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1.2 Vorticity-streamfunction method

The vorticity-streamfunction method is a powerful way of solving two-dimensional flow
problems for a homogeneous, incompressible fluid. It is conventional to choose a rectan-
gular coordinate system (x, y), with x pointing eastwards and y pointing northwards.
For two-dimensional motion in the x-y-plane, the relative vorticity, ζ , is defined as
∂v/∂x − ∂u/∂y and satisfies the equation

∂

∂t
(ζ + f) + u

∂

∂x
(ζ + f) + v

∂

∂y
(ζ + f) = 0, (1.1)

where u and v are the velocity components in the x and y directions, respectively. For
an incompressible fluid, the continuity equation is

∂u

∂x
+
∂v

∂x
= 0, (1.2)

and accordingly there exists a streamfunction ψ such that

u = −∂ψ
∂y
, v =

∂ψ

∂x
, (1.3)

and

ζ =
∂2ψ

∂x2
+
∂2ψ

∂y2
, (1.4)

Equation (1.1) is a prediction equation for the absolute vorticity, ζ + f , and states
that this quantity is conserved following columns1 of fluid. Equation (1.4) can be used
as an expression for calculating ζ if ψ is known, or, alternatively, as an elliptic second-
order partial differential equation for ψ if ζ is known. When ψ is known, u and v can
be calculated from the expressions (1.3).

In a few simple cases it may be possible to obtain an analytic solution of Eqs. (1.1),
(1.3) and (1.4), but in general we must resort to numerical methods. The system of
equations can be solved numerically using the following steps:

• From a given initial distribution of ψ at, say t = 0, we can calculate the initial
velocity distribution from Eq. (1.3) and the initial vorticity distribution from
Eq, (1.4). Alternatively, given the initial vorticity distribution, we can solve Eq.
(1.4) for the initial streamfunction distribution ψ and then calculate the initial
velocity distribution from Eq. (1.3).

• We are now in a position to predict the vorticity distribution at a later time, say
t = Δt, using Eq. (1.1).

• Then we can solve Eq. (1.4) for the streamfunction distribution ψ at time Δt
and the new velocity distribution from Eq. (1.3).

• We now repeat this procedure to extend the solution forward to the time t = 2Δt,
and so on.

1In a two-dimensional flow, there is no dependence of u, v, or ζ on the z-coordinate and we can
think of the motion of thin columns of fluid of uniform finite depth, or infinite depth, analogous to
fluid parcels in a three-dimensional flow.
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1.3 The partitioning problem

An important issue that arises in the study of tropical cyclone motion is the so-called
partitioning problem, i.e. the problem of deciding what is the cyclone and what is its
environment. Of course, Nature makes no distinction so that any partitioning that
we make to enable us to discuss the interaction between the tropical cyclone and its
environment is necessarily non-unique.

Various methods have been proposed to isolate the cyclone from its environment
and each may have their merits in different applications. One obvious possibility is
to define the cyclone as the azimuthally-averaged flow about the vortex centre, and
the residual flow (i.e. the asymmetric component) as ”the environment”. But then
the question arises: which centre? We show below that, in general, the location of
the minimum surface pressure and the centre of the vortex circulation at any level
are not coincident in general. Many theoretical studies consider the motion of an
initially symmetric vortex in some analytically-prescribed environmental flow. If the
flow is assumed to be barotropic, there is no mechanism to change the vorticity of air
columns as they move around. In this case it is advantageous to define the vortex to
be the initial relative vorticity distribution, appropriately relocated, in which case all
the flow changes accompanying the vortex motion reside in the residual flow that is
considered to be the vortex environment. We choose also the position of the relative
vorticity maximum as the ’appropriate location’ for the vortex. An advantage of this
method is that all the subsequent flow changes are contained in one component of the
partition and the vortex remains ”well-behaved” at large radial distances. Further, one
does not have to be concerned with vorticity transfer between the symmetric vortex
and the environment as this is zero, by definition. The method has advantages also for
understanding the motion of initially asymmetric vortices in Section 2.1.

The partitioning method can be illustrated mathematically as follows. Let the total
wind be expressed as u = us + U, where us denotes the symmetric velocity field and
U is the velocity associated with the vortex environment. We define corresponding
vorticities ζs = k · ∇∧us and Γ = k · ∇∧U, where k is the unit vector in the vertical.
Then Eq. (1.1) can be partitioned into two equations:

∂ζs
∂t

+ c(t) · ∇ζs = 0, (1.5)

and
∂Γ

∂t
= −us · ∇(Γ + f) − (U − c) · ∇ζs −U · ∇(Γ + f), (1.6)

Note that us · ∇ζs = 0, because for a symmetric vortex us is normal to ∇ζs. Equation
(1.5) states that the symmetric vortex translates with speed c and Eq. (1.6) is an
equation for the evolution of the asymmetric vorticity. Having solved the latter equa-
tion for Γ(x, t), we can obtain the corresponding asymmetric streamfunction by solving
Eq. (1.4) in the form ∇2ψa = Γ. The vortex translation velocity c may be obtained
by calculating the speed Uc = k ∧ ∇ψa at the vortex centre. In some situations it is
advantageous to transform the equations of motion into a frame of reference moving
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with the vortex2. Then Eq. (1.5) becomes ∂ζs/∂t ≡ 0 and the vorticity equation (1.6)
becomes

∂Γ

∂t
= −us · ∇(Γ + f) − (U − c) · ∇ζs − (U − c) · ∇(Γ + f). (1.7)

1.4 Prototype problems

1.4.1 Symmetric vortex in a uniform flow

Consider a barotropic vortex with an axisymmetric vorticity distribution embedded in
a uniform zonal air stream on an f -plane. The streamfunction for the flow has the
form:

ψ(x, y) = −Uy + ψ′(r), (1.8)

where r2 = (x− Ut)2 + y2. The corresponding velocity field is

u = (U, 0) +

(
−∂ψ

′

∂y
,
∂ψ′

∂x

)
, (1.9)

The relative vorticity distribution, ζ = ∇2ψ, is symmetric about the point (x −
Ut, 0), which translates with speed U in the x-direction. However, neither the stream-
function distribution ψ(x, y, t), nor the pressure distribution p(x, y, t), are symmetric
and, in general, the locations of the minimum central pressure, maximum relative
vorticity, and minimum streamfunction (where u = 0) do not coincide. In particular,
there are three important deductions from (1.9):

• The total velocity field of the translating vortex is not symmetric, and

• The maximum wind speed is simply the arithmetic sum of U and the maximum
tangential wind speed of the symmetric vortex, Vm = (∂ψ′/∂r)max.

