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A B S T R A C T
Although the large-scale tropical atmospheric circulations are often considered as primarily divergent, a simple scale
analysis, originally presented by Charney (1963), suggests otherwise—a dominance of vorticity over divergence.
The present paper quantitatively documents the asymptotic non-divergence of the large-scale tropical atmosphere, in
association with Madden–Julian oscillations, with use of the Tropical Ocean Global Atmosphere—Coupled Ocean
Atmosphere Response Experiment, Large-Scale Array (TOGA–COARE LSA) data set.

The vorticity is larger than the divergence at the majority (70%–80%) of points at any instant for the levels between
850 and 250 hPa, and the vorticity is more than 10 times stronger than the divergence both at 850 and 500 hPa more than
half of the time. The root mean square (rms) ratio between the transient components of divergence and vorticity, which
is defined as the deviation from the mean for the whole data period, decreases substantially with increasing horizontal
scales from 100 to 2000 km, over an intraseasonal timescale (20–100 d). The analysis suggests that the Madden–Julian
oscillations are dominated more by vorticity than divergence and more so than at the smaller scales.

The analysis as a whole suggests the feasibility of constructing an asymptotically non-divergent theory for large-scale
tropical circulations. A brief sketch of the formulation is presented.

1. Introduction

A popular view of large-scale tropical circulation could be sym-
bolized by a global satellite image showing extensive moist con-
vective activity over the tropics. This activity is associated with
strong latent heating, which in turn induces strongly divergent
flow. However, the tropical large-scale circulation is likely not
as strongly divergent as it appears, as originally pointed out by
Charney (1963).

Charney (1963) showed this point by a simple scale analysis
as reproduced here, generalizing it to the diabatic case. Charney
considered only the adiabatic case. His conclusion does not
change by adding the diabatic heating because the latter effect
is relatively weak in the large-scale average considered here.

Let a typical horizontal scale of the large-scale tropical circu-
lations be L ∼ 1000 km, a vertical scale H ∼ 10 km, a horizontal
velocity U ∼ 10m s−1, a typical vertical gradient of the poten-
tial temperature dθ/dz ∼ 3 K km−1 and a diabatic heating rate
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Q ∼ 3 K d−1 ∼3 × 10−5 K s−1, where 1 d ∼105 s. Here, diabatic
heating represents both radiative and latent heating associated
with moist convection. More precisely, diabatic heating as de-
fined here must be interpreted as a quantity averaged over a large
horizontal scale (the order of magnitude of L), also including the
transport by eddies not explicitly represented in the large-scale
average, more formally defined as the apparent heat source by
Yanai et al. (1973).

The argument hinges strongly on an observationally well-
known thermodynamic balance in the large-scale tropical at-
mosphere between the vertical advection and diabatic heating
Q:

w(dθ/dz) � Q, (1)

where w is the vertical velocity (e.g. Mapes and Houze, 1995;
Frank and McBride, 1989; Yano, 2001; see fig. 1 of Yano in
particular). Sobel et al. (2001) proposed calling this balance
(eq. 1) the weak temperature gradient (WTG) approximation.
Under this balance, the order of magnitude W of the vertical
velocity is estimated as

W ∼ Q/(dθ/dz). (2)
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Consequently, the magnitude of horizontal divergence is esti-
mated by

∇ · vH ∼ W/H ∼ [Q/(dθ/dz)]/H

∼ (3 × 10−5/3 × 10−3)/104 ∼ 10−6 s−1, (3)

whereas a direct estimate of the horizontal divergence from the
horizontal velocity is given by

∇ · vH ∼ U/L ∼ 10/106 ∼ 10−5 s−1. (4)

Clearly, this direct estimate of divergence is too strong to be
balanced by diabatic heating, indicating that the tropical large-
scale circulation is, in fact, non-divergent to a leading order. We
call this notion ‘asymptotic non-divergence’, which we examine
by data analysis in the present paper.

The order of magnitude of vorticity is estimated in the same
manner as for the horizontal divergence by U/L (cf. eq. 4).
However, we do not see any physical constraint that further limits
the magnitude of vorticity, thus it is reasonable to anticipate that
the order of magnitude of the vorticity remains U/L. Hence, a
simple corollary of asymptotic non-divergence is that the tropical
large-scale circulations are dominated by vorticity more than
divergence.

