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rotropic tlow

%, %
&(C + f) + ug(C 4= Fik

9
’UT(CJFJC) =0, (1.1)
oy

where © and v are the velocity components in the r and y directions, respectively.
For an incompressible fluid. the continuity equation is

Ju Jdv ,
o e s =i, (1.2)
dr OF
and accordingly there exists a streamfunction ¢ such that
O O _
U=—-—— v=—, (1.3)
o, Ox

and

(=55 + 5 (1.4)




The partitioning problem

The partitioning method can be illustrated mathematically as follows. Let the
total wind be expressed as u = ug + U, where ug denotes the symmetric velocity
field and U is the vortex environment vorticity, and define {, = k- V A ug and
I' = k-V AU, where k is the unit vector in the vertical. Then Eq. (1.1) can be
partitioned into two equations:

@ | _
o c(t) - V¢, =0, (1.5)
ot
and -
O ; s
5 =—us - VI['+f)—(U—-¢)-V,—-U-V(I+ f), (1.6)
ot
noting that ug - V{, = 0, because for a symmetric vortex ug is normal to V{,.

Equation (1.5) states that the symmetric vortex translates with speed ¢ and Eq. (1.6)
is an equation for the evolution of the asymmetric vorticity. Having solved the latter
equation for I'(x,t), we can obtain the corresponding asymmetric streamfunction by
solving Eq. (1.4) in the form V?%y, = I". The vortex translation velocity ¢ may
be obtaitied by calculating the speed U, = k A Vi, at the vortex centre. In some




be obtained by calculating the speed U, = k A V1), at the vortex centre. In some
situations it is advantageous to transform the equations of motion into a frame of
reference moving with the vortex?. Then Eq. (1.5) becomes 9¢,/0t = 0 and the
vorticity equation (1.6) becomes

Jar

= V4 f) = (U=¢) VG~ (U=—c)- VO +7).  (L7)




Symmetric vortex in a uniform flow

Consider a barotropic vortex with an axisymmetric vorticity distribution embedded
in a uniform zonal air stream on an f-plane. The streamfunction for the flow has
the form:

v(z,y) = —Uy+¢'(r), (1.8)
where 1 = (r — Ut)? + y*. The corresponding velocity field is
] o o’ _
u=(U,0)+ (-2, 27, (1.9)

a Oy Or

The relative vorticity distribution, ¢ = V2. is symmetric about the point
(x — Ut,0), which translates with speed U in the z-direction. However, neither
the streamfunction distribution ¢’(x, y.t), nor the pressure distribution p(z,y,t), are
symmetric and, in general, the locations of the minimum central pressure, maximuin
relative vorticity, and minimum streamfunction (where u = 0) do not coincide. In

particular, there are thre¢ important deductions from (1.9):




Symmetric vortex in a uniform flow

o' o’
u= (U,0)+ —i (‘__?? ; (1.9)
dy  Or

The relative vorticity distribution, ¢ = V2, is symmetric about the point
(x — Ut,0), which translates with speed U in the z-direction. However, neither
the streamfunction distribution v’(x, y, t). nor the pressure distribution p(x,y.t), are
symmetric and, in general, the locations of the minimum central pressure, maximuin
relative vorticity, and minimum streamfunction (where u = 0) do not coincide. In

particular, there are three important deductions from (1.9):

e The total velocity field of the translating vortex is not symmetric, and

e The maximum wind speed is simply the arithmetic sum of U and the maximum
tangential wind speed of the symmetric vortex, V,, = (00 /Or) 0z

e T'he maximum wind speed occurs on the right-hand-side of the vortex in the
direction of motion in the northern hemisphere and on the left-hand-side in the
southern hemisphere.
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Figure 1.1: Contour plots of (a) total wind speed, (b) relative vorticity, and (c¢)
streamlines, for a vortex with a symmetric relative vorticity distribution and maxi-
mum tangential wind speed of 40 m st in a uniform zonal flow with speed 10 m s1
on an f-plane. The maximum tangential wind speed occurs at a radius of 100 km
(for the purpose of illustration). The contour intervals are: 5 m s ' for wind speed,
2 x 107% s71 for relative vorticity and 1 x 10* m? s™! for streamfunction.