• The maximum wind speed occurs on the right-hand-side of the vortex in the
direction of motion in the northern hemisphere and on the left-hand-side in the
southern hemisphere.

Figure 1.1 shows an example of various flow fields for the tropical-cyclone-scale
vortex in Fig. 1.6, translating in a uniform westerly current of 10 m s−1. The maximum
tangential wind speed of the vortex, itself, is 40 m s−1 at a radius of 100 km. The
contour plots shown in the figure include the total wind speed, the relative vorticity,
the streamfunction, and the angular momentum about the vortex centre. Note that
only the relative vorticity is symmetric.

Because the vorticity field is Galilean invariant while the pressure field and stream-
function fields are not, it is advantageous to define the vortex centre as the location of
maximum relative vorticity and to transform the equations of motion to a coordinate

2See Appendix for details.
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Figure 1.1: Contour plots of (a) total wind speed, (b) relative vorticity, (c) streamlines,
and (d) relative angular momentum for a vortex with a symmetric relative vorticity
distribution and maximum tangential wind speed of 40 m s−1 in a uniform zonal flow
with speed 10 m s−1 on an f -plane. The maximum tangential wind speed occurs at a
radius of 100 km (for the purpose of illustration). The contour intervals are: 5 m s−1

for wind speed, 2 × 10−4 s−1 for relative vorticity, 1 × 104 m2 s−1 for streamfunction
and 1 × 103 m2 s−2 for angular momentum.

system (X, Y ) = (x−Ut, y), whose origin is at this centre3. In this frame of reference,
the streamfunction centre is at the point (0, Ys), where

U − Φ(Ys)Ys = 0, (1.10)

and Φ = ψ′(r)/r. This point is to the left of the vorticity centre in the direction of
motion in the northern hemisphere. In the moving coordinate system, the momentum
equations may be written in the form

∇p = ρΦ(Φ + f)(X, Y ) + ρf(0, U). (1.11)

The minimum surface pressure occurs where ∇p = 0, which from (1.11) is at the point
(0, Yp) where

YpΦ(Yp)(Φ(Yp) + f) = fU. (1.12)

3The transformation of the equations of motion to a moving coordinate system is derived in
Appendix 9.1.
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We show that, although Yp and Ys are not zero and not equal, they are for practical
purposes relatively small.

Consider the case where the inner core is in solid body rotation out to the radius
rm, of maximum tangential wind speed vm, with uniform angular velocity Ω = vm/rm.
Then ψ′(r) = Ωr and Φ = Ω. It follows readily that Ys/rm = U/vm and Yp/rm =
U/(vmRom), where Rom = vm/(rmf) is the Rossby number of the vortex core which
is large compared with unity in a tropical cyclone. Taking typical values: f = 5 ×
10−5 s−1, U = 10 m s−1, vm = 50 m s−1, rm = 50 km, Rom = 20 and Ys = 10 km,
Yp = 0.5 km, the latter being much smaller than rm. Clearly, for weaker vortices
(smaller vm) and/or stronger basic flows (larger U), the values of Ys/rm and Yp/rm are
comparatively larger and the difference between the various centres may be significant.

1.4.2 Vortex motion on a beta-plane

Another prototype problem for tropical-cyclone motion considers the evolution of an
initially-symmetric barotropic vortex on a Northern Hemisphere β-plane in a quiescent
environment. In this problem, the initial absolute vorticity distribution, ζ + f is not
symmetric about the vortex centre: a fluid parcel at a distance yo poleward of the vortex
centre will have a larger absolute vorticity than one at the same distance equatorwards
of the centre. Now Eq. (1.1) tells us that ζ+ f is conserved following fluid parcels and
initially at least these will move in circular trajectories about the centre. Clearly all
parcels initially west of the vortex centre will move equatorwards while those initially
on the eastward side will move polewards. Since the planetary vorticity decreases for
parcels moving equatorwards, their relative vorticity must increase and conversely for
parcels moving polewards. Thus we expect to find a cyclonic vorticity anomaly to the
west of the vortex and an anticyclonic anomaly to the east.

To a first approximation we can determine the evolution of the vorticity asymme-
tries by assuming that the flow about the vortex motion remains circular relative to the
moving vortex (we discuss the reason for the vortex movement below). Consider an air
parcel that at time t is at the point with polar coordinate (r, λ) located at the (moving)
vortex centre (Fig. 1.2). This parcel would have been at the position (r, λ − Ω(r)t)
at the initial instant, where Ω(r) = V (r)/r is the angular velocity at radius r and
V (r) is the tangential wind speed at that radius. The initial vorticity of the parcel is
ζs(r) + f0 + βr sin(λ − Ω(r)t) while the vorticity of a parcel at its current location is
ζ(r) + f0 + βr sin λ. Therefore the vorticity perturbation ζa(r, λ) at the point (r, λ) at
time t is ζ(r) − ζs(r), or

ζa(r, λ) = βr[sinλ− sin(λ− Ω(r)t)]

or
ζa(r, λ) = ζ1(r, t) cosλ+ ζ2(r, t) sinλ, (1.13)

where
ζ1(r, t) = −βr sin(Ω(r)t), ζ2(r, t) = −βr[1 − cos(Ω(r)t)]. (1.14)
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Figure 1.2: An air parcel moving in a circular orbit of radius r with angular velocity
Ω(r) is located at the point B with polar coordinates (r, λ) at time t. At time t = 0
the parcel was located at point A with coordinates (r, λ− Ω(r)t). During this time it
undergoes a meridional displacement r[sinλ− sin(λ− Ω(r)t)].

We can now calculate the asymmetric streamfunction ψa(r, λ, t) corresponding to this
asymmetry using Eq. (1.4). The solution should satisfy the boundary condition that
ψ → 0 as r → ∞. It is reasonable to expect that ψa will have the form:

ψa(r, λ) = Ψ1(r, t) cosλ+ Ψ2(r, t) sinλ, (1.15)

and it is shown in Appendix 3.4.1 that

Ψn(r, t) = −r
2

∫ ∞

r

ζn(p, t) dp− 1

2r

∫ r

0

p2ζn(p, t) dp (n = 1, 2), (1.16)

The Cartesian velocity components (Ua, Va) = (−∂Ψa/∂y, ∂Ψa/∂x) are given by

Ua = cosλ sinλ

[
Ψ1

r
− ∂Ψ1

∂r

]
− sin2 λ

∂Ψ2

∂r
− cos2 λ

Ψ2

r
, (1.17)

Va = cos2 λ
∂Ψ1

∂r
+ sin2 λ

Ψ1

r
− cosλ sinλ

[
Ψ2

r
− ∂Ψ2

∂r

]
. (1.18)

In order that these expressions give a unique velocity at the origin, they must be
independent of λ as r → 0, in which case

∂Ψn

∂r

∣∣∣∣
r=0

= lim
r→0

Ψn

r
, (n = 1, 2).
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Figure 1.3: (left) Tangential velocity profile V (r) and (right) angular velocity profile
Ω(r) for the symmetric vortex.