Sardeshmukh and Hoskins (1987) originally made this argu-
ment and extensively documented this point for climatological
circulations, but they presented only one instantaneous field at
the synoptic timescale (their fig. 13). A systematic analysis of
asymptotic non-divergence is yet to be performed for the syn-
optic scale. This is a specific goal of the present paper.

The Tropical Ocean Global Atmosphere—Coupled Ocean
Atmosphere Response Experiment (TOGA–COARE) Large-
Scale Array (LSA) data set is employed for this purpose (cf.
Webster and Lukas, 1992). The data set is described in the next
section. A synoptic overview during TOGA–COARE is pre-
sented in Section 3, particularly in the context of the Madden–
Julian oscillations (MJO). A statistical analysis is presented in
Section 4 to further quantify a tendency towards asymptotic
nondivergence. Results are discussed in Section 5.

The MJO and other so-called convectively coupled equato-
rial waves (cf. Wheeler and Kiladis, 1999) provide particular
motivation for the present study because the associated vorticity
fields are rarely examined. If these variabilities are indeed vor-
ticity dominated, not only must the strategy for data analysis be
modified, but there will be a need also for developing a new type
of theory.

The present analysis supports the idea that the large-scale
tropical atmosphere can be treated as non-divergent to a lead-
ing order of asymptotic approximation (cf. Bender and Orszag,
1978). In other words, large-scale tropical circulations are pri-
marily dictated by a vorticity conservation law (see eq. 5 below),
in the same manner as the mid-latitude large-scale circulations
are dictated by a potential vorticity conservation law (cf. Hoskins
et al., 1985). This point of view is qualitatively different from

the traditional view based on equatorial waves (cf. Wheeler and
Kiladis, 1999).

Of course, asymptotic non-divergence does not mean that
divergence plays no role at all. On the contrary, important effects
of weak non-divergence associated with moist convection are
taken into account as a slow timescale process at a higher order
of asymptotic expansion. As a result, the divergent field plays a
catalytic role in large-scale tropical circulations.

We believe that a much more lucid theory for large-scale
tropical circulations could be developed under the asymptotic
non-divergence hypothesis. Though a development of a com-
plete theory is beyond the scope of the paper, a brief sketch
of the formulation is presented in Section 6 in concluding the
paper. The significance of the vorticity conservation law for the
large-scale tropical atmospheric dynamics is also discussed in
the last section.

2. Data set

A gridded data set over the LSA domain during the TOGA–
COARE Intensive Observing Period (IOP 1 November 1992–28
February 1993) is used for the present study. The data set was
processed at the Colorado State University and it is available
at http://tornado.atmos.colostate.edu/togadata/gridded.html. In
constructing this data set, the merged profiler/rawinsonde data
set (Ciesielski et al., 1997) and sounding data from other prior-
ity sounding sites have been used. In performing multiquadric
interpolation (cf. Nuss and Titley, 1994), the gridded fields are
constructed at 25 hPa vertical resolution from 1000 to 25 hPa
and at 1◦ resolution, both in longitude and latitude. The analysis
domain spans 140◦E–180◦E in longitude, 10◦S–10◦N in latitude.

For the present study, both divergence δ and vorticity ζ are
calculated from the horizontal wind components using a stan-
dard centered difference scheme. An objectively diagnosed di-
vergence field δD that removes potential systematic errors is also
provided as part of data product (cf. Haertel, 2002); however, no
equivalent correction for vorticity is available. For consistency
in the treatment of the two variables, the corrected divergence
field is not used in the present study.

A linear regression shows that the two diagnosed divergence
fields are best fit by

δD = 1.013δ + 2.190 × 10−8,

with the correlation coefficient 0.996 for the whole domain and
period of the data.1 Hence, for the present statistical analyses,

1 A discrepancy is partially due to different grids used in evaluating the
divergence. The diagnosed divergence provided on the web is evalu-
ated using winds objectively interpolated onto the Arakawa’s C-grid, on
which the winds are staggered at half gridpoints relative to the the other
variables. The wind values are later re-interpolated onto the same whole
gridpoints as the other variables for public release (Paul Ciesielski, per-
sonal communication, December 2007).
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the results are insensitive to the choice of divergence data. Fur-
thermore, to avoid possible systematic errors, some analyses are
repeated by taking an average of 2 × 2 gridpoints with basically
no change in the results (cf. Section 4.2 below).