Because the vorticity field is Galilean invariant while the pressure field and
streamfunction fields are not, it is advantageous to deline the vortex centre as the
location of maximum relative vorticity and to transform the equations of motion to
a coordinate system (X.Y) = (x — Ut,y), whose origin is at this centre®. In this
frame of reference, the streamfunction centre is at the point (0,Y}), where

U —&(Y,)Y, =0, (1.10)

and ¢ = ¢'(r)/r. This point is to the left of the vorticity centre in the direction of
motion in the northern hemisphere. In the moving coordinate system, the momentum
equations may be written in the form

Vp=p2(®+ f)(X,Y)+pf(0,U). (L.11)

The minimum surface pressure occurs where Vp = 0, which from (1.11) is at the
point (0,Y},) where

P(Y)(2(Yp) + f) = fU. (1.12)
We show that, although Y, and Y, are not zero and not equal, they are for practical
purposes relatively small.




Consider the case where the inner core is in solid body rotation out to the radius
T'm, of maximum tangential wind speed v,,, with uniform angular velocity €2 = v, /7.
Then ¢v/'(r) = Qr and ® = Q. It follows readily that Y;/r,, = U/v,, and Y,/r,, =
U/ (v, Roy,), where Ro,, = vy, /(r,, f) is the Rossby number of the vortex core which
is large compared with unity in a tropical cyclone. Taking typical values: f =
5x10P s, U=10ms?! v, =50ms ! r, =50 km, Ro,, = 20 and Y, =
10 km, ¥, = 0.5 km, the latter being much smaller than r,,. Clearly, for weaker
vortices (smaller v,,) and/or stronger basic flows (larger U), the values of Y, /r,, and
Y, /ry, are comparatively larger and the difference between the various centres may
be significant.




Tropical cyclone motion

f-plane

b3

Symmetric vortex {={(r,t), v=v(r,t)

ot

%ntu-VQ:O

—

u=Ui+v

v-VE=0 m) gt—CJrU%:o




Tropical cyclone motion

Symmetric vortex {={(r,t), v=v(r,t)

f=f +By
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Vortex motion on a beta-plane

'y
y

rein i

rsin{A—C(r)t)

Figure 1.2: An air parcel moving in a circular orbit of radius r with angular velocity
Q)(r) is located at the point B with polar coordinates (r, \) at time ¢t. At time t = 0
the parcel was located at point A with coordinates (r, A — Q(r)t). During this time
it undergoes a meridional displacement r[sin A — sin(A — Q(r)t)].




Vortex motion on a beta-plane

i1 " i 7 T i1 " i1 i 1 1 AY C b 1 .
it eire s e s en o i Cha e aas e Sire v ien sisc s waaaeans onen . Clonsider

an air parcel that at time ¢ is at the point with polar coordinate (r, ) located at
the (moving) vortex centre (Fig. 1.2). This parcel would have been at the position
(r, A — Q(r)t) at the initial instant, where Q(r) = V (r)/r is the angular velocity at
radius 7 and V(r) is the tangential wind speed at that radius. The initial vorticity
of the parcel is ((r) + fo + Orsin(A — Q(r)t) while the vorticity of a parcel at its
current location is ((r) 4+ fo + #rsin A. Therefore the vorticity perturbation (,(r, \)
at the point (r, \) at time t is ((r) — (s(r), or

Ca(r, A) = Brisin A — sin(A — Q(r)t)]

or

Galr, ) = G 1) cos A Go(r, 1) sin (1.13)

where

Ci(r,t) = —=Brsin(Q(r)t), G(r,t) = —Br[l — cos((r)t)]. (1.14)




Vortex motion on a beta-plane

Gi(r,t) = =Brsin(Q(r)t), C(r,t) = —Fr[l —cos(2(r)t)]. (1.14)

We can now calculate the asymmetric streamfunction v, (r, A,t) corresponding to
this asymmetry using Eq. (1.4). The solution should satisfy the boundary condition
that ¢ — 0 as r — oo. It iis reasonable to expect that 1, will have the form:

Vo (r, N) = Wy (r,t) cos A+ Wy(r, t) sin A, (1.15)

and it is shown in Appendix 3.4.1 that

W (r,t) = —% / Cn(p,t) dp — o / PGlp.t)dp (n=1,2), (1.16)
L 4 J0

The Cartesian velocity components (U,, V,) = (=0¥, /0y, 0¥, /0x) are given by

. . v, ov 0w, . o
U, = cos Asin \ |— — - = | — a2 X - Ly etk (1.17)
T (_)T O)'T T