Then

(Ua, Va)r=0 =

[
−∂Ψ2

∂r

∣∣∣∣
r=0

,
∂Ψ1

∂r

∣∣∣∣
r=0

]
, (1.19)

and using (1.16) it follows that

∂Ψn

∂r

∣∣∣∣
r=0

= −1

2

∫ ∞

0

ζn(p, t) dp. (1.20)

If we make the reasonable assumption that the symmetric vortex moves with the
velocity of the asymmetric flow across its centre, the vortex speed is simply

c(t) =

[
−∂Ψ2

∂r

∣∣∣∣
r=0

,
∂Ψ1

∂r

∣∣∣∣
r=0

]
, (1.21)

which can be evaluated using (1.14) and (1.20).
The assumption is reasonable because at the vortex centre ζ � f and the governing

equation (1.1) expresses the fact that ζ+f is conserved following the motion. Since the
symmetric circulation does not contribute to advection across the vortex centre (recall
that the vortex centre is defined as the location of the maximum relative vorticity),
advection must be by the asymmetric component. With the method of partitioning
discussed in section 1.2, this component is simply the environmental flow by definition.
The slight error committed in supposing that ζ is conserved rather than ζ + f is
equivalent to neglecting the propagation of the vortex centre. The track error amounts
to no more than a few kilometers per day which is negligible compared with the actual
vortex displacements (e.g., see Fig. 1.6).

The vortex track, X(t) = [X(t), Y (t)] may be obtained by integrating the equation
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dX/dt = c(t), and using (1.20) and (1.21), we obtain

[
X(t)
Y (t)

]
=

⎡
⎣ 1

2

∫∞
0

{∫ 1

0
ζ2(p, t)dt

}
dp

−1
2

∫∞
0

{∫ 1

0
ζ1(p, t)dt

}
dp

⎤
⎦ . (1.22)

With the expressions for ζn in (1.14), this expression reduces to

[
X(t)
Y (t)

]
=

⎡
⎣ −1

2
β
∫∞

0
r
[
t− sin(Ω(r)t)

Ω(r)

]
dr

1
2
β
∫∞

0
r
[

1−cos(Ω(r)t)
Ω(r)

]
dr

⎤
⎦ . (1.23)

This expression determines the vortex track in terms of the initial angular velocity
profile of the vortex. To illustrate the solutions we choose the vortex profile shown in
Fig. 1.3. The velocity profile V (r) and corresponding angular velocity profile Ω(r) are
shown as solid lines in Fig. 1.3. The maximum wind speed of 40 m s−1 occurs at a
radius of 100 km and the region of approximate gale force winds (> 15 m s−1) extends
to 300 km. The angular velocity has a maximum at the vortex center and decreases
monotonically with radius. Figure 1.4 shows the asymmetric vorticity field calculated
from (1.14) and the corresponding streamfunction field from (1.16) at selected times,
while Fig. 1.5 compares the analytical solutions with numerical solutions at 24 h.

The integrals involved are calculated using simple quadrature. After five minutes
the asymmetric vorticity and streamfunction fields show an east-west oriented dipole
pattern. The vorticity maxima and minima occur at the radius of maximum tangential
wind and there is a southerly component of the asymmetric flow across the vortex center
(Fig. 1.4b). As time proceeds, the vortex asymmetry is rotated by the symmetric
vortex circulation and its strength and scale increase. The reasons for this behaviour
are discussed below. In the inner core (typically r < 200 km), the asymmetry is
rapidly sheared by the relatively large radial gradient of Ω (Fig. 1.4c). In response
to these vorticity changes, the streamfunction dipole strengthens and rotates also,
whereupon the asymmetric flow across the vortex center increases in strength and
rotates northwestwards. Even at 24 h, the asymmetric vorticity and streamfunction
patterns show remarkable similarity to those diagnosed from the complete numerical
solution of Eq. (1.1), which can be regarded as the control calculation (see Fig. 1.5).
The numerical calculation was performed on a 2000 km × 2000 km domain with a 20 km
grid size. Despite the apparent similarities between the analytically and numerically
calculated vorticity patterns in Fig. 1.5, the small differences in detail are manifest in
a more westerly oriented stream flow across the vortex center in the analytical solution
and these are reflected in differences in the vortex tracks shown in Fig. 1.6. It follows
that the analytical solution gives a track that is too far westward, but the average
speed of motion is comparable with, but a fraction smaller than in the control case for
this entire period. Even so, it is apparent that the simple analytic solution captures
much of the dynamics in the full numerical solution.
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Figure 1.4: Asymmetric vorticity (top panels) and streamfunction fields (bottom pan-
els) at selected times: (a) 5 min, (b) 2 h, (c) 3 h, (d) 24 h. Contour intervals for ζa
are: 1 × 10−8 s−1 in (a), 5 × 10−7 s−1 in (b), 1 × 10−6 s−1 in (c), and 2 × 10−6 s−1 in
(d). Contour intervals for ψa are: 100 m2 s−1 in (a), 6× 103 m2 s−1 in (b), 1× 104 m2

s−1 in (c), and 5 × 104 m2 s−1 in (d).

Exercises

(1.1) Starting from Eq. 1.6 and the assumptions that air parcels move in circular
orbits about the vortex centre while conserving their absolute vorticity and that
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the relative advection of vortex vorticity is small, show that the asymmetric
vorticity approximately satisfies the equation:

∂ζa
∂t

+ Ω(r)
∂ζa
∂λ

= −βrΩ(r) sinλ. (1.24)

(1.2) Show that the equation

∂X

∂t
+ Ω(r, t)

∂X

∂λ
= −βrΩ(r, t) cosλ

has the solution
X = −βr(sinλ− sin(λ− ω)),

where

ω =

∫ t

0

Ω(r, t′)dt′.