The TOGA–COARE data set is chosen because of its easy
accessibility, and, more importantly, because of our preference
for statistically analyzed data over assimilated data, to avoid the
possible biases from the physical parametrizations of the global
model on which the assimilation is based. Though it is too naive
to imagine that the statistical analysis data are not prone to
errors (cf. Mapes et al., 2003), we believe, as discussed above,
that the present statistical analysis is not strongly affected by
these errors.

3. Synoptic overview

During the TOGA–COARE period, two MJO events are identi-
fied (see e.g. fig. 3 of Yanai et al., 2000). The first MJO passed
over the Indian Ocean to the Western Pacific Ocean from mid
December to early January. The second occurred in February.
The evolution of the divergence and the vorticity fields asso-
ciated with the two MJO events is shown Figs. 1 and 2, re-
spectively, as height-longitude sections. The first two panels (a)
and (b) show the two periods prior to the arrival of the MJO

Fig. 1. Height-longitude sections of the divergence field averaged over 5◦S–5◦N for time average of the periods: (a) 1–16 November 1992;
(b) 16 November–1 December 1992; (c) 16 December 1992–1 January 1993 and (d) 1–16 February 1993. The divergence is shown by grey tones
with values indicated in unit of 10−6 s−1.

events into the LSA region. The last two panelss (c) and (d)
show the fields during the first and the second MJO over LSA,
respectively. The only strong signal of divergence is seen at
the tropopause level. On the other hand, the signal of vortic-
ity extends over the whole troposphere with a maximum at the
850 hPa level. The divergence field is clearly much weaker
than the vorticity field over the whole troposphere during the
two MJO events. In other words, vorticity dominates divergence
during the MJO. On the other hand, the dominance of vorticity
over divergence is less clear during pre-MJO periods, when both
fields are substantially suppressed.

The time-longitude sections of the two fields are shown Fig. 3,
panel (a) the vorticity at 850 hPa and panel (b) the divergence
at 150 hPa. The level with the strongest divergence is chosen in
this comparison. Recall that the divergent field is much weaker
at lower levels. Inspection of Fig. 3 shows that the magnitude
of the divergence is always weaker than that of the vorticity,
in spite of the fact that the vertical level with the strongest
divergence is taken for the comparison. Hence, contrary to the
common notion, vorticity dominates divergence in the tropical
large-scale circulations associated with the occurrence of MJO.

However, the two fields associated with the MJO events (in-
dicated by OLR in Fig. 3) are clearly correlated and propagate
together eastwards. The tendency is particularly clear for the first
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Fig. 2. The same as Fig. 1 but for the vorticity field. Note that the grey tones are given in the same scale as for Fig. 1 so that a direct comparison of
the two fields is possible.

Fig. 3. Time-longitude sections of (a) the vorticity at 850 hPa and (b) the divergence at 150 hPa averaged over 5◦S–5◦N. Values of the two fields are
indicated by grey tones defined by the tone bar at the bottom in unit of 10−6 s−1. Note that the same scale range is used for the two fields for easy
comparisons of the magnitudes. Superposed on both frames are OLR averaged over 5◦S–5◦N with solid (180 W m−2) and dashed (200 W m−2)
curves.
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Fig. 4. Scatter plots between the vorticity (horizontal axis) and the divergence (vertical axis) over the IFA region at (a) 850, (b) 500, (c) 250 and (d)
150 hPa. The four gridpoints (151◦E, 3◦S), (153◦E, 3◦S), (151◦E, 1◦S) and (153◦E, 1◦S) over the IFA region are plotted with varying symbols.

event from mid December to early January, however, less so for
the second due to its stalling after reaching the LSA region (cf.
fig. 3 of Yanai et al., 2000).

The divergence field tends to be in phase with the convec-
tion maximum (corresponding to the OLR minimum), whereas
the vorticity field is slightly lagged behind, presumably being
induced by the divergence. Thus, though the divergence field is
weak, it has a catalytic role in controlling the vorticity field.

We also presume that the vorticity field is associated with the
double Rossby vortices in the Gill (1980) solution as indicated
by, for example, figs. 7 and 8 of Yanai et al. (2000). Unfortu-
nately, due to a limited latitudinal span (10◦S–10◦N) of the LSA
data adopted here, we cannot examine the whole structure of the
Rossby vortices.