N . . N\
V., = cos )\7( - L 4 sin? \—F —cos Asin \ |— — : . 2, (1.18)
or T r Jr




Vortex motion on a beta-plane

In order that these expressions give a unique velocity at the origin, they must be
independent of A\ as r — 0, in which case

E)’E[Jn ; 1:[1.”_ .
Then - -
_ é"lfg "'1!1 _ )
Uda, Va)r=0 = | —— . " : 1.19
Bl Vot [ or |,—o Or 'rU] | ( )
and using (1.16) it follows that
o 1 [~
= n(p.t) dp. 1.20
e i /0 Cu(p. 1) dp (1.20)

If we make the reasonable assumption that the symmetric vortex moves with the
velocity of the asymmetric flow across its centre, the vortex speed is simply

ov, o,
t) = | —— _ , 1.2
c(t) [ e . M] (1.21)

i
r=[

which can be evaluated using (1.14) and (1.20).




Vortex motion on a beta-plane

If we make the reasonable assumption that the symmetric vortex moves with the
velocity of the asymmetric flow across its centre, the vortex speed is simply
OV, oV,

t) = 7 . o , 1.21
i) or iy or g ( )

which can be evaluated using (1.14) and (1.20).

The assumption is reasonable because at the vortexr centre ( > f and the gov-
erning equation (1.1) expresses the fact that (+ f is conserved following the motion.
Since the symmetric circulation does not contribute to advection across the vortex
centre (recall that the vortex centre is defined as the location of the maximum rela-
tive vorticity), advection must be by the asymmetric component. With the method
of partitioning discussed in section 3.2, this component is simply the environmental
flow by definition. The slight error committed in supposing that ( is conserved rather
than (+ f is equivalent to neglecting the propagation of the vortex centre. The track
error amounts to no more than a few kilometers per day which is negligible compared
with the actual vortex displacements (e.g., see Fig. 1.6).




Some calculations
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Figure 1.3: (left) Tangential velocity profile V/(r) and (right) angular velocity profile
Q(r) for the symmetric vortex.
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Figure 1.5: Comparison of the analytically-computed asymmetric vorticity and
streamfunction fields (upper right and lower right) with those for the corresponding
numerical solutions at 24 h. Only the inner part of the numerical domain, centred
on the vortex centre, is shown (the calculations were carried out on a 2000 km x
2000 km domain). Contour intervals are 5 x 107¢ s7* for ¢, and 10° m? s™! for ¢,.
The tropical cyclone symbol represents the vortex centre.
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Figure 1.5: Comparison of the analytically-computed asymmetric vorticity and
streamfunction fields (upper right and lower right) with those for the corresponding
numerical solutions at 24 h. Only the inner part of the numerical domain, centred
on the vortex centre, is shown (the calculations were carried out on a 2000 km x
2000 km domain). Contour intervals are 5 x 107¢ s7* for ¢, and 10° m? s™! for ¢,.
The tropical cyclone symbol represents the vortex centre.




Vortex track

The vortex track, X(t) = [X(#), Y ()] may be obtained by integrating the equa-
tion dX/dt = ¢(t), and using (1.20) and (1.21), we obtain

LIOCX {J;jl G (p, t)d.z‘} dp

_{X (t) _ e
[Y(t) ] = | (1.22)
— fﬁ f Ci(p, t)dt ¢ dp
With the expressions for ¢, in (1.14), this expression reduces to
; sin(Q(r)t)
X)) _ | =P [t ~ a0 ] dr (123
Y (t) i 3f [1 COH(Q(T)f)] o e
0
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Figure 1.8: Approximate trajectories of fluid parcels which, for a given radius, give
the maximum asymmetric vorticity contribution at that radius. The figures refer ro
the case of motion of an initially-symmetric vortex on a F-plane with zero basic flow
at (a) 1 h, (b) 24 h. The particles arc assumed to follow circular paths about the
vortex centre (e.g. AB) with angular velocity Q(r), where 2 decreases monotonically
with radius r. Solid lines denote trajectories at 50 km radial intervals. Dashed
lines marked "M™ and 'm’ represent the trajectories giving the overall axisymmetric
vorticity maxima and minima, respectively. These maxima and minima occur at the
positive and negative ends of the relevant lines.
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A line vortex

A line vortex has the tangential wind profile:
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Two-vortex interaction: line vortices: same sign

Vortices rotate around each other about their common centre




Two-vortex interaction: line vortices, opposite signs

Vortices translate in the direction normal to the line between
them with speed V= I’




Reference

Fundamentals of Geophysical Fluid Dynamics J.
McWilliams (2006) CUP
Chapter 3: Barotropic and Vortex Dynamics




Vorticity and velocity distribution
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Can “invert” the vorticity to obtain the streamfunction when
suitable boundary conditions on the streamfunction are given.