The analytic theory can be considerably improved by taking account of the contri-
bution to the vorticity asymmetry, ζa1, by the relative advection of symmetric vortex
vorticity, ζs. This contribution is represented by the term −(Ua − c) · ∇ζs in Eq.
1.6 (the second term on the right-hand-side). Again, with the assumption that air
parcels move in circular orbits about the vortex centre while conserving their absolute
vorticity, ζa1 satisfies the equation:

∂ζa1

∂t
+ Ω(r)

∂ζa1

∂λ
= −(Ua − c) · ∇ζs, (1.25)

where the components of Ua are given by Eqs. (1.17) and (1.18), and c is given by
Eq. (1.21). Further details of this calculation are given in Appendix 1.4.2. With
this correction there is excellent agreement between the numerically and analytically
calculated tracks (compare the tracks AC and N in Fig. 1.6).

The foregoing analytical solution shows that the vorticity asymmetry is dominated
by a pair of orthogonal dipoles with different radial profiles and strengths and that these
profiles evolve with time. These profiles are characterized by the functions Ψn(r, t) in
Eq. (1.15), which are shown in Fig. 1.7 at 24 h. At this time the maximum amplitude
of the vorticity asymmetry is located more than 350 km from the vortex centre, where
the tangential wind speed of the vortex is only about one quarter of its maximum
value. As time proceeds, the strength of the asymmetry and the radius at which
the maximum occurs continue to increase until about 60 h when the radius of the
maximum stabilizes. This increase in the strength and scale of the gyres in the model
is easy to understand if we ignore the motion of the vortex. As shown above, the
change in relative vorticity of a fluid parcel circulating around the vortex is equal to
its displacement in the direction of the absolute vorticity gradient times the magnitude
of the gradient. For a fluid parcel at radius r the maximum possible displacement is
2r, which limits the size of the maximum asymmetry at this radius. However, the time
for this displacement to be achieved is π/Ω(r), where Ω(r) is the angular velocity of a
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Figure 1.5: Comparison of the analytically-computed asymmetric vorticity and stream-
function fields (upper right and lower right) with those for the corresponding numerical
solutions at 24 h. Only the inner part of the numerical domain, centred on the vortex
centre, is shown (the calculations were carried out on a 2000 km × 2000 km domain).
Contour intervals are 5 × 10−6 s−1 for ζa and 105 m2 s−1 for ψa. The tropical cyclone
symbol represents the vortex centre.

fluid parcel at radius r. Since Ω is largest at small radii, fluid parcels there attain their
maximum displacement relatively quickly, and as expected the maximum displacement
of any parcel at early times occurs near the radius of maximum tangential wind (Fig.
1.8a). However, given sufficient time, fluid parcels at larger radii, although rotating
more slowly, have the potential to achieve much larger displacements than those at
small radii; as time continues, this is exactly what happens (Fig 1.8b). Ultimately, of
course, if Ω(r) decreases monotonically to zero, there is a finite radius beyond which
the tangential wind speed is less than the translation speed of the vortex. As the
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Figure 1.6: Comparison of the analytically calculated vortex track (denoted by A)
compared with that for the corresponding numerical solution (denoted by N). The
track by AC is the analytically corrected track referred to in the text.

maximum in the asymmetry approaches this radius the vortex motion can no longer
be ignored.

Since the absolute vorticity is the conserved quantity in the barotropic flow problem
it is instructive to examine the evolution of the isolines of this quantity as the flow
evolves. At the initial time the contours are very close to circular near the vortex centre
and are oriented zonally far from the centre. The pattern after 24 h, shown in Fig. 1.9,
illustrates how contours are progressively wound around the vortex with those nearest
the centre drawn out into long filaments. This filamentation process is associated with
the strong angular shear of the tangential wind profile (see Fig. 1.3b). In reality,
the strong gradients of asymmetric relative vorticity would be removed by diffusive
processes. The filamentation is comparatively slow at larger radial distances so that
coherent vorticity asymmetries occur outside the rapidly-rotating and strongly-sheared
core. One consequence of these processes is that it is the larger-scale asymmetries that
have the main effect on the vortex motion. On account of the filamentation process,
there is a natural tendency for vortices to axisymmetrize disturbances in their cores.
The axisymmetrization process in rapidly-rotating vortices is analyzed in more detail
in section 2.1.

The analytic theory described above can be extended to account for higher-order
corrections to the vorticity asymmetry. These corrections involve higher-order az-
imuthal wavenumber asymmetries. Mathematically an azimuthal wavenumber-n vor-
ticity asymmetry has the form

ζa(r, λ, n) = ζ1(r, t) cos(nλ) + ζ2(r, t) sin(nλ) (n = 1, 2, . . .),
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Figure 1.7: Radial profiles of Ψn/Ψmax (n = 1, 2) at 24 h where Ψmax is the maximum
absolute value of Ψn. Solid line is Ψ1, dashed line is Ψ2. Here, Ψ1max = 4.8 × 105 m2

s−1; Ψ1max = 4.2 × 105 m2.

which may be written
ζa(r, λ, n) = ζn(r, t) cos(nλ + α). (1.26)

The associated streamfunction asymmetry has a similar form:

ψa(r, λ, n) = ψn(r, t) cos(nλ+ α),

where(see Appendix 3.4.1)

ψ0 =

∫ r

0

dp

p

∫ s

0

sζ0(s, t)ds

ψn =
1

2n

[
rn

∫ ∞

r

p1−nζn(p, t)dp− r−n

∫ r

0

p1+nζn(p, t)dp

]
, (n �= 0).

The tracks obtained from the extended analytic theory agreed with considerable ac-
curacy with those obtained from a numerical solution of the problem to at least 72 h,
showing that theory captures the essential features of the dynamics.

1.4.3 The effects of horizontal shear and deformation

The analytic theory can be extended also to zonal basic flows of the form U =
(U(y, t), 0) and to more general flows with horizontal deformation. For simplicity
we consider here the case where U is a quadratic function of y only, i.e. U =
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Figure 1.8: Approximate trajectories of fluid parcels which, for a given radius, give
the maximum asymmetric vorticity contribution at that radius. The figures refer ro
the case of motion of an initially-symmetric vortex on a β-plane with zero basic flow
at (a) 1 h, (b) 24 h. The particles arc assumed to follow circular paths about the
vortex centre (e.g. AB) with angular velocity Ω(r), where Ω decreases monotonically
with radius r. Solid lines denote trajectories at 50 km radial intervals. Dashed lines
marked ’M’ and ’m’ represent the trajectories giving the overall axisymmetric vorticity
maxima and minima, respectively. These maxima and minima occur at the positive
and negative ends of the relevant lines.