4. Statistical analysis

4.1. Scatter plots

To better quantify the tendency towards asymptotic non-
divergence suggested in the previous section, some statistical
analyses are presented in this section. Probably the most intu-

itive way to see a relative magnitude of the two variables is to
consider scatter plots (e.g. Yano, 2001).

The scatter plots between vorticity and divergence at four
gridpoints (151◦E, 3◦S), (153◦E, 3◦S), (151◦E, 1◦S) and (153E,
1S) over the Intensive Flux Array (IFA) region are presented
Fig. 4 for the four vertical levels: (a) 850; (b) 500; (c) 250 and
(d) 150 hPa. Note that the whole IOP is used for the plots. For the
850–250 hPa levels, the scatter plot is dominated by horizontal
spread (the axis for vorticity) rather than vertical spread (the
axis for divergence), although this is less obvious at 250 hPa. On
the other hand, at 150 hPa, the magnitudes of the two variables
become almost comparable.

4.2. Cumulative probability

The tendency toward asymptotic non-divergence is further quan-
tified by the cumulative probability of the absolute ratio of the
divergence δ to the vorticity ζ , |δ/ζ |, as shown Fig. 5. The whole
LSA data set is used as a sample space. The vertical axis (cu-
mulative probability) shows the probability that the ratio |δ/ζ |
is less than the reference ratio given by the horizontal axis for
two different ranges in panels (a) and (b). The majority of points
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Fig. 5. Cumulative probability distributions for the absolute ratio of
the divergence δ to the vorticity ζ , |δ/ζ |, at 850 (solid curve), 500
(long-dashed), 250 (chain-dashed) and 150 hPa (short-dashed). The
sample is for the whole LSA data set. The probability is shown in two
different ranges for (a) log |δ/ζ | = [−10, 10] and (b) [−4, 4],
respectively, to see a global structure as well as a local structure around
log |δ/ζ | ∼ 0.

are characterized by an absolute value of vorticity larger than
divergence between 850 and 250 hPa. These points constitute
more than 80% of the total both at 850 (solid curve) and 500 hPa
(long-dashed) and more than 70% at 250 hPa (short-dashed).

Even the chance that vorticity is 10 times stronger than diver-
gence (i.e. log |δ/ζ | = −1) is quite high, with the probabilities
of 59.1%, 55.6% and 42.7%, respectively, at the 850, 500 and
250 hPa levels. The maximum of the probability density, defined
as a function of log (|δ/ζ |), is reached at |δ/ζ | = 0.04, 0.04 and
0.25, respectively, at 850, 500 and 250 hPa.2 Note that the corre-
sponding values are 0.06, 0.1 and 0.25 when the 2 × 2 gridpoint
average is applied.

2 When a dependent variable for the probability density p is chosen either
as |δ/ζ | or |ζ/δ|, the maximum is found at zero, because the probability
density for log (|δ/ζ |) does not decay fast enough towards both directions
of the tails. Note that the probability densities p(|δ/ζ |), p(|ζ/δ|), defined
as functions of these ratios are related to the one defined as a function
of log (|δ/ζ |) by p(|δ/ζ |) = |ζ/δ| p(log (|δ/ζ |)) and p(|ζ/δ|) = |δ/ζ |
p(log (|δ/ζ |)).

On the other hand, asymptotic divergence at the level of
tropopause (150 hPa) is no longer clear—only 40% of the data
present stronger vorticity than divergence.

4.3. RMS ratio

Another way of quantifying the dominance of vorticity over
divergence is to take the ratio between the root mean square (rms)
of divergence and of vorticity, that is, 〈δ2〉1/2/〈ζ 2〉1/2, where 〈 〉
designates the space and time mean of a variable over the whole
LSA data set for a given vertical level. The rms ratio is found to
be 0.36 at 850 hPa, 0.40 at 500 hPa and 0.59 at 250 hPa.

These values are not as small as suggested by the probability
analysis, though the two analyses do not quantify the same aspect
of asymptotic non-divergence. The rms ratio measures a mean
relative spread of the two variables, whereas the probability
analysis identifies a likely instantaneous ratio.

Comparison of the two analyses suggests that divergence is
more likely to be weaker than average, when vorticity is stronger.
This is consistent with the time-longitude section in Fig. 3, which
shows that vorticity tends to lag divergence. On the other hand, a
relatively large rms ratio suggests that there is still a substantial
number of strongly divergent events.

