. First Eq. (2.37) must be modified using (2.36) to give an
expression for wδ. Combining1 these two equations gives

wδ =
δ

1 + α

[
1

ub

{
(v2

gr − v2
b )

r
+ f(vgr − vb) +

CD

δ
(u2

b + v2
b )

1/2ub

}
− ub

r

]
, (2.40)

where α is zero if the expression in square brackets is negative and unity if it is
positive.

2.9.1 Shallow convection

An important feature of the convective boundary layer (CBL) over the tropical oceans
in regions of large-scale subsidence is the near ubiquity of shallow convection. Such
regions include the outer region of hurricanes. Shallow convection plays an important
role in the exchange of heat and moisture between the subcloud layer, the layer
modelled in this paper, and the cloudy layer above. Excellent reviews of the CBL
structure are given by Emanuel (1994, Chapter 13) and Betts (1997). Over much of
the tropical Pacific Ocean, for example, in regions of subsidence, the subcloud layer
is typically 500 m deep and is well-mixed, with relatively uniform vertical profiles
of potential temperature, specific humidity and dry or moist static energy. The
cloudy layer is capped by an inversion at an altitude of about 800 mb. A similar
structure was found in the outer region of Hurricane Eloise (1975) by Moss and
Merceret (1976), the mixed layer depth being about 650 m in this case. The clouds,
known as tradewind cumuli, are widely spaced and have their roots in the subcloud
layer. They generally don’t precipitate, but evaporate into the dry subsiding air that
penetrates the inversion, thereby moistening and cooling the subcloud layer. In turn,
the compensating subsidence in the environment of clouds transports potentially
warm and dry air into the subcloud layer. This drying opposes the moistening of the
subcloud layer by surface fluxes, keeping its relative humidity at values around 80
%. The equilibrium state of the CBL, including its depth and that of the subcloud
layer, is governed primarily by radiative cooling, subsidence, convective transports,
and surface latent and sensible heat fluxes (Emanuel, op. cit., Betts, op. cit.).
Modelling the subcloud layer requires a knowledge of the cloud-base mass flux, which
together with the large-scale subsidence, determines the rate at which cloud layer air
enters the subcloud layer. Emanuel (1989) used a simple cloud model to determine
the mass flux of shallow convection, while Zhu and Smith (2002) use the closure
scheme of Arakawa (1969), in which the mass flux is assumed to be proportional

1Eq. (2.37) is written in the form

ub
wδ−

δ
= ub

dub

dr
+ {...} and

dub

dr

is eliminated from this expression using (2.36). Note that if wδ < 0, wδ = wδ− , in which case α = 1.
If wδ > 0, wδ− = 0, in which case α = 0.
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to the degree of convective instability between the subcloud layer and that above.
As we do not predict the thermodynamic variables represented by ϕδ+ above the
boundary layer in this simple model, we simply choose a constant value for the mass
flux of shallow convection, wsc, and add this to wδ− in Eqs. (2.37) - (2.39) (even if
wδ− = 0). However, wδ in Eq. (2.32) is left unchanged as shallow convection does
not cause a net exchange of mass between the cloud and subcloud layers. The value
for wsc is chosen to ensure that the thermodynamic profile at large radius is close to
radiative-convective equilibrium (see section 5).

2.9.2 Starting conditions at large radius

We assume that the flow above the boundary layer is in approximate geostrophic
balance at large radii where the boundary layer is essentially governed by Ekman-
like dynamics. Specifically we assume that at r = R, far from the axis of rotation, the
flow above the boundary layer is steady and in geostrophic balance with tangential
wind vgr(R). In addition we take CD to be a constant equal to CD0 + CD1vgr(R)2.
Then ub and vb satisfy the equations:

f(vgr − vb) = −CD

δ
(u2

b + v2
b )

1/2ub, (2.41)

fub = −CD

δ
(u2

b + v2
b )

1/2vb. (2.42)

Let (ub, vb) = vgr(u
′, v′) and Λ = fδ/(CDvgr). Then equations (2.41) and (2.42)

become

Λ(1− v′) = −(u′2 + v′2)1/2u′, (2.43)

and
Λu′ = −(u′2 + v′2)1/2y. (2.44)

The last two equations have the solution

v′ = −1

2
Λ2 + (

1

4
Λ4 + Λ2)1/2. (2.45)

and
u′ = −[(1− v′)v′]1/2, (2.46)

whereupon ub and vb follow immediately on multiplication by vgr. The vertical
velocity at r = R can be diagnosed in terms of vgr and its radial derivative using the
continuity equation (9.14).

The starting values for the temperature Tb and specific humidity qb in the bound-
ary layer are 25◦C and 15 g kg−1, respectively, giving a relative humidity of 72%.

2It is possible to take CD0 + CD1|ub(R)| and solve the equations for ub and vb numerically, but
the result is essentially no difference from basing CD on vgr
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The value for qb is the same as the mixed layer value observed by Moss and Merceret
(1976, Fig 4), but Tb cannot be compared with their observations as they showed
only potential temperature.

With the starting values for ub and vb determined by Eqs. (2.45) and (2.46), Eqs.
(2.37) - (2.39) may be solved numerically, given the radial profile vgr. We choose
R = 500 km. Radial profiles of selected dynamical quantities in the boundary layer
and at the top of it are shown in Fig. 2.5 for this calculation. At large radii (r > 350
km), the mean vertical motion at the top of the boundary layer, wδ, is downward and
the total wind speed |vb| =

√
u2

b + v2
b is less than that at the top of the boundary

layer, vgr. As r decreases, both ub and vb increase in magnitude, as does vgr, the
maximum value of vb occurring just inside the radius of maximum tangential wind
speed (RMW) above the boundary layer. As a result, the frictional force, F =
Cd|vb|vb/δ increases, and in particular its radial component, Fr, denoted by fri in
the top right panel of Fig 2.5. The net radially-inward pressure gradient force per
unit mass, (v2

gr − v2
b )/r + f(vgr − vb), denoted by pgf , increases also with decreasing

r, at least for large r, but more rapidly than the frictional force. The reason is
that columns of fluid partially conserve their absolute angular momentum as they
converge in the boundary layer and despite some frictional loss to the surface, their
rotation rate increases. The increase in vb is assisted by the downward transfer of
tangential momentum from above, represented by the term (wδ−+wsc)(vb−vgr)/δ in
Eq. (2.38), although this effect turns out to be very small. The downward transfer
of (zero) radial momentum, represented by the term (wδ− + wsc)ub/δ in Eq. (2.37),
is denoted by wu in Fig. 2.5, but this also makes a negligible contribution to the
force balance in the boundary layer. For the typical tangential wind profile used,
vb increases faster than vgr as r decreases inside a radius of about 200 km. In this
region, pgf decreases faster than wu + fri so that eventually the net radial force
pgf − wu− fri changes sign. This change occurs well before the RMW is reached.
When pgf−wu−fri becomes positive, the radial inflow decelerates, but vb continues
to increase as columns of air continue to move inwards. Eventually, vb asymptotes
to vgr and pgf tends to zero, but at no point does the tangential wind speed become
supergradient. Nevertheless, as pgf tends to zero, the net outward force, primarily
due to friction, becomes relatively large and the inflow decelerates very rapidly.
The mean vertical velocity at the top of the boundary layer increases steadily with
decreasing r and reaches a maximum very close to the RMW: thereafter it decreases
rapidly.