Uo + U ′y + 1
2
U ′′y2. Let us partition the environmental flow at time t into two parts:

the initial zonal flow, U, and the part associated with the vortex-induced asymmetries,
Ua and define the corresponding vorticities: Γ = k ·∇∧U and ζa = k ·∇∧Ua. Then,
noting that U is normal to ∇(Γ + f), Eq. (1.6) may be written:

∂ζa
∂t

= −us · ∇(Γ + f) − (U + Ua − c) · ∇ζs −Ua · ∇(Γ + f). (1.27)

Let us define c = Uc + c′, and U = Uc(t) + Uo, where Uc(t) is the speed of the zonal
flow at the meridional position of the vortex and Uo contains the meridional variation
of U, then Eq. (1.27) becomes

∂ζa
∂t

= −us · ∇(Γ + f) − Uo · ∇ζs + (Ua − c′) · ∇ζs − Ua · ∇(Γ + f). (1.28)

The first term on the right-hand-side of this equation represents the asymmetric vortic-
ity tendency, ∂ζa1/∂t, associated with the advection of the absolute vorticity gradient
of the basic flow by the symmetric vortex circulation. The second term, ∂ζa2/∂t, is the
asymmetric vorticity tendency associated with the basic shear acting on the symmetric
vortex. The third term, ∂ζa3/∂t, is the asymmetric vorticity tendency associated with
the advection of symmetric vorticity by the relative asymmetric flow; and the last term,
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Figure 1.9: Analytically calculated absolute vorticity distribution at 24 h corresponding
with the vorticity asymmetry in the upper right panel of Fig. 1.5.

∂ζa4/∂t, is the asymmetric vorticity tendency associated with the advection of the ab-
solute vorticity gradient of the basic flow by the asymmetric flow. Let ζan(n = 1 . . . 4)
be the contribution to ζa from ∂ζan/∂t. Then ζa1 has an azimuthal wavenumber-1
structure like ζa in Eq. (1.13) and the solution has the same form as (1.14), but with
β replaced with the absolute vorticity gradient of the background flow, β − U ′′.

Case I: Uniform shear

For a linear velocity profile (i.e. for uniform shear, U ′ = constant), k ·∇Γ = −U ′′ = 0,
so that the main difference compared to the calculation in the previous section is
the emergence of an azimuthal wavenumber-2 vorticity asymmetry from the term ζa2,
which satisfies the equation

∂ζa2

∂t
= −Uo · ∇ζs = −U ′y

∂ζs
∂x

.

This result is easy to understand by reference to Figs. 1.10 and 1.11. The vorticity
gradient of the symmetric vortex is negative inside a radius of 255 km (say ro) and
positive outside this radius (Fig. 1.10). Therefore ∂ζs/∂x is positive for x > 0 and
r > ro and negative for x < 0 and r < ro. If U = U ′y, U∂ζs/∂x is negative in the first
and third quadrants for r > ro and positive in the second and fourth quadrants (Figs.
1.11). For r < ro, the signs are reversed.

Figure 1.12 shows the calculation of ζa2 at 24 h when U ′ = 5 m s−1 per 1000
km. Since the vorticity tendency is relative to the motion of a rotating air parcel
(Eq. (4.1)), the pattern of ζa2 at inner radii is strongly influenced by the large radial
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Figure 1.10: (left) Radial profile of vortex vorticity, ζ(r), corresponding with the tan-
gential wind profile in Fig. 1.3.

Figure 1.11: Schematic depiction of the azimuthal wavenumber-2 vorticity tendency
arising from the term −U · ∇ζs = −U ′y∂ζs/∂x in the case of a uniform zonal shear
U = U ′y. (a) shows the sign of the vorticity gradient ∂ζs/∂x in each quadrant for
0 < r < ro and ro < r where ro is the radius at which the vorticity gradient dζs/dr
changes sign (see Fig. 1.11) and (b) shows the vorticity tendency −U∂ζs/∂x in the
eight regions.

shear of the azimuthal wind and consists of interleaving spiral regions of positive and
negative vorticity. The maximum amplitude of ζa2 (1.1 × 10−5 s−1 at 24 h) occurs at
a radius greater than ro. Note that azimuthal wavenumber asymmetries other than
wavenumber-1 have zero flow at the origin and therefore have no effect on the vortex
motion. In the case of uniform shear, there is a small wavenumber-1 contribution to
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the asymmetry from the term ζa4, which satisfies the equation

∂ζa4

∂t
= −Ua · ∇(Γ + f).

Figure 1.12: Asymmetric vorticity contribution for the case of a uniform zonal shear
with U ′ = 5 m s−1 per 1000 km. Contour interval is 5×10−6 s−1. Dashed lines indicate
negative values. The vortex centre is marked by a cyclone symbol.

Case II: Linear shear

We consider now the case of a quadratic velocity profile (i.e. linear shear) in which U ′ is
taken to be zero ∂Γ/∂y = −U ′′ is nonzero. Linear shear has two particularly important
effects that lead to a wavenumber-1 asymmetry, thereby affecting the vortex track. The
first is characterized by the contribution to the absolute-vorticity gradient of the basic
flow (the first term on the right-hand-side of Eq. (1.28), which directly affects the
zero-order vorticity asymmetry, ζa1. The second is associated with the distortion of
the vortex vorticity as depicted in Fig. 1.13 and represented mathematically by ζa2,
which originates from the second term on the right-hand-side of Eq. (1.28).

Vortex tracks

Figure 1.14 shows the vortex tracks calculated from the analytic theory with corre-
sponding numerical calculations. The broad agreement between the analytical and
numerical calculations indicates that the analytic theory captures the essence of the
dynamics involved, even though the analytically-calculated motion is a little too fast.
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Figure 1.13: Schematic depiction of the wavenumber-1 vorticity tendency arising from
the term −U · ∇ζs = −U∂ζs/∂x in the case of linear basic shear U = −1

2
U ′′y2. (a)

shows the profile U(y) and (b) shows the vorticity tendency −U∂ζs/∂x, in the eight
regions defined in Fig. 1.10. The sign of ∂ζs/∂x in these regions is shown in Fig. 1.10a.

The eastward or westward displacement in the cases with zonal shear are in accor-
dance with expectations that the vortex is advected by the basic flow and the different
meridional displacements are attributed to the wavenumber-1 asymmetry, ζa4 discussed
above.