4.4. Time-space scale dependence: total components

Strongly divergent events are likely to be sporadic and asso-
ciated with short timescale and small spatial-scale convective
variabilities. Thus, they would be relatively easily filtered out
by applying time and space averages, whereas the magnitude
of the vorticity field would diminish less with averaging, being
dominated by larger-scale features.

To test this interpretation, a moving average is applied in
both time and space simultaneously to divergence and vorticity,
then the ratio of the rms is evaluated. Here, the space averaging
is performed over square domains with an equal distance, in
degrees, in both longitude and latitude. The horizontal distance
in latitude is translated into the unit of km in presenting the
results.

Figure 6 shows the rms ratio at 850 hPa as a function of both
time- and space-scale averaging. The time-averaged rms ratio
decreases over the first few days by one third, then the ratio
gradually approaches a constant 0.24 with increasing timescales
and a fixed spatial scale below 400 km. The tendency at larger
horizontal scales is much less intuitive: the rms ratio increases
with increasing horizontal scales with the tendency more pro-
nounced at scales longer than few days.

4.5. Time-space scale dependence: transient
components

We speculate that the non-vanishing tendency of divergence in
the long timescale limit is due to a contribution of the time-mean
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Fig. 6. RMS ratio of the divergence to the vorticity, that is,
〈δ2〉1/2/〈ζ 2〉1/2 at 850 hPa, as functions of the averaging scales in time
(horizontal axis) and horizontal scale (vertical axis).

Fig. 7. The same as Fig. 6 but for the transient components
〈δ′2〉1/2/〈ζ ′2〉1/2, where the prime indicates a deviation from the time
mean.

Hadley–Walker circulation, which is inherently divergent. To
test this hypothesis, the analysis is repeated for transient com-
ponents, subtracting the time means, of both divergence and
vorticity.

The result presented Fig. 7, however, shows by contradicting
the hypothesis that the rms ratio for the transient components
decreases much slower with increasing timescales than that for
the total component for the horizontal scales less than 800 km.
The ratio remains close to 0.3 up to the 100-day scale, when
no spatial average is applied. A sudden decrease above this
timescale is remarkable, but it has no statistical significance due
to a drastic decrease in sampling size with increased averaging.

A starker contrast to the case with the total component is
that the rms ratio decreases with increasing horizontal scales
for a range of timescales 20–100 d. The result suggests that the
intraseasonal variability associated with the MJO is dominated
by vorticity more than synoptic and mesoscale variabilities.

Two well-defined minima at the horizontal scale ∼1600 km
and at the periods 40 and 90 d are remarkable. Nevertheless, the
barrier separating these two peaks is relatively weak (the increase
is only 0.02). A statistically independent point representing this
barrier is no more than one with no more than two cycles repeated
for the given timescale (80 d) over the whole data period. Hence,
neither the amplitude nor the degree of freedom representing this
barrier is large enough to make it statistically significant.

On the other hand, the broad minimum over the timescales
20–100 d at the horizontal scale ∼1600 km is clearly statis-
tically significant. The order of magnitude of the minimum is
comparable to the total variance of the rms ratio. Furthermore,
we estimate the number of statistically-significant points over
the broad minimum, by counting the number of discrete periods
available in the Fourier space over the given period range. The
degree of freedom approximately equal to 10 provides a suffi-
ciently large “normalized” difference to pass the Student test of
significance.

5. Discussion

According to a scale analysis originally presented by Charney
(1963), the divergence field on the tropical large-scale (of the
order 103 km) is about 10 fold smaller than the vorticity field.
Hence, the large-scale tropical atmosphere may be treated as
non-divergent to a leading order of asymptotic expansion (cf.
Bender and Orszag, 1978).

The analysis of the present paper using the TOGA-COARE
LSA data set generally supports asymptotic non-divergence,
showing that divergence is small compared with vorticity. The
scatter plots most intuitively demonstrate this point. More quan-
titatively, at the majority (70%–80%) of points at any instant at
the levels between 850 and 250 hPa, vorticity dominates diver-
gence, and more than half of the time, vorticity is more than
10 times stronger than divergence both at the 850 and 500 hPa
levels.