The lower right panel of Fig. 2.5 shows how the absolute angular momentum
in the boundary layer decreases with decreasing radius as a result of the surface
frictional torque. However, the rate of decrease is less rapid than that above the
boundary layer and value in the boundary layer asymptotes to the value above the
layer at inner radii.

It turns out that, except for a short adjustment length, which decreases in radial
extent with increasing R, the calculations are relatively insensitive to the choice of
R (see Smith, 2003). This insensitivity to R is not true of the thermodynamic fields
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Figure 2.5: Radial profiles of selected dynamical quantities in the boundary layer
calculation: (top left) tangential and radial components of wind speed in the bound-
ary layer (ub, vb), total wind speed in the boundary layer, vv, and tangential wind
speed above the boundary layer (vgr - the unmarked solid line) [Units m s−1]; (top,
right) radial pressure gradient force (pgf) and frictional force (fri) per unit mass in
the boundary layer, together with the force associated with the downward flux of
radial momentum through the top of the boundary layer (wu) [Units 1.0 × 10−3 m
s−2] and the sum of these three forces (solid line); (bottom left) vertical velocity at
the top of the boundary layer, wδ [Units cm s−1]; (bottom right) absolute angular
momentum above the boundary layer (solid line) and in the boundary layer (amb)
[Units 1.0× 107 m2 s−2].
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Figure 2.6: Radial profiles of selected thermodynamic quantities in the control calcu-
lation: (left panel) boundary layer temperature (Tb, unit deg. C), specific humidity
(qb), saturation specific humidity (qsb), and the saturation specific humidity at the
sea surface (qss) [Units gm kg−1]; (right panel) latent heat fluxes from the sea surface
(lh) and through the top of the boundary layer (lht)), and corresponding sensible
heat fluxes (the two curves just above the abscissa labelled ”sh” and ”sht”) [Units
W m−2].

as discussed below.

2.9.3 Thermodynamic aspects

The left panel of Fig. 2.6 shows the radial profiles of boundary layer temperature,
specific humidity and saturation specific humidity, together with the saturation spe-
cific humidity at the sea surface temperature (qss), while the right panel shows the
fluxes of sensible and latent heat at the surface and through the top of the boundary
layer. At large radii, the wind speed is comparatively light and the boundary layer is
in approximate3 radiative-convective equilibrium. In particular, the air temperature
just above the sea surface is only slightly lower than the sea surface temperature;
the net sensible heat fluxes from the sea and through the top of the boundary layer
approximately balance the radiative cooling; and the moistening of the boundary
layer by the surface flux approximately balances the drying brought about by subsi-
dence associated with shallow convection. The mass flux of shallow convection and
the boundary layer depth are chosen to ensure this balance.

As r decreases and the surface wind speed increases, the surface moisture flux
increases and the boundary layer progressively moistens. The increase in moisture
contrast between the boundary layer and the air aloft leads to an increase in the flux

3The radiative-convective state is very sensitive to the choice of parameters including the mass
flux of shallow convection and the boundary layer depth. We choose rounded numbers for these
quantities so that the boundary layer is close to, but not exactly in equilibrium.
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of dry air through the top of the subcloud layer, which reduces the rate of moisten-
ing. This effect would be reduced in a more complete model in which the moisture
content above the boundary layer is predicted. If shallow convection and radiative
cooling are omitted, the rate of moistening is relatively rapid and the boundary layer
saturates (i.e. qb = qs at a relatively large radius (453 km), although, of course,
then the boundary layer is not in radiative-convective equilibrium at r = R. In the
present case, saturation occurs at a radius of about 80 km, but the air just above
the sea surface does not (i.e. qb < qss), which in terms of the simple model could
be interpreted to mean that the boundary layer becomes topped by low cloud. A
further consequence is that the surface moisture fluxes do not shut off. We have not
allowed for the latent heat release in the inner core in these calculations as the degree
of supersaturation is only about 1% (see Smith, 2003, Fig. 11). The degree of mois-
ture disequilibrium at the sea surface is maintained by the fact that the saturation
specific humidity increases as the surface pressure decreases. The latent heat fluxes
are much larger than the sensible heat fluxes.

2.10 Radiative cooling

The tropical atmosphere is stably stratified so that large vertical displacements of air
parcels may only occur in the presence of diabatic processes: parcel ascent can occur
over significant depths only if there is latent heat release to counter adiabatic cooling
(i.e. if the ascent occurs in cloud); and parcel subsidence can occur over a substantial
depth only if there is radiative cooling to counter adiabatic warming. Thus radiative
effects in tropical cyclones cannot be ignored if we wish to understand the subsiding
branch of the secondary circulation. The following discussion of radiative effects is
based on that of Anthes (1979, p218-9).

Diabatic heating rates associated with the absorption of shortwave radiation en-
ergy and the emission of longwave radiation are quite small compared with the heat-
ing rates associated with condensation in deep precipitating clouds. In the cloud-free
regions of the tropical atmosphere the mean radiative cooling rate is 1 to 2◦C/day
from the surface to 10 km (≈ 250 mb) and decreases to about zero at the tropopause.
In a region of multi-layer clouds, however, there is practically no radiative cooling in
the clouds, but there is strong cooling at their top.

The result of differential radiative heating between the cloud-free environment
and a cloudy tropical depression or tropical cyclone is to generate a direct circulation,
with sinking motion in the clear air and rising motion in the cloudy air (Fig. 2.7). In
the tropical cyclone, radiation acts to maintain the baroclinicity associated with the
warm core. However, it is a smaller effect than differential heating by condensation,
except possibly in lightly precipitating systems. This may be seen by relating the
mean diabatic rate of temperature in a column of air of unit cross-section extending
from 1000 mb to 100 mb to the rainfall rate Rf (cm/day):

∂T

∂t
= −2.67Rf (oC/day). (2.47)
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Figure 2.7: Schematic diagram of radiatively-induced circulation in a tropical distur-
bance. In clear air surrounding the cloudy centre, diabatic cooling is about 2◦C/day.
In the cloudy interior, radiative cooling is nearly zero. The differential cooling in-
duces sinking motion in the environment, where pressures rise at the surface and fall
aloft. Flow in low levels is toward the centre of the disturbance, aloft it is outward.
(From Anthes, 1979)

For typical cloud cluster rainfall rates of 2.5 cm/day (Ruprecht and Gray, 1976),
the average tropospheric rate of temperature change would be 6.7 cm/day, which is
about five times larger than the effect of radiation. For hurricanes, a typical rainfall
rate in the inner 222 km region is 9.5 cm/day, which gives ∂T/∂t = −25◦C/day,
more than an order of magnitude larger than the radiative cooling rate. Thus,
without latent heat release, only a slow meridional circulation could be maintained
by radiation because the lifting of statically-stable air leads to cooling and a negative
buoyancy force that opposes the circulation induced by radiative cooling. With
latent heating, however, the mean adiabatic cooling in the ascending branch of the
secondary circulation is opposed and much larger upward velocities may be attained.