Panel (b) of Fig. 1.14 shows a similar comparison for two cases of a linear shear:
SNB with U ′′ = βo and β = 0; SHB U ′′ = 1

2
βo and β = 1

2
βo; and the case of zero basic

flow (ZBF) with β = βo. Here βo is the standard value of β. These three calculations
have the same absolute vorticity gradient, βo, but the relative contribution to it from
U ′′ and β is different. Note that the poleward displacement is reduced as U ′′ increases
in magnitude. Again this effect can be attributed to the wavenumber-one asymmetry
ζa2 discussed above.

Need to discuss: *** Problems of detecting beta-gyres. *** Emphasize weakness
of asymmetries *** Justification of linearization about an initial vortex
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Figure 1.14: Analytically calculated vortex track (denoted by A) compared with the
corresponding numerical solution (denoted by N): (a) uniform shear flow cases and [b)
linear shear flow cases. Each panel includes the analytically and numerically calculated
track for the case of zero basic; flow (denoted ZBF). Cyclone symbols mark the vortex
position at 12-h intervals. (See text for explanation of other letters.)

1.5 The motion of baroclinic vortices

As a start to examining the motion of baroclinic vortices it is instructive to consider
first the vorticity tendency for a baroclinic vortex v(r, z) in a zonal shear flow U(z).

1.5.1 Vorticity tendency for a baroclinic vortex v(r, z) in a

zonal shear flow U(z).

Consider the velocity vector:

u = U(z)̂i + v(r, z)θ̂ = U cos θr̂ + (v − U sin θ)θ̂ (1.29)

The vorticity in cylindrical coordinates is

ω =
1

r

(
∂uz

∂θ
− ∂ruθ

∂z

)
r̂ +

(
∂ur

∂z
− ∂uz

∂r

)
θ̂ +

1

r

(
∂ruθ

∂r
− ∂ur

∂θ

)
k̂,

so that for the velocity vector (1.29),

ω =

(
− ∂

∂z
(v − U sin θ)

)
r̂ +

(
∂

∂z
U cos θ

)
θ̂ +

(
1

r

∂

∂r
r(v − U sin θ) − 1

r

∂

∂θ
U cos θ

)
k̂

or

ω =

(
dU

dz
sin θ − ∂v

∂z

)
r̂ +

dU

dz
cos θθ̂ +

1

r

∂rv

∂r
k̂
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Let us write

ω =

(
ξ +

dU

dz
sin θ

)
r̂ +

dU

dz
cos θθ̂ + ζk̂ (1.30)

Now, in cylindrical coordinates (see Batchelor, 1970, p602)

u.∇ω =
(
u.∇ωr − uθωθ

r

)
r̂ +

(
u.∇ωθ +

uθωr

r

)
θ̂ + (u.∇ωz) k̂

Then for the velocity vector (1.29),

u.∇ω =

(
u.∇

(
ξ +

dU

dz
sin θ

)
− uθ

r

dU

dz
sin θ

)
r̂ +

(
u.∇ωθ +

uθ

r

(
ξ +

dU

dz
sin θ

))
θ̂ + (u.∇ζ) k̂

The three components of this equation are:

(
u.∇ξ − uθωθ

r

)
= U cos θ

∂

∂r

(
ξ +

dU

dz
sin θ

)

+ (v − U sin θ)
1

r

∂

∂θ

(
ξ +

dU

dz
sin θ

)
− (v − U sin θ)

r

dU

dz
cos θ

= U cos θ
∂ξ

∂r

(
u.∇ωθ +

uθωr

r

)
= U cos θ

∂

∂r

(
dU

dz
cos θ

)

+ (v − U sin θ)
1

r

∂

∂θ

(
dU

dz
cos θ

)
+

(v − U sin θ)

r

(
ξ +

dU

dz
sin θ

)

=
(v − U sin θ)

r
ξ

u.∇ωz = U cos θ
∂ζ

∂r
+

(v − U sin θ)

r

∂ζ

∂θ
= U cos θ

∂ζ

∂r

Therefore

u.∇ω = U cos θ
∂ξ

∂r
r̂ +

(v − U sin θ)

r
ξθ̂ + U cos θ

∂ζ

∂r
k̂ (1.31)

Now
ω.∇u =

(
ω.∇ur − ωθuθ

r

)
r̂ +

(
ω.∇uθ +

ωθur

r

)
θ̂ + (ω.∇uz) k̂. (1.32)

The first component of this equation is

ω.∇ur − ωθuθ

r
=

[(
ξ +

dU

dz
sin θ

)
r̂ +

dU

dz
cos θθ̂ + ζk

]
×



CHAPTER 1. TROPICAL CYCLONE MOTION 24

(
∂

∂r
(U cos θ)r̂ +

1

r

∂

∂θ
(U cos θ)θ̂ +

∂

∂z
(U cos θ)k̂

)
− v − U sin θ

r

dU

dz
cos θ

= −U
r

dU

dz
cos θ sin θ + ζ

dU

dz
cos θ − v − U sin θ

r

dU

dz
cos θ

or, finally

ω.∇ur − ωθuθ

r
= ζ

dU

dz
cos θ − v

r

dU

dz
cos θ =

dv

dr

dU

dz
cos θ (1.33)

The second component of (1.33) is

ω.∇uθ +
ωθur

r
=

[(
ξ +

dU

dz
sin θ

)
r̂ +

dU

dz
cos θθ̂ + ζk

]
×

[
∂

∂r
(v − U sin θ)r̂ +

1

r

∂

∂θ
(v − U sin θ)θ̂ +

∂

∂z
(v − U sin θ)k̂

]
+
U cos θ

r

dU

dz
cos θ

=

[(
ξ +

dU

dz
sin θ

)
r̂ +

dU

dz
cos θθ̂ + ζk

]
×

[
∂v

∂r
r̂ − U

r
cos θθ̂ +

(
∂v

∂z
− dU

dz
sin θ

)
k̂

]
+
U

r

dU

dz
cos2 θ

=

(
ξ +

dU

dz
sin θ

)
∂v

∂r
− ζ

(
ξ +

dU

dz
sin θ

)
=

(
∂v

∂r
− ζ

)(
ξ +

dU

dz
sin θ

)
,

or, finally,

ω.∇uθ +
ωθur

r
= −v

r

(
ξ +

dU

dz
sin θ

)
(1.34)

The third component of (1.33) is simply

ω.∇uz = 0 (1.35)

The (1.32) may be written

ω.∇u =
dv

dr

dU

dz
cos θr̂ − v

r

(
ξ +

dU

dz
sin θ

)
θ̂ (1.36)