On the other hand, the overall ratio of the two fields measured
by the rms is just less than a half at 850–250 hPa. Though the
obtained ratio is not as small as indicated by the probability
analysis, it would still justify the use of an asymptotic expan-
sion with a non-divergent flow to a leading order. A parameter
that is small only by a fractional factor is often sufficient for
performing an asymptotic expansion (cf. Bender and Orszag,
1978; see also e.g. Yano, 1992 for a specific example), in stark
contrast to the notion of an analytical limit. The relatively large
ratio compared with the original estimate by Charney (1963) is
probably attributed to a large wind-speed scale, U ∼ 10 m s−1,
adopted in his scale analysis.

Tellus 61A (2009), 3



424 J.-I . YANO ET AL.

The change of the degree of asymptotic non-divergence with
increasing scales, both in time and space, is investigated by
taking the ratio of the rms between divergence and vorticity.
Both the total and the transient components are considered. The
rms ratio between the total components is expected not to vanish
in the limit of long timescale due to the presence of the time-
mean Hadley–Walker circulation. This turns out to be the case
with a constant 0.24 at 850 hPa. However, even when the time-
mean contribution is removed from both divergence and vorticity
and only the transient components are considered, the rms ratio
does not vanish to a limit of long timescale but approaches a
larger constant (∼0.3). The result suggests that the transient
component of divergence is more dominant than the total field
at all the timescales considered.

Even less intuitive results are found in the tendencies of the
change of the rms ratio with increasing horizontal scales: these
tendencies are opposite when the total and the transient com-
ponents are considered. These opposing tendencies may be un-
derstood by assuming a balance between vertical advection and
diabatic heating in the thermodynamic eq. (1). Then the order
of magnitude W of the vertical velocity is estimated by eq. (2)
and the divergence by W/H (cf. eq. 3). The order of magnitude
of the vorticity is U/L, thus their ratio is estimated by

O(δ/ζ ) ∼ (W/H )/(U/L) ∼ QL,

assuming that dθ/dz, H and U do not change with the horizontal
scale L.

When the total components are considered, the ratio increases
with increasing horizontal scales for all the timescales consid-
ered, probably because more or less the same order of magnitude
of diabatic heating Q is found for all the horizontal scales con-
sidered. It then follows that O(δ/ζ ) ∼ L, being qualitatively
consistent with the analysis result.

On the other hand, when only the transient components are
considered, it appears that the magnitude of Q decreases with in-
creasing horizontal scale L and at a rate faster than the magnitude
of vorticity decreases with L. It then follows that the rms ratio for
the transient components decreases with increasing horizontal
scales, as observed. The result furthermore implies that the so-
called convectively coupled equatorial waves such as MJO are
dominated by vorticity more than synoptic and mesoscale pro-
cesses, being consistent with the qualitative analysis presented
in Section 3.

A main feature still to be explained in the above interpretation
is the tendency of the total diabatic heating rate Q to stay constant
with increasing timescales. The simplest explanation would be
to assume that the diabatic heating rate follows a 1/f -noise
time-series. The 1/f -noise refers to a time-series that represents
a power spectrum of shape 1/f , where f stands for frequency
(Yano et al., 2001a, 2004). The 1/f -noise time-series is unique
in that its total variability does not change with time averaging
(cf. fig. 1 of Yano et al., 2004).

6. Towards an asymptotically non-divergent
theory

The question remains: what is the significance of asymptotic
nondivergence? How can we describe the large-scale tropical
atmosphere consistently under asymptotic non-divergence? In
this section, we succinctly address these two issues in subsequent
two subsections but with a full description of an asymptotic
formulation left for future work.

6.1. Dynamical implications

Asymptotic non-divergence has a very simple dynamic impli-
cation: to a first approximation, large-scale tropical circulations
may be considered as purely horizontal two-dimensional flows.
As for all two-dimensional flows, the vorticity conservation
law dictates the evolution of the whole system. In fully non-
linear regimes, it further implies that the tropical large-scale
circulations can, to a good extent, be understood in terms of
two-dimensional turbulence. On an equatorial β-plane, inter-
plays of the inverse cascade and Rossby waves lead to coherent
vortices and zonal jets, as for the mid-latitude counterpart (cf.
Rhines, 1975). Convection does not play any role in these pro-
cesses, although it may play a role in generating an initial noise
field.