When direct absorption of shortwave solar radiation is considered, a diurnal vari-
ation of the radial differential cooling rate is introduced. The differential cooling
during the day is reduced from a nocturnal value of 2◦C/day to a value of about
1◦C/day in the middle troposphere. For ∂T/∂p ≈ 8◦C/(100 mb), ∂T/∂t ≈ 1◦C/day
corresponds to a vertical velocity ω of about 12.5 mb/day, which is supported by
a mean divergence of 5 × 10−7 s−1 between the surface and 500 mb. This is much
smaller than the observed diurnal variation in low-level divergence, which is about
5× 10−6 s−1 (Gray and Jacobson, 1977). What probably happens is that the small
diurnal variation in radiation-induced divergence triggers a much larger response by
modulating deep cumulus convection. During the night, when differential cooling
is at a maximum, upper-level divergence over the disturbance and low-level conver-
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gence into the disturbance results in a dramatic increase in convection. After sunrise,
absorption of solar radiation in the cloud-free environment and increased subsidence
from the enhanced secondary circulation during the night reduces the mean temper-
ature difference between the disturbance and its environment. The mean circulation
then diminishes and the deep cumulus clouds weaken.

2.11 The Emanuel steady-state model

The basis of Emanuel’s steady-state model for a tropical cyclone, described by
Emanuel (1986), is Fig. 2.4. It is convenient to divide the domain into three re-
gions as shown in Fig. 2.8. Regions I and II encompass the eye and eyewall regions,
respectively, while Region III refers to that beyond the eyewall clouds. Region II is
where the upward mass flux at the top of the boundary layer is large compared with
that associated with shallow convection. Smith (2003, p1013) estimated a value for
wsc (defined in section 2.9.1) of about 2 cm s−1, based on the radiative equilibrium
of the boundary layer at some large radius. In the boundary layer calculation shown
in Fig. 2.5, w > 5wsc for r < 2rm, where rm is the radius of maximum tangential
wind speed above the boundary layer. By comparison, Emanuel op. cit. takes the
outer radius of Region II to be rm.

In pressure coordinates, the gradient wind equation and hydrostatic equation may
be written as:

g

(
∂z

∂r

)

p

=
M2

r3
− 1

4
rf 2 (2.48)

and

g

(
∂z

∂p

)

r

= −α, (2.49)

where α = 1/ρ is the specific volume. Eliminating the geopotential height of the
pressure surface, gz, gives an alternative form of the thermal wind equation:

1

r3

(
∂M2

∂p

)

r

= −
(

∂α

∂r

)

p

. (2.50)

At this point it is convenient to introduce the saturation moist entropy, s∗, defined
by:

s∗ = ln θe
∗, (2.51)

which is a state variable. Therefore we can regard α as a function of p and s∗ and
with a little manipulation we can express the thermal wind equation as:

1

r3

(
∂M2

∂p

)

r

= −
(

∂α

∂s∗
)

p

(
∂s∗

∂r

)

p

. (2.52)

I will show in an Appendix 2.16.1 that
(

∂α

∂s∗

)

p

=

(
∂T

∂p

)

s∗
, (2.53)
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whereupon Eq. (2.52) becomes

Figure 2.8: Schematic diagram of the secondary circulation of a mature tropical
cyclone showing the eye and the eyewall clouds. The absolute angular momentum per
unit mass, M , and equivalent potential temperature, θe of an air parcel are conserved
after the parcel leaves the boundary layer and ascends in the eyewall clouds. The
precise values of these quantities depend on the radius at which the parcel exits
the boundary layer. At radii beyond the eyewall cloud, shallow convection plays an
important role in moistening and cooling the lower troposphere above the boundary
layer and warming and drying the boundary layer as indicated.

1

r3

(
∂M2

∂p

)

r

= −
(

∂T

∂p

)

s∗

(
∂s∗

∂r

)

p

. (2.54)

With the assumption that M and s∗ surfaces coincide, i.e. M = M(s∗), Eq. (2.54)
becomes

2M

r3

(
∂M

∂p

)

r

= −
(

∂T

∂p

)

s∗

ds∗

dM

(
∂M

∂r

)

p

. (2.55)

Note that ∂T/∂p)s∗ is just the temperature lapse rate as a function of pressure along
a moist adiabat. Now along an M surface,

(
∂M

∂r

)

z

δr +

(
∂M

∂p

)

r

δp = 0, (2.56)
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so that the slope of an M surface in (r, p) space is

(
dr

dp

)
= −

(
∂M

∂p

)

r

/

(
∂M

∂r

)

p

. (2.57)

Using Eq. (2.57) this equation gives

1

2

(
dr−2

dp

)

M

= − 1

2M

(
∂T

∂p

)

s∗

ds∗

dM
, (2.58)

which may be integrated upwards along the M (or s∗) surface to give

1

r2
|M − 1

r2
out

|M =
1

M

ds∗

dM
[T − Tout(s

∗, pout)], (2.59)

where Tout is the outflow temperature along the M (or s∗) surface at some large
radius rout. If we assume that the air in the boundary layer and, in particular at the
top of this layer z = h, is a constant4, TB, and that r << rout, then

−r2 ds∗

dM
[TB − Tout(s

∗, pout)] = M, at z = h, (2.60)

or, alternatively,

−[TB − Tout(s
∗, pout)]

∂s∗

∂r
=

1

2r2

∂M2

∂r
, at z = h. (2.61)

At this stage it is convenient to use the Exner function, π, instead of pressure.
Then the gradient wind equation takes the form

M2 = r3

[
cpTB

∂ ln π

∂r
+

1

4
rf 2

]
, (2.62)

whereupon Eq. (2.61) can be written

−TB − Tout(s
∗, pout)

TB

∂ ln θe

∂r
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∂ ln π

∂r
+

1

2

∂

∂r

(
r
∂ ln π

∂r

)
+

1

2

rf 2

cpTB

, at z = h, (2.63)

where it is assumed that θ∗e = θe at the top of the boundary layer.
Equation 2.63 may be integrated with respect to radius from r to some value ro

giving

− ln θeo + ln θe +
1

TB

∫ ro

r

Tout(s
∗, pout)

∂ ln θe

∂r
dr

= ln πo − ln π +
1

2

(
r
∂ ln π

∂r

)

o

− 1

2

(
r
∂ ln π

∂r

)
+

1

4

f 2

cpTB

(r2
o − r2), at z = h. (2.64)

4According to the boundary layer model described in section 2.9, this is not a bad assumption
if the sea surface temperature is uniform.
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We define

T̄out =
1

ln(θ∗e/θeo)

∫ ln θ∗e

ln θeo

Toutd ln θ∗e , (2.65)

which is average outflow temperature weighted with the saturation moist entropy of
the outflow angular momentum surfaces. Remember that θ∗e along angular momen-
tum surfaces is taken equal to θe where the surfaces meet the top of the boundary
layer. Then (2.61) gives

TB − T̄out

TB
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θe

θeo

)
= ln(πo/π) +

1

2

(
r
∂ ln π
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)
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− 1

2

(
r
∂ ln π

∂r
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+
1

4

f 2

cpTB

(r2
o − r2) at z = h. (2.66)

This relationship between the radial pressure distributions p(r) and θe, valid in Re-
gion II, exerts a powerful constraint on the structure of the mature steady axisymmet-
ric tropical cyclone and is at the heart of the steady-state hurricane model developed
by Emanuel (1986).