∂ω

∂t
= −u·∇ω + ω·∇u

u.∇ω = U cos θ
∂ξ

∂r
r̂ +

(v − U sin θ)

r

(
ξ − dU

dz
sin θ

)
θ̂ + U cos θ

∂ζ

∂r
k̂

∂ω

∂t
= −

(
U cos θ

∂ξ

∂r
r̂ +

(v − U sin θ)

r
ξθ̂ + U cos θ

∂ζ

∂r
k̂

)
+

dv

dr

dU

dz
cos θr̂ − v

r

(
ξ +

dU

dz
sin θ

)
θ̂
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=

(
−U ∂ξ

∂r
+
dv

dr

dU

dz

)
cos θr̂ −

[(
v

r
+

(v − U sin θ)

r

)
ξ − v

r

dU

dz
sin θ

]
θ̂ − U cos θ

∂ζ

∂r
k̂,

or finally,

∂ω

∂t
=

(
−U ∂ξ

∂r
+
dv

dr

dU

dz

)
cos θr̂ −

[(
2v

r
− U sin θ

r

)
ξ +

v

r

dU

dz
sin θ

]
θ̂ − U cos θ

∂ζ

∂r
k̂

(1.37)

Special cases:

1. Uniform flow (U = constant), barotropic vortex, v = v(r) ⇒ ξ = 0

∂ω

∂t
= −U cos θ

∂ζ

∂r
k̂ ⇒ ∂ζ

∂t
= −U ∂ζ

∂x

In this case there is only vertical vorticity and this is simply advected by the
basic flow as discussed in Chapter 1.

2. No basic flow (U = 0), baroclinic vortex, v = v(r, z)

∂ω

∂t
= −2v

r
ξθ̂

∂ξ

∂t
= 0,

∂η

∂t
= −2v

r
ξ,

∂ζ

∂t
= 0

In this case there are initially two components of vorticity, a radial component and
vertical vertical component, but in general, the vortex does not remain stationary
as there is generation of toroidal vorticity. The exception is, of course, when the
vortex is in thermal-wind balance in which case there is generation of toroidal
vorticity of the opposite sign by the horizontal density gradient so that the net
rate-of-generation of toroidal vorticity is everywhere zero.

3. Uniform flow (U = constant), baroclinic vortex, v = v(r, z)

∂ω

∂t
= −U cos θ

∂ξ

∂r
r̂ −

(
2v

r
− U sin θ

r

)
ξθ̂ − U cos θ

∂ζ

∂r
k̂

∂ξ

∂t
= −U ∂ξ

∂x

∂η

∂t
= −

(
2v

r
− U sin θ

r

)
ξ

∂ζ

∂t
= −U ∂ζ

∂x

Again there are initially two components of vorticity, a radial component and
vertical vertical component, and again there is generation of toroidal vorticity
unless the vortex is in thermal-wind balance. However, even in the latter case
there would appear to be a generation of toroidal vorticity at the rate (U sin θ/r)ξ.
It can be shown that this rate-of-generation is associated with the coordinate
system represented by the unit vectors r̂, θ̂, k̂, is fixed (see Exercise 1.3). Thus as
the vortex moves away from the origin of coordinates, the radial component of
vorticity in the moving frame projects onto the θ̂-component in the fixed frame.
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4. Uniform shear flow (dU/dz = constant = U ′), barotropic vortex, v = v(r) ⇒ ξ =
0

∂ω

∂t
=
dv

dr

dU

dz
cos θr̂ +

v

r

dU

dz
sin θθ̂ + U cos θ

∂ζ

∂r
k̂

∂ξ

∂t
= −U ∂ξ

∂x
+
dv

dr

dU

dz
cos θ

∂η

∂t
=
v

r

dU

dz
sin θ

∂ζ

∂t
= −U ∂ζ

∂x

Translation of the balanced density field

Let ρ = p0(r, z) at time t = 0. Then

∂ρ

∂t
= −∇ · (ρu) = −u · ∇ρ− ρ(∇ · u).

Now the velocity field u = (U cos θ, v − U sin θ, 0) is nondivergent (∇ · u = 0) and
therefore

∂ρ

∂t
= −U cos θ

∂ρ

∂r
− (v − U sin θ)

r

∂ρ

∂θ
.

The second term on the right-hand-side is zero because ρ is dependent of θ whereupon

∂ρ

∂t
= −U ∂ρ

∂x

and the density field is simply advected at speed U .

Exercise 1.3 Show that the term (U sin θ/r)ξ in Eq. (1.37) is the rate-of-generation

of toroidal vorticity in the fixed coordinate system represented by the unit vectors r̂, θ̂, k̂
due to the subsequent displacement of the vortex centre from the coordinate origin.

Exercise 1.4 Show that

∂

∂r
=

∂

∂x

∂x

∂r
+

∂

∂y

∂y

∂r
= cos θ

∂

∂x
+ sin θ

∂

∂y
,

and
1

r

∂

∂θ
=

1

r

∂

∂x

∂x

∂θ
+

1

r

∂

∂y

∂y

∂θ
= − sin θ

∂

∂x
+ cos θ

∂

∂y
,

Deduce that
∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
,

and
∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
.
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Figure 1.15: See text for discussion.

Solution to Exercise 1.3
Let the vortex be centred at the origin at time t = 0 and at a position Ut from the
origin at time t (Fig. 1.15). At time t, the radial component of vorticity is ω′

rr̂
′ = ξr̂′

and we are interested in the projection of this vector in the λ̂
′
direction. In particular

we want to calculate its rate of change

Λ =
d

dt
(ξr̂′ · λ̂) = ξ

d

dt
sinφ

Consider r∧ r′ = |r||r′| sinφk̂, where k̂ is a vector normal to the plane of r and r̂′ and
note that r′ = r −Xi. Then

k̂ sinφ =
Xi ∧ r′
|r| |r′| = k̂

X

|r| sin λ

so that
d

dt
sinφ =

1

r
sin λ

dX

dt
=
U

r
sin λ

and therefore

Λ =
U

r
ξ sinλ

as required.
*** Fujiwhara effect

Explain why at this point we need to look at wave motions before looking at other
aspects of motion.