Clearly, asymptotic non-divergence is at odds with the con-
ventional view of the tropical atmosphere, where divergent flows
with deep convection dominate. Thus, the next question is: to
what extent these effects are negligible and, more importantly,
in what way these effects can be incorporated into a framework
of asymptotically non-divergent theory? Here, asymptotic non-
divergence implies that the circulations may be considered to be
non-divergent to leading order, but the catalytic effect of weak
divergence can be taken into account as a higher-order effect in
the asymptotic expansion.

How can the catalytic role for convectively driven divergent
flows be introduced? The original proposal by Charney (1963)
was to treat localized strongly divergent convective regions sep-
arately under a separate dynamical regimes. Though he stopped
short of developing a rigorous formulation, these localized con-
vective regions could be treated, for example, as point-wise,
convectively induced vorticity sources of divergence (i.e. the
small-scale counterpart of the second term in the left-hand side
of eq. 11 below). Here, alternatively, convective forcing of vor-
ticity is treated as a slow timescale process by smoothing these
localized divergent fields onto larger scales under a framework of
multiscale asymptotic expansion theories, as detailed in the next
subsection. We refer to chapter 11 of Bender and Orszag (1978)
and section 3.20 of Pedlosky (1987) for the basic notions of the
multiscale approaches. Such an asymptotic expansion approach
has already been extensively applied to tropical atmospheric
large-scale dynamics (e.g. Majda and Klein, 2003; Biello and
Majda, 2005).
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6.2. Sketch of an asymptotically non-divergent
formulation

We consider a primitive equation system in pressure coordi-
nates with the full set of equations as found in any standard
textbook (e.g. Holton, 2004). The formulation sketched out in
this subsection may be considered as a generalization of the
WTG approximation (Sobel et al., 2001) by adding asymptotic
non-divergence on top of that.

As originally pointed out by Charney (1963), the system re-
duces to a non-divergent vorticity equation to leading order with
the assumption of asymptotic non-divergence, that is,(

∂

∂t
+ v0 · ∇

)
(ζ0 + f ) = 0, (5)

where v is the horizontal wind, f the Coriolis parameter and
∇ refers to a gradient operator on a constant p-surface. All
the dependent variables are expanded by a formal expansion
parameter, ε, which is set equal to one in obtaining the final
results (cf. section 31, Schiff, 1968), for example,

ζ = ζ0 + εζ1 + · · · ,
with ∇ ·v0 = 0 and ω0 = 0 by assumption of leading-order
non-divergence. Here, ω is the vertical velocity in pressure co-
ordinates. Note that eq. (5) constitutes a closed equation set,
that is, under asymptotic non-divergence, the evolution of the
large-scale tropical flows is described solely in terms of the vor-
ticity to the leading order, as already emphasized in Section 6.1.
Also note that the system described by eq. (5) conserves both
kinetic energy and enstrophy, the two important quantities that
constraint the cascade tendency of two-dimensional turbulence.

Due to leading-order non-divergence, the divergence equation
turns into a diagnostic equation for the geopotential φ0:

∇2φ0 = −∇2 v2
0

2
+ k · ∇ × (ζ0 + f )v0, (6)

then the hydrostatic balance

∂φ0

∂p
= −

(
R

p

)(
p

p0

)κ

θ0, (7)

in turn, provides the potential temperature θ 0 to the leading
order. Here, R is the ideal gas constant, κ = R/Cp , with Cp

the specific heat with the constant pressure, and p0 a reference
pressure. The moisture mixing ratio q0 may be evaluated by a
direct time integration of the full moisture conservation equation(

∂

∂t
+ v0 · ∇ + ω1

∂

∂p

)
q0 = C0, (8)

with a given apparent moisture source C0. To integrate eq. (8),
ω1 is diagnosed from the thermodynamic balance (WTG ap-
proximation):

ω1(dθ̄/dp) = Q0, (9)

with a basic reference state θ̄ for the potential temperature.

The diabatic heating rate (apparent heat source) Q0 can be
diagnosed from θ 0 and Q0, in turn, if an appropriate type of
convective parameterization such as the Betts–Miller scheme
(Betts, 1986) is adopted.

Once ω1 is diagnosed, then a weak divergence ∇ · v1 induced
by convective heating is diagnosed from mass continuity

∇ · v1 = −∂ω1

∂p
. (10)

The divergent component v1,δ of the first-order flow is obtained
by solving eq. (10).