To complete the model in this region it is necessary to consider the dynamics
and thermodynamics of the boundary layer. The plan will be to derive a second
relationship between p(r) and θe. The boundary layer imposes a further constraint
on the steady solution as it determines the radial distribution of both M and θe

where the flow exits the layer. Referring to the previous section, it is possible to
define a streamfunction ψ for the flow in the boundary layer, given by:

ρrub = −∂ψ

∂z
, ρrwb =

∂ψ

∂r
(2.67)

Then

ub = −ψ(r, h)

ρrh
, wb =

1

ρr

∂ψ

∂r
(2.68)

Let ϕb be the absolute angular momentum M or the moist entropy, s. Then ϕb

satisfies

ψ(r, h)
dϕb

dr
− rwh[ϕh − ϕb] = −r

ρ
τϕ(r, 0) (2.69)

where τϕ is the surface flux of ϕ. If the flow is out of the boundary layer, (w > 0),
then ϕh = ϕb and neglecting shallow convection (see subsection 2.8.1), ϕb satisfies

ψ(r, h)
dϕb

dr
= −r

ρ
τϕ(r, 0) (2.70)

whereas if it is into the boundary layer (w < 0),

ψ(r, h)
dϕb

dr
= −r

ρ
τϕ(r, 0) + rwh[ϕh − ϕb] (2.71)
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Then in Region II in Fig. 2.8, where the flow is out of the boundary layer,

∂s

∂M

∣∣∣∣
z = h

=
τs

τM

∣∣∣∣
z = h

(2.72)

The standard aerodynamic formulae are used for surface fluxes:

τs = −cpCk|V|(ln θe − ln θes)
τM = −CD|V|rV,

(2.73)

where |V| is the magnitude of the surface horizontal velocity, Ck and CD are exchange
coefficients for enthalpy and momentum and θes is the saturation equivalent potential
temperature at the sea surface temperature.

ln θe = ln θes − CD

Ck

1

cp(TB − T̄out)

(
V 2 +

1

2
rfV

)
, at z = h, (2.74)

where Eq. (2.9) has been used to express M in terms of V . Note that CD and Ck

do not enter separately, but only as a ratio. Since V (r) is related to p(r), Eq. (2.74)
provides an additional constraint relating θe and p(r). The other constraint is Eq.
(2.66).

In Region II, rf << V so that the gradient wind equation may be written

V 2 ≈ cpTBr
∂π

∂r
. (2.75)

Then θe may be eliminated between Eqs. (2.74) and (2.65) to yield an equation for
pressure alone, which, in turn, through the gradient wind equation, determines the
velocity profile at the top of the boundary layer.

In Region III we must use Eq. (2.71) rather than Eq. (2.70), but we do not have
an expression for wh. Emanuel (1986) circumvented this problem and assumed that
the combined effect of boundary-layer-induced subsidence and turbulent fluxes at
the top of the boundary layer is to bring the relative humidity of the boundary layer
to a relatively uniform level of 80%. This allows one to obtain a second relationship
between θe and p(r) in Region III also. The derivation starts from the approximate
formula for θe:

ln θe = ln T − ln π +
Lq

cpT
. (2.76)

With the assumption that T does not vary with radius (= TB), and that θe is uniform
through the depth of the boundary layer we obtain:

ln θe − ln θea = − ln π + ln πa +
L

cpTB

(q − qa) at z = h, (2.77)

where a suffix ”a” refers to ambient values. Now the hydrostatic equation may be
written as dln π/dz = g/(cpT ), whereupon

ln π(z=h) = ln π(z=0) +

∫ h

0

gdz

cpT
,
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and if T does not vary with radius, ln(πs/πh) = ln(πsa/πha), where the suffix ”s”
refers to surface values. Then Eq. (2.77) becomes

ln
θe

θea

= − ln
πs

πsa

+
L

cpTB

(q∗sRH − q∗saRHa). (2.78)

Now q ≈ εe∗(TB)/p, whereupon q∗ = qa
∗(psa/ps) = qa

∗(πsa/πs)
1/κ = exp[(1/κ)(πsa/πs)].

Then if RH = RHa,

ln
θe

θea

= −ln
πs

πsa

[
1 +

Lqas
∗RHa

RTB

]
. (2.79)

This is the desired second relationship between θe and p(r) in Region III, but note
that it is obtained from thermodynamic considerations alone.

Emanuel op. cit. presents an analysis in an appendix to show that with the
assumption that the eye is in solid body rotation, the M -surfaces and s∗ surfaces
approximately coincide and he uses this result to apply the relation (2.66) in Region
I also. Moreover he assumes that (2.74) applies also in the boundary layer within the
eye. Then the radial variation of surface pressure can be obtained by solving the last
two relationships in Regions I and II and Eqs. (2.66) and (2.79) in Region III and
matching these solutions at the boundary between Regions II and III, which, as noted
earlier, Emanuel takes to be at radius rm. Then the gradient wind equation may
be used to find the tangential wind speed at the top of the boundary layer. Finally
the solution for the flow above the boundary layer may be obtained by evaluating
quantities along angular momentum surfaces, whose shape is given by (2.59), which
may be written as

1

r2
|M =

1

M

ds∗

dM
[T − Tout(s

∗, pout)],

on the assumption that r << rout. The reader is referred to Emanuel’s paper for de-
tails of the calculations. Emanuel shows an example of a calculation for the following
parameter values: Ts = 27oC, TB = 22oC, Tout = −67oC, f evaluated at 28o latitude,
po = 1015 mb, ro = 400 km, Cθ = CD, RHa = 80%, and γ = 2, corresponding to a
Brunt-Väsälä frequency of 1.5 × 10−2. Under these conditions the central pressure
is 941 mb, the maximum tangential wind speed is 58 m s−1, the radius of maximum
winds is 36 km, and the ambient boundary layer θe is 349 K. The distributions of
M , θ∗e , V , and the temperature perturbation from the far environment at the same
altitude are shown in Fig. 2.9. The solution captures the main observed features of
a mature hurricane including the warm core at high altitude, the outward-sloping
velocity maximum, and the strong radial gradient of θ∗e near and inside the radius of
maximum tangential wind speed.