CHAPTER 1. TROPICAL CYCLONE MOTION 29

1.6 Appendices to Chapter 1

1.6.1 Derivation of Eq. 1.16

We require the solution of ∇2ψa = ζ , when ζa(r, θ) = ζ̂(r)einθ. Now

∇2ψa =
∂2ψa

∂r2
+

1

r

∂ψa

∂r
+

1

r2

∂2ψa

∂θ2
= ζ̂(r)einθ

Put ψ = ψ̂(r)einθ, then

d2ψ̂

dr2
+

1

r

dψ̂

dr
− n2

r2
ψ̂ = ζ̂(r). (1.38)

When ζ̂(r) = 0, the equation has solutions ψ̂ = rα where

[α(α− 1) + α− n2]rα−2 = 0,

which gives
α2 − n2 = 0 or α = ±n.

Therefore, for a solution of (1.38), try ψ̂ = rnφ(r). Then

ψr = rnφr + nrn−1φ, ψrr = rnφrr + 2nrn−1φr + n(n− 1)rn−2φ (1.39)

whereupon (1.38) gives

rnφrr + 2nrn−1φr + n(n− 1)rn−2φ

+ rn−1φr + nrn−2φ− n2rn−2φ = ζ̂ ,

or
rnφrr + (2n+ 1)rn−1φr = ζ̂ .

Multiply by rβ and choose β so that n+ β = 2n+ 1, i.e., β = n+ 1. Thus rn+1 is the
integrating factor. Then

d

dr

[
r2n+1φ(r)

]
= rn+1ζ̂(r), (1.40)

which may ne integrated to give

r2n+1dφ

dr
=

∫ ∞

r

pn+1ζ̂(p)dp+ A,

where A is a constant. Therefore

dφ

dr
=

1

r2n+1

∫ ∞

r

pn+1ζ̂(p)dp+
A

r2n+1

Finally,

φ =

∫ ∞

r

dq

q2n+1

∫ ∞

q

pn+1ζ̂(p)dp+

∫ ∞

q

Adq

q2n+1
+B, (1.41)
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Figure 1.16: The domain of integration for the integral (1.41) is the shaded region.

where B is another another constant. The domain of the double integral is the shaded
region shown in Fig. 1.16 in which p goes from q to ∞ then q goes from r to ∞. If we
change the order of integration in (1.41), q goes from r to p and then p goes from r to
∞, i.e.

φ =

∫ ∞

r

pn+1ζ(p)dp

∫ p

r

dq

q(2n+1)
− A

2nr2n
+B

=
1

2n

[∫ ∞

r

pn+1ζ̂(p)dp− A

]
1

r2n
+B − 1

2n

∫ r

0

p1−nζ̂(p)dp.

Finally

ψ̂(r) = − rn

2n

∫ r

0

p1−nζ̂(p)dp+ Brn +
1

2nrn

[∫ ∞

r

pn+1ζ̂(p)dp− A

]
.

Now ψ̂(r) finite at r = 0 requires that

A =

∫ ∞

0

pn+1ζ̂(p)dp

and ψ̂(r) finite as r → ∞ requires that

B =

∫ ∞

0

p1−nζ̂(p)dp

Therefore

ψ̂(r) = − rn

2n

∫ ∞

r

p1−nζ̂(p)dp− r−n

2n

∫ 0

r

pn+1ζ̂(p)dp, (1.42)

as required.
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1.6.2 Solution of Eq. 1.25

The asymmetric flow Ua is obtained from Eqs. (1.17) and (1.18) and c is obtained
from (1.21). We can calculate the streamfunction Ψ′

a of the vortex-relative flow Ua−c,
from

ψ′
n = ψa − ψc,

where

ψ′
c = r(Va cos λ− Ua sinλ) = r

[
∂Ψ1

∂r

∣∣∣∣
r=0

cosλ+
∂Ψ2

∂r

∣∣∣∣
r=0

sin λ

]
. (1.43)

Then using (1.15), (1.16), (1.20) and (1.43) we obtain

ψ′
a = Ψ′

1(r, t) cos θ + Ψ′
2(r, t) sin θ, (1.44)

where

Ψ′
n(r, t) = Ψn − r

[
∂Ψn

∂r

]
r=0

, (n = 1, 2)

=
1

2
r

∫ r

0

(
1 − p2

r2

)
ζn(p, t)dp. (1.45)

After a little more algebra it follows using (1.17), (1.18), (1.21) and (1.45) that

−(Ua − c) · ∇ζs = χ1(r, t) cosλ+ χ2(r, t) sin λ, (1.46)

where [
χ1(r, t)
χ2(r, t)

]
=

1

r

dζs
dr

×
[
ψ′

2(r, t)
−ψ′

1(r, t)

]
. (1.47)

Now using (1.46) and (1.47), Eq. (1.45) can be written as

dζa1

dT
=

1

r

dζs
dr

(Ψ′
2(r, t) cosλ− Ψ′

1(r, t) sinλ) ,

where d/dt denotes integration following a fluid parcel moving in a circular path of
radius r about the vortex centre with angular velocity Ω(r). It follows that

ζa1 =
1

r

dζs
dr

∫ t

0

[Ψ′
2(r, t

′) cosλ(t′) − Ψ′
1(r, t

′) sinλ(t′)]dt′,

where λ(t′) = λ− Ω(r)(t− t′). Using Eq. (1.45), this expression becomes

ζa1 =
1

2

dζs
dr

∫ t

0

∫ r

0

(
1 − p2

r2

)
× [ζ2(p, t

′) cosλ(t′) − ζ1(p, t
′) sinλ(t′)] dpdt′,

and it reduces further on substitution for ζn from (1.14) and the above expression for
λ(t′) giving

ζa1 =
1

2
β
dζs
dr

∫ r

0

p

(
1 − p2

r2

)

×
∫ t

0

[cos {λ− Ω(r)(t− t′)} − cos {λ− Ω(r)(t− t′) − Ω(p)t′}]dt′dp.
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On integration with respect to t′ we obtain

ζa1(r, θ, t) = ζ11(r, t) cosλ+ ζ12(r, t) sinλ (1.48)

where

ζ1n(r, t) =

∫ t

0

χn(r, t)dt

= −1

2
β
dζs
dr

∫ r

0

p

(
1 − p2

r2

)
ηn(r, p, t)dp, (1.49)

and

η1(r, p, t) =
sin {Ω(r)t}

Ω(r)
− sin {Ω(r)t} − sin {Ω(p)t}

Ω(r) − Ω(p)
, (1.50)

η2(r, p, t) =
1 − cos {Ω(r)t}

Ω(r)
+

cos {Ω(r)t} − cos {Ω(p)t}
Ω(r) − Ω(p)

, (1.51)

The integrals in (1.50) can be readily evaluated using quadrature.