Biot-Savart law ‘




Biot-Savart law

Vortex filament

of strength I’




Biot-Savart law

Integral over a volume V

dV

r
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Recall, for a moving reference frame

ol

o = Us VI+f)—(U—-¢)-VG—(U—-c¢)-V(I'+ f). (1.7)
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Figure 11. Evolution of the asymmetric vorticity field (I) and corresponding streamfunction field for the

initially asymmetric vortex on an f plane in the case of small-scale asymmetry (simulation 81}. Shown are (a)

the initial fields, and the fields at (b) 6 hours and (c¢) 12 hours. Note that only one quarter of the total flow

domain is showsn. Contour intervals are 2x107 %! for I" and 5x10°m% ! for W. Zero contours have been
excluded.
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Figure 13. Evolution of the asymmetric
vorticity field (I') for the initially asym-
metric vortex on an f plane in the case
of large-scale asymmetry {simulation S52).
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Figure 13. Evolution of the asymmetric
vorticity field (I') for the initially asym-
metric vortex on an f plane in the case
of large-scale asymmetry (simulation 52).
Showr are (a) the initial field, and the fields
at {(b) 6 hours and {¢) 12 hours. Contour
interval is 107% !, Note: the domain size is
twice that shown in Fig. 11. Zero contours
have been excluded.
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Figure 12. Tracks of initially asymmetric vortices in the calculations 81 to 84 defined in the text. (a) Small
asymmetry, f plane; {b) large asymmetry, f plane; (c) small asymmetry, f§ plane; and (d) large asymmetry, B
plane.
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Figure 12. Tracks of initially asymmetric vortices in the calculations 81 to 84 defined in the text. (a) Small
asymmetry, f plane; {b) large asymmetry, f plane; (c) small asymmetry, f§ plane; and (d) large asymmetry, B
plane.




Two-vortex interaction
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Figure 15. Tracks of the large vortex in the case of a strong-vortex, weak-vortex interaction, (&) on an fplane,
and (b} on a B plane. Cyclone symbols denote successive six-hour positions, the initial position being at the
origin in each case.
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Figure 15. Tracks of the large vortex in the case of a strong-vortex, weak-vortex interaction, (2) on an f plané,
and (b} on a B plane. Cyclone symbols denote successive six-hour positions, the initial position being at the

origin in each case.




Track of the large vortex
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Figure 15. Tracks of the large vortex in the case of a strong-vortex, weak-vortex interaction, (&) on an fplane,
and (b} on a B plane. Cyclone symbols denote successive six-hour positions, the initial position being at the
origin in each case.




Vortex interaction

» Two like-signed potential vortices will circle around a
common centre without getting closer (Fujiwhara effect).

» Two like-signed vortices with a finite vorticity core will
merge when their distance of separation is smaller than
some critical value.

»> This merger process is the predominant mechanism for
the evolution of two-dimensional turbulence, and has for
this reason been studied extensively.

» The existence of a critical distance has been confirmed by
a number of high-resolution numerical simulations of
inviscid two-dimensional flows as well as by laboratory
experiments on interacting barotropic vortices in a
rotating fluid.




Original study by Polvani (1988-89) : constant PV vortices,
no dependence of merger on stratification




Vortices further apart




Dye visualization of the merger of two cyclonic vortices at
successive times.




Dye visualizations of the merger process demonstrate the
formation of cusps and the existence of long filaments.
These characteristic features of vortex merging can be well
captured by simple point-vortex models in which each
vortex is represented by a point vortex surrounded by a
contour of passive tracers. The method of contour
Kinematics is used to calculate numerically the evolution of
the material contours. A typical calculated evolution of a
two-point-vortex configuration is shown in the next figure.




Calculated evolution of initially circular contours of passive

tracers which are advected by the co-rotating velocity field

induced by the two point vortices (not shown). The distance
between the point vortices was artificially decreased.