Emanuel op. cit. estimated the streamfunction at the top of the boundary layer
assuming that Eq. (2.70) gives the correct momentum balance in the boundary layer
without considering turbulent fluxes at the top of the layer, even if the neglect of such
fluxes yields an incorrect heat budget. Setting ϕb = M in (2.70) and using (2.70)
we can solve for the boundary-layer streamfunction, from which we can obtain the
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Figure 2.9: Distributions of: (a) absolute angular momentum (103 m2 s−1), (b)
saturation equivalent potential temperature, (c) gradient wind (m s−1), and (d) tem-
perature departure (oC) from the far environment at the same altitude, for the vortex
discussed above. (From Emanuel 1986)

vertical velocity using ρrwh = ∂ψ/∂r. The mean radial velocity in the boundary
layer is given by rū = −ψ/(ρ̄h), where h is the nominal depth of the layer and ρ̄
is the mean density. The radial distributions of wh and ū for the vortex described
above are shown in Fig. 2.10. These calculations are based on the assumptions that
ρ̄ and h are constants, with h = 1 km, and CD = 2× 10−3.

The vertical velocity profile in Fig. 2.10 shows a sharp peak at the radius of
maximum tangential wind, but radial velocity reaches its maximum at a much larger
radius. This is similar to the behaviour in the boundary-layer calculation shown
in Fig. 2.5. Here, however, the streamfunction has a discontinuity at rmax as a
consequence of matching two separate boundary layers there, since the radial gradient
of angular momentum is discontinuous. This results in a jump in u and a delta
function spike of vertical velocity at rmax. According to Emanuel, these unrealistic
features would not be present had a single boundary layer representation been applied
throughout the vortex. Note that wh becomes negative beyond a radius of about 220
km, which is not consistent with the choice of ro as 400 km.



CHAPTER 2. DYNAMICS OF MATURE TROPICAL CYCLONES 57

Figure 2.10: Radial distributions of vertical velocity (cm s−1), and mean radial ve-
locity (m s−1) within the boundary layer for the vortex discussed above. (From
Emanuel 1986)

2.12 The tropical cyclone as a Carnot heat engine

Emanuel suggests that the steady tropical cyclone may be regarded as a simple
Carnot heat engine in which air flowing inwards in the boundary layer acquires moist
entropy from the sea surface, ascends, and ultimately gives off heat at the much lower
temperature of the upper troposphere or lower stratosphere. A schematic of this heat
engine is shown in Fig. 2.11. Air begins to flow inwards at constant temperature
along the lower boundary at radius ro and acquires an incremental amount of heat

∆Q1 =

∫ θe

θea

cpTBd ln θe = cpTB ln

(
θe

θea

)
, (2.80)

where θea is the equivalent potential temperature at ro. The air ascends at constant
entropy along an M surface and flows out to large radius. To complete the circuit,
the air eventually loses enough total heat through radiative cooling to return to its
ambient θe so that

∆Q2 =

∫ θea

θe

cpToutd ln θe = −cpTout ln

(
θe

θea

)
, (2.81)

where Tout is given by (19). The total heating, from (57) and (58), is therefore

∆Q = ∆Q1 + ∆Q2 = cpTBε ln

(
θe

θea

)
, (2.82)
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where ε = (TB − Tout)/TB is the thermodynamic efficiency. This net heating is used
to do work against frictional dissipation in the steady tropical cyclone. Referring to
Fig. 2.11, it is seen that work is done against friction in the inflowing boundary-layer
air and also to change the angular momentum back to its ambient value at large radii
in the outflow. Kinetic energy is also dissipated by turbulence within cumulus clouds;
however, Emanuel argues that this sink primarily balances kinetic energy generated
by release of the ambient convective available potential energy as is probably the case
in the unperturbed tropical atmosphere. This is simply a statement that convective
clouds in tropical cyclones are locally similar to those away from such disturbances.
The balance between total heating and frictional dissipation in the inflow and outflow
may be written symbolically as

∆Q = WPBL + Wo, (2.83)

where WPBL, and Wo are the work done in the boundary layer and outflow, respec-
tively. The latter is simply proportional to the change in kinetic energy needed to
bring the angular momentum of the outflow, M , back to its ambient value Mo:

Figure 2.11: The tropical cyclone as a Carnot heat engine.

W0 =
1

2
∆V 2 =

1

2

[(
M

r1

− 1

2
fr1

)2

−
(

M0

r1

− 1

2
fr1

)2
]

=
1

2

[
M2 −M2

0

r2
1

+ f (M0 −M)

]
, (2.84)

where we have related azimuthal velocity to angular momentum using (1) and r1 is
some large radius at which the exchange takes place. In the limit of large r1,

lim
r1→0

W0 =
1

2
f(M0 −M) =

1

4
f 2(r2

0 − r2)− 1

2
frV. (2.85)
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Using the above (2.82) and (2.83) we infer the work done in the boundary layer:

WPBL = CP TBε ln
θe

θea

+
1

2
frV − 1

4
f 2

(
r2
0 − r2

)
. (2.86)

Finally, knowledge of the work done against dissipation in the boundary layer allows
an evaluation of the pressure distribution in the boundary layer through the use
of Bernoulli’s equation. The latter, when integrated inward from r0 at constant
temperature, may be written

1

2
V 2 + CP TBε ln π + WPBL = 0 at z = 0. (2.87)

When (2.86) is substituted into this and the gradient wind equation is used for the
sum V 2 + frV , the result is

ln π +
1

2
r
∂ ln π

∂r
+ ε ln

θe

θea

− 1

4

f 2

CpTB

(r2
0 − r2) = 0 at z = 0, (2.88)

which is identical to (2.66). This confirms the interpretation of the results of the
previous section in terms of a Carnot engine.

2.13 Tropical cyclone intensity change

We have seen in section 2.3 that if there is no friction and no diabatic forcing (θ̇ = 0),
Eqs. (2.1) - (2.6) admit steady axisymmetric solutions of the form (0, v(r, z), 0) in
cylindrical coordinates. Axisymmetric vortices intensify as a result of radial inflow
above the boundary layer on account of the conservation of angular momentum. We
have seen in section 2.4 that the presence of surface friction induces radial inflow in
the boundary layer and ascent or descent at the top of the boundary layer. If there is
no diabatic forcing there must be radial outflow above the boundary layer otherwise
friction alone would lead to intensification of the primary vortex. Because the air
above the boundary layer is stably-stratified, the outflow tends to occur in a layer
of limited depth above the boundary layer. It is clear that intensification requires a
mechanism to produce inflow that is strong enough to oppose the outflow induced by
surface friction. The only conceivable mechanism able to do this is diabatic heating
arising from the latent heat release in deep clouds, which produces buoyancy in the
clouds. We consider here a balanced axisymmetric theory for intensity change, i.e.
one in which the flow remains close to hydrostatic and gradient wind balance. In
a later chapter we consider idealized numerical modelling studies of tropical-cyclone
intensification. As a preliminary step we examine the definition of buoyancy and its
generalization for a rapidly-rotating fluid. Later we will examine other aspects of
the buoyancy force.
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2.14 The secondary circulation