To the first order of the vorticity equation, we include a weak
divergence

∂

∂τ
ζ0 + ∇ · [v1,δ(ζ0 + f )]

= −
(

∂

∂t
+ v0 · ∇

)
ζ1 − (v1,ζ · ∇)(ζ0 + f ), (11)

with a slow timescale τ introduced by

∂

∂τ
= ε

∂

∂t
. (12)

Here, ζ 1 is an undetermined first-order vorticity, and v1,ζ the
first-order rotational wind defined by the former.

Note that the second term on the left-hand side of eq. (11)
represents a feedback of weak divergence on the vorticity. Recall
that weak divergence is diagnosed from the diabatic heating
(convective heating) by eqs. (9) and (10).

According to eq. (11), a weak divergence influences the evo-
lution of the system in two different ways. First, it modifies the
leading-order vorticity field ζ 0 slowly with time (the first term).
Second, it also induces a weak fast-varying perturbation ζ 1 in
the vorticity field (right-hand side).

The main idea of the theory of asymptotic expansions is to
derive a closed equation for a slow-evolution of the leading-
order vorticity ζ 0, without explicitly solving the evolution of the
higher-order fields given in the right-hand side of eq. (11). Such
a consistency condition is called ‘solvability’, which is obtained
by multiplying eq. (11) by ζ † and integrating it over space (x, y)
and time t. Here, ζ † is a vorticity solution for the adjoint problem
to eq. (5):

�
(

∂

∂t
ζ † + ∇ · v0ζ

†
)

+ ∂

∂x

[
ζ † ∂

∂y
(ζ0 + f )

]

− ∂

∂y

[
ζ † ∂

∂x
(ζ0 + f )

]
= 0. (13)

The initial condition may be set ζ † = ζ 0.
The solvability condition for eq. (11) is, as a result, given by〈

ζ † ∂

∂τ
ζ0

〉
+ 〈ζ†∇ · [v1,δ(ζ0 + f )]〉 = 0, (14)

assuming either vanishing or periodic boundary conditions for
ζ 1. Here, 〈 〉 designates the integral in space (x, y) and time
t, changing the definition from Section 4. The integration range
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may be taken as a whole domain and the maximum period asso-
ciated with the leading-order solution.

We take a simple separable solution for the leading-order vor-
ticity consisting of the amplitude Z(τ ) for the slow modulation
and the fast-evolving part ζ̃0(x, y, z, t):

ζ0 = Z(τ )ζ̃0. (15)

For the present demonstrative purpose, we assume also a sim-
ilar separable solution for v1,δ (without justification):

v1,δ = Z(τ )ṽ1,δ . (16)

A closed expression for v1,δ in terms of leading-order variables
may be obtained, once an expression for Q0 (i.e. convective
parameterization) is specified. Some pedagogic examples could
be developed by adopting a simple relaxation scheme for Q0;
these examples are left for future work.

Substitution of eqs. (15) and (16) into eq. (14) leads to

dZ

dτ
= αZ − γZ2, (17)

with the coefficients defined by

α = − 〈
ζ †∇ · (ṽ1,δf )

〉
/
〈
ζ †ζ̃0

〉
, (18)

γ = 〈ζ †∇ · (ṽ1,δ ζ̃0)〉/〈ζ †ζ̃0〉. (19)

To interpret the basic evolution of the system in eq. (17), let
us assume that the coefficients α and γ are constant with τ :
the vorticity is first amplified where the convergence −∇ · v1

is positively correlated with the background planetary vorticity
f, providing a positive α. As the vorticity amplifies, it begins
to feel a non-linear term proportional to γ , and the disturbance
finally approaches an equilibrated amplitude Z = α/γ , provided
γ > 0. In reality, α and γ depend on τ through ζ † by eq. (13);
thus, the evolution of the system is more complex.

Through the very crude sketch presented here, we see that
under asymptotic non-divergence, the system is completely dic-
tated by a dry fully non-linear non-divergent vorticity eq. (5) to
the leading order, then the ‘weak’ effects of convection are inte-
grated into the system by a slow timescale non-linear amplitude
eq. (17). Treatment of dry non-linear dynamics and interactions
between convection and the dynamics at two different levels is a
clear advantage of the asymptotically non-divergent approach. A
formulation sketched here is in stark contrast with the currently
dominant view in terms of the convectively coupled equatorial
waves (cf. Wheeler and Kiladis, 1999). Many new insights could
be yielded by further pursuing this line of investigation.
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