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A B S T R A C T
Observations suggest that the large-scale tropical atmospheric circulations, associated with intraseasonal variabilties,
are dominated more by the vorticity than the divergence. The present paper examines the consistency of the above
observations with linear equatorial wave theories. Both free and forced linear waves are considered. The free equatorial
waves are classified into two major categories: (1) the Rossby waves, strongly dominated by vorticity and (2) the
inertial-gravity waves, relatively dominated by the divergence. Both the Kelvin and the mixed-Rossby gravity waves
are intermediate of these two major categories.

In the forced case, the wave response is predominantly inertial-gravity wave-like for periods less than 5 d, thus
predominantly divergent. On the other hand, for forcing with the longer periods, the wave response closely following
free Rossby-wave structures, asymptotically approaches to a non-divergent state. The asymptotic tendency for non-
divergence is found to be much stronger than observed. The difference is so stark that, notably, the tropical intraseasonal
variability cannot be consistent with linear equatorial waves theories.

1. Introduction

In a linear dry limit, the primitive equation system over the
tropics is characterized by a set of solutions called equatorial
waves (Matsuno, 1966). For this reason, popular approaches
take the large-scale tropical atmospheric dynamics as dictated by
these equatorial waves under interactions with moist convection
(cf. Wheeler and Kiladis, 1999).

Arguably, the wave-based description of the large-scale trop-
ical atmosphere deals with an inherently divergent flow in con-
trast to the mid-latitude large-scale flows. The latter is typically
treated as a non-divergent flow to a leading-order approximation
by introducing a geostrophy on a f-plane. A weak divergence is
introduced only to a higher-order of an asymptotic expansion
where a weak unsteadiness and a deviation from a f-plane ap-
proximation (i.e. β-effect) are taken into account. Thus, the
mid-latitude large-scale flows are asymptotically non-divergent.
In contrast, in equatorial waves theories no such asymptotic
expansion is introduced, thus in this respect, the flows are inher-
ently divergent even to a leading order approximation.

Against this conventional point of view, it was Charney (1963)
who pointed out by a heuristic scale analysis that the large-scale
tropical atmosphere could be considered to be non-divergent to
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a leading-order approximation. (see also Yano and Bonazzola,
2009). More recently, Yano et al. (2009) showed by an analysis
of the Tropical Ocean Global Atmosphere–Coupled Ocean At-
mosphere Response Experiment (TOGA-COARE) Large-Scale
Array (LAS) data that the large-scale tropical tropospheric flows
may be considered to be ‘asymptotically’ non-divergent, though
at the tropopause level, the divergence is equally important as
vorticity.

They quantified the asymptotic non-divergence by the ratio
of the root-mean square (RMS) between the divergence and the
vorticity

r ≡ 〈δ2〉1/2/〈ζ 2〉1/2. (1)

Here, the angle brackets 〈 〉 designate the space-time average.
According to them, the RMS ratio ranges 0.3–0.4 at the lower
troposphere 550–850 hPa, substantially a small value that may
justify a development of an asymptotic-expansion theory (cf.
Bender and Orszag, 1978) based on a non-divergent approxima-
tion to the leading order. They further show that the RMS ratio
further reduces to 0.2 for the intraseasonal timescales.

In turn, this paper poses rather a basic question, but not an-
swered in the literature in authors’ best knowledge: to how much
extent Yano et al.’s (2009) observational analysis is consistent
with the standard equatorial wave theories? In order to answer
this question, the RMS ratio between the divergence and the
vorticity is simply calculated from the linear equatorial-waves
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solutions. Both free and forced waves are considered. The anal-
ysis result is presented in the next two sections for these two
cases. The results are discussed in Section 4.

2. Analysis: free-wave case

The analysis is performed for a linear shallow-water system
on an equatorial β-plane (cf. section 11.4, Holton, 2004) with
the parameter β designating a linear tendency of the Corio-
lis parameter around the equator. The mean depth hE of the
shallow-water system is re-interpreted