If the vortex is axisymmetric and in approximate geostrophic and hydrostatic bal-
ance, we can derive an equation for the streamfunction, ψ, of the circulation in a
vertical plane, the so-called secondary circulation. This streamfunction is such that

u = − 1

rρ

∂ψ

∂z
w =

1

rρ

∂ψ

∂r
. (2.89)

which ensures that the continuity equation (2.4), is satisfied. The equation for ψ
follows by differentiating the thermal wind equation in the form (2.19) with respect
to time t and using the azimuthal momentum equation and thermodynamic equation
to eliminate the time derivatives. It is convenient to write the last two equations in
the form

∂v

∂t
+ u(ζ + f) + wS = V̇ (2.90)

and
∂χ

∂t
+ u

∂χ

∂r
+ w

∂χ

∂z
= −χ2θ̇ (2.91)

where ζ = (1/r)(∂(rv)/∂r) is the relative vorticity and we have added a momentum
source term V̇ in the former equation for reasons that will emerge later. The time
derivative of (2.14) is

g
∂

∂r

∂χ

∂t
+

∂

∂z

(
C

∂χ

∂t
+ χ

∂C

∂t

)
= 0

and substitution of the time derivatives from (2.90) and (2.91) gives

g
∂

∂r

(
u
∂χ

∂r
+ w

∂χ

∂z
−Q

)
+

∂

∂z

[
C

(
u
∂χ

∂r
+ w

∂χ

∂z
−Q

)
+ χξ

(
u(ζ + f) + wS − V̇

)]
= 0

where χ = 1/θ and Q = −χ2θ̇. Then

∂

∂r

[
g
∂χ

∂z
w + g

∂χ

∂r
u

]
+

∂

∂z

[
(χξ(ζ + f) + C

∂χ

∂r
)u +

∂

∂z
(χC)w

]
= g

∂Q

∂r
+

∂

∂z
(CQ) +

∂

∂z
(χξV̇ )

or
∂

∂r

[
g
∂χ

∂z
w − ∂

∂z
(χC)u

]
+

∂

∂z

[
(χξ(ζ + f) + C

∂χ

∂r
)u +

∂

∂z
(χC)w

]
= g

∂Q

∂r
+

∂

∂z
(CQ) +

∂

∂z
(χξV̇ ) (2.92)

using (2.19). Then substitution for u and w from Eqs. (2.89) into Eq. (2.92) gives
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∂

∂r

[
g
∂χ

∂z

1

ρr

∂ψ

∂r
+

∂

∂z
(χC)

1

ρr

∂ψ

∂z

]
−

∂

∂z

[(
ξχ(ζ + f) + C

∂χ

∂r

)
1

ρr

∂ψ

∂z
− ∂

∂z
(χC)

1

ρr

∂ψ

∂r

]
= g

∂Q

∂r
+

∂

∂z
(CQ) +

∂

∂z
(χξV̇ )

(2.93)
This is called the Sawyer-Eliassen equation following the work of Eliassen (1951)
and Sawyer (1956) (Sawyer derived a similar equation for frontal circulations in
rectangular geometry). The equation was investigated in context of the tropical
cyclones by Willoughby (1979) and Shapiro and Willoughby (1982). The discriminant
of the Sawyer-Eliassen equation is

D = −g
∂χ

∂z

(
ξχ(ζ + f)∂z + C

∂χ

∂r

)
−

[
∂

∂z
(χC)

]2

(2.94)

Comparison with Eq. (5) of Shapiro and Willoughby (1982) shows that Eq. (2.93)
is elliptic if D > 0.

The Sawyer-Eliassen equation contains three spatially-varying parameters char-
acterizing:

• the static stability

N2 = −g
∂χ

∂z
;

• the inertial stability

I2 = − 1

r3

∂M2

∂r
= ξζ;

• the baroclinicity

B2 = − 1

r3

∂M2

∂z
= ξS.

Shapiro and Willoughby showed solutions of the Sawyer-Eliassen equation for
point sources (i.e. azimuthal rings) of heat and azimuthal momentum, based on the
earlier work of Eliassen (1951). These solutions are reproduced in Fig. 2.12. The flow
through the heat source follows a nearly vertical surface of constant absolute angular
momentum, while that for a momentum source follows a nearly horizontal isentropic
surface. For sources of heat and absolute angular momentum, the sense of the flow
is upward and outward, respectively. For sinks the flow is reversed. The vortex axis
lies to the left of the figure. In the warm-core system of panels (c) and (f), the warm
anomaly that supports the slope of the constant absolute angular momentum and
isentropic surfaces increases towards the upper left.

Shapiro and Willoughby used the Sawyer-Eliassen equation also to calculate the
secondary circulation induced by point sources of heat and absolute angular momen-
tum in balanced, tropical-cyclone-like vortices in a partially bounded domain using



CHAPTER 2. DYNAMICS OF MATURE TROPICAL CYCLONES 62

the so-called method of images. Again they found that the secondary circulation
through a heat source is primarily vertical, and that through a momentum source
is primarily horizontal as shown in Fig. 2.13. The streamlines form two counter-
rotating cells of circulation (or gyres) that extend outside the source. There is a
strong flow between these gyres and a weaker return flow on the outside. The flow
emerges from the source, spreads outward through a large volume surrounding it,
and converges back into it from below. Thus, compensating subsidence surrounds
heat-induced updraughts and compensating inflow lies above and below momentum-
induced outflow. The horizontal scale of the gyres is just the local Rossby radius of
deformation, so that the ratio of horizontal to vertical scale is N/I.

Figure 2.12: Streamfunction responses to point sources of: (a) Heat in a barotropic
vortex with weak inertial stability, (b) heat in a barotropic vortex with strong inertial
stability, (c) heat in a baroclinic vortex, (d) momentum in a barotropic vortex with
weak inertial stability, (e) momentum in a barotropic vortex with strong inertial
stability, and (f) momentum in a baroclinic vortex. (Based on Figs. 8, 9, 11, and 12
of Eliassen, (1951).)

Radial gradients of absolute angular momentum of the primary circulation affect
the radial scale of the dipoles just as the static stability affects their vertical scale.
For a fixed static stability, the gyres tend to be elongated vertically when the inertial-
stability parameter I2 is large and elongated horizontally when I2 is small. Vertical
gradients of absolute angular momentum associated with the vertical shear of the
primary circulation tilt the updraught through a heat source because the path of
least resistance for the rising air lies along surfaces of constant absolute angular
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Figure 2.13: Secondary circulation induced in a balanced vortex by (a) a heat source
and (b) a cyclonic momentum source showing the distortion induced by variation
in inertial stability, I2 and thermodynamic stability. N2, and baroclinicity S2. The
strong motions through the source follow lines of constant angular momentum for a
heat source and of constant potential temperature for a momentum source. From
Willoughby (1995).

momentum. Likewise, horizontal temperature gradients associated with the vertical
shear deflect the flow through momentum sources from the horizontal because the
path of least resistance in this case lies along isentropic surfaces. Although the flow
associated with a heat (momentum) source lies generally along the M -surface (θ-
surface), it does have a small component across this surface. It is the advection by
this component that causes evolution of the primary circulation. It can be shown
that the swirling flow remains in approximate gradient-wind balance provided the
time scale of the forcing is longer than the orbital period of the primary circulation
about the vortex centre.

It turns out that the induced secondary circulation in balanced flows tend to
cancel the direct effect of forcing. For example, the work done by expansion in the
updraught induced by a heat source nearly balances the actual heating so that the
increase in temperature is relatively small. Similarly, a momentum source produces
outflow that advects compensating low values of absolute angular momentum from
the central region of the vortex.

In section 2.15 we show how the Sawyer-Eliassen equation can be used as one of
a set of equations to calculate the evolution of a balanced vortex.

2.14.1 Ertel PV and the discriminant

I show now that D is proportional to the the Ertel potential vorticity is defined as

P =
(ω + f) · ∇θ

ρ
.
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For a symmetric vortex with tangential wind speed distribution v(r, z), ω + f =
−(∂v/∂z)r̂ + (ζ + f)ẑ and ∇θ = −(1/χ2)∇χ = −θ2[(∂χ/∂r)r̂ + (∂χ/∂z)ẑ] so that

P =
θ2

ρ

[
∂v

∂z

∂χ

∂r
− (ζ + f)

∂χ

∂z

]

Then
gρχξ

θ2
P = −g

∂χ

∂z
ξχ(ζ + f) + ξSχg

∂χ

∂r
or

gρχξ

θ2
P = −g

∂χ

∂z

[
χξ(ζ + f) + C

∂χ

∂r

]
+ g

∂χ

∂z
C

∂χ

∂r
+ χ

∂C

∂z
g
∂χ

∂r
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gρχξ

θ2
P = −g

∂χ

∂z

[
χξ(ζ + f) + C

∂χ

∂r

]
+ g

∂χ

∂r

∂

∂z
(Cχ)

Finally
gρχξ

θ2
P = −g

∂χ

∂z

[
χξ(ζ + f) + C

∂χ

∂r

]
−

(
∂

∂z
(Cχ)

)2

i.e.
gρξ

θ3
P = D (2.95)

2.14.2 The forcing term for ψ in terms of generalized buoy-
ancy

Consider the forcing term for Eq. (2.94). The term can be written:

F = −g
∂

∂r

(
1

θ2

dθ

dt

)
− ∂

∂z

(
C

1

θ2

dθ

dt

)

The generalized buoyancy (Eq. 2.78) is be = ge(θ − θe)/θe, where ge = (C, 0,−g).
With the anelastic approximation that 1/θ ≈ 1/θe ≈ 1/Θ, where Θ is some vertically
averaged value of θe we have that

dbe

dt
≈ 1

Θ

dθ

dt
ge

Now

θ̂ · ∇ ∧ dbe

dt
=

∂

∂r

(
dbez

dt

)
− ∂

∂z

(
dber

dt

)
≈ ∂

∂r

(
g

Θ

dθ

dt

)
− ∂

∂z

(
C

Θ

dθ

dt

)

so that

F ≈ 1

Θ
θ̂.∇∧ dbe

dt
(2.96)
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2.14.3 The Sawyer-Eliassen equation and toroidal vorticity
equation

The Sawyer-Eliassen equation is an approximate form of the local time derivative of
equation for the toroidal vorticity η = ∂u/∂z − ∂w/∂r. Assuming the most general
form of the continuity equation

∂ρ

∂t
+

1

r

∂

∂r
(rρu) +

∂

∂z
(ρw) = 0

the toroidal vorticity equation may be written as

r
D

Dt

(
η

rρ

)
=

1

ρ

∂C

∂z
+

1

ρ2χ

(
∂χ

∂r

∂p

∂z
− ∂χ

∂z

∂p

∂r

)
(2.97)

where D/Dt ≡ ∂/∂t + u · ∇ and η/(rρ) is a ’potential toroidal vorticity’, where the
analogous ‘depth’ is ‘r’, the radius of a toroidal vortex ring. If thermal wind balance
exists, the right-hand-side of (??) may be written as

− 1

ρχ

(
g
∂χ

∂r
+

∂

∂z
(Cχ)

)
.

Then the time derivative of (2.97) is

∂

∂t

[
r

D

Dt

(
η

rρ

)]
= − ∂

∂t

[
1

ρχ

(
g
∂χ

∂r
+

∂

∂z
(Cχ)

)]
(2.98)

The right-hand-side of (2.98) gives the Sawyer-Eliassen equation when the ther-
mal wind equation (2.14) is satisfied for all time. Then consistency requires that the
left-hand-side is identically zero.

2.14.4 Buoyancy relative to a balanced vortex

Tropical cyclones are rapidly-rotating warm-cored vortices and the warm core is
therefore positively buoyant relative to the environment. On the cyclone scale, how-
ever, hydrostatic and gradient-wind balance exist to a good approximation (Willoughby
1990) and the radial density (or buoyancy) gradient is related by the thermal-wind
equation to the decay in the mean tangential circulation and density with height (see
e.g. Smith 1980). Clearly much of the radial gradient of buoyancy force cannot be
thought of as being “available” for driving a secondary (or toroidal) circulation of
the vortex that is necessary for vortex amplification. Nevertheless, hydrostatic bal-
ance may be a poor approximation in individual convective clouds and a pertinent
question is whether these clouds have significant local (unbalanced) buoyancy, which
in turn might play an important role in the dynamics of storm intensification. This
important question was addressed by Braun (2002), who answered it in the affirma-
tive on the basis of his simulations of Hurricane Bob (1991). To address this question
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it is necessary to define the perturbation pressure and perturbation density relative
to some vortex-scale pressure and density distributions. The simplest case is when
the primary vortex is approximately steady and axisymmetric. Then we may take
reference distributions p0(r, z) and ρ0(r, z), respectively, that are in thermal wind
balance with the tangential flow field v0(r, z). The thermal wind equation gives:

g

ρ0

∂ρ0

∂r
+

(
v2

0

r
+ fv0

)
1

ρ0

∂ρ0

∂z
= −

(
2v0

r
+ f

)
∂v0

∂z
. (2.99)

This is a linear first-order partial differential equation for ln(ρ0/ρa), the characteris-
tics of which satisfy

dz

dr
=

1

g

(
v2

0

r
+ fv0

)
. (2.100)

It is easy to show that these characteristics are just the isobaric surfaces 5 and the
density variation along them is governed by the equation

d

dr
ln

(
ρ0

ρa

)
= −1

g

(
2v0

r
+ f

)
∂v0

∂z
. (2.101)

Given the vertical density profile, ρa(z), at some radius R, these equations can be
integrated inwards along the isobars to obtain the balanced axisymmetric density
and pressure distributions. We may use ρ0(r, z) and p0(r, z) as alternative reference
quantities to define the buoyancy force in Eq. (2.10) (similar to Braun 2002), without
affecting the derivation of this equation. We denote the generalized buoyancy force
so calculated by bB. It follows that bB ≡ 0 in the axisymmetric balanced state,
whereas, if the reference pressure and density at r = R are used, b equals some
nonzero function b0(r, z). Clearly, the partition of force between perturbation pres-
sure gradient and buoyancy will be different for the reference state characterized by
ρ0(r, z) and p0(r, z) and interpretations of the dynamics will be different also, albeit
equivalent to those using the more conventional reference quantities that depend on
height only.

In the more general case, when the vortex structure has marked asymmetries
and/or is evolving in time, it is necessary to allow for the azimuthal and/or time
variations of the reference state as was done by Zhang et al. (2000) and Braun
(2002).

2.14.5 Buoyancy in axisymmetric balanced vortices

Axisymmetric balanced models of tropical cyclone intensification (e.g. Ooyama,
1969) appear to capture many important observed features of tropical cyclone behav-
iour. However, in an axisymmetric model that assumes exact thermal wind balance,

5A small displacement (dr, dz) along an isobaric surface satisfies (∂p0/∂r)dr + (∂p0/∂z)dz = 0.
Using the equations for hydrostatic balance, ∂p0/∂z = −gρ0, and gradient wind balance, ∂p0/∂r =
ρ0(v2/r + fv), gives the equation for the characteristics.
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bB(r, z, t)≡ 0 and the corresponding ∂p′/∂z ≡ 0, even though there may be heat
sources or sinks present that generate buoyancy b. It is clear from the foregoing dis-
cussion that any diabatic heating or cooling in such models is incorporated directly
into the balanced state, changing b(r, z, t), while bB(r, z, t) remains identically zero
by definition. Obviously, nonzero values of bB relate to unbalanced motions provided
that the appropriate reference state as defined above has been selected for the defini-
tion of buoyancy at any given time. It may be helpful to think of b as characterizing
the system buoyancy and bB as characterizing the local buoyancy.

2.15 Origins of buoyancy in tropical cyclones

Tropical cyclones intensify when, as a direct or indirect result of latent heat release,
the buoyancy b in the core increases. To a first approximation, the direct effect of
latent heat release in saturated ascending air, such as in the eyewall clouds, or in the
cores of individual convective clouds, is to maintain the air close to the moist adiabat
from which the updraught originates. The indirect effect of latent heat release is to
produce subsidence (or at least reduce the rate-of-ascent) in clear-air regions adja-
cent to (i.e. within a local Rossby radius of deformation of) deep convection. There
is observational evidence (e.g. Betts, 1986; Xu and Emanuel, 1992) and evidence
from model studies (Bretherton and Smolarkewicz, 1989) that, again to a first ap-
proximation, the clear air properties are adjusted towards the same saturation moist
adiabat as in the neighbouring convective cores, albeit in this case to one calculated
reversibly. In either case, the thermal structure of the troposphere in a mature trop-
ical cyclone, and thereby the radial distribution of buoyancy, would be determined
largely by the radial distribution of moist entropy at the top of the subcloud layer,
at least in regions of ascent (see e.g. Emanuel, 1991). This view relates essentially
to the generation of system buoyancy.

The extent to which local (unbalanced) buoyancy is produced will depend amongst
other things on the rate at which the buoyancy is generated and the scale on which
it is generated. For example, the simulations by Braun (2002) indicate that much
of the eyewall updraft mass flux occurs within small-scale updrafts that are locally
buoyant relative to the broad-scale thermal field of the vortex. A recent examina-
tion of the high resolution cloud resolving numerical simulation of the formation of
Hurricane Diana (1984) has shown how buoyant cores growing in the rotation-rich
environment of an incipient storm produce intense cyclonic vorticity anomalies in
the lower troposphere by vortex-tube stretching (Hendricks, et al. 2003). These
intense vorticity anomalies subsequently merge and axisymmetrize to intensify the
balanced circulation of the incipient mesoscale vortex (Montgomery and Enagonio
1998; Möller and Montgomery 2000; Montgomery and Brunet 2002). In this case,
subsidence warming is not the primary means for generating the cyclone’s warm
core. Rather, the warm core temperature that materializes within the developing
mesoscale vortex results from the tendency of the high vorticity cores of the buoyant
plumes to ‘trap’ the heat releases by the condensation process, as one might antici-
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pate from local Rossby adjustment considerations (Schubert et al. 1980, Sec. 9) and
quasi-balanced dynamics within enhanced vortical regions (Schubert and Hack 1982,
Montgomery et al. 2003).

2.16 A balanced theory of vortex evolution

The establishment of the Sawyer-Eliassen equation is an important step in formulat-
ing a balanced theory for the evolution of an axisymmetric vortex. In such a theory
we need prognostic equations for the evolution of the primary circulation, i.e. for the
azimuthal wind and potential temperature. These are just the axisymmetric forms
of Eqs. (2.2) and (2.5), i.e. Eqs. (2.90) and (2.91). Given expressions for V̇ and θ̇
and initial conditions for v and θ, we can solve the Sawyer-Eliassen equation for the
streamfunction of the secondary circulation, ψ, given suitable boundary conditions
on this quantity. This streamfunction gives the secondary circulation that keeps v
and θ in thermal-wind balance for short time interval, ∆t. The corresponding radial
and vertical wind components may be obtained from the expressions (2.89) and the
density therein can be obtained from ???

complete

2.17 Appendices to Chapter 2

2.17.1 Maxwell’s Equations

In a saturated atmosphere it is possible to define a saturated moist entropy, s∗, which
is invariant under moist reversible processes. This quantity satisfies a modified form
of the first law of thermodynamics:

Tds∗ = du + pda− Ldq∗, (2.102)

where u is the internal energy, L is the heat of vaporization, and q∗ is the saturation
mixing ratio. It is also possible to define a saturated moist enthalpy h∗ such that

h∗ − u + pa− Lq∗. (2.103)

From (2.102) and (2.103) it follows that

dh∗ = Tds∗ + αdp. (2.104)

From this it may be deduced that
(

∂h∗

∂p

)

s∗
= α (2.105)

(
∂h∗

∂s∗

)

p

= T. (2.106)
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Now, because q∗ is a function of temperature and pressure alone, h∗ is a state variable
which may be expressed as a function of any other two state variables, such as p and
s∗. Thus (

∂h∗

∂s∗

)

p

(
∂h∗

∂p

)

s∗
=

(
∂h∗

∂p

)

s∗

(
∂h∗

∂s∗

)

p

(2.107)

Substituting (2.105) and (2.106) into the above we obtain

(
∂α

∂s∗

)

p

=

(
∂T

∂p

)

s∗
(2.108)

which is the desired result.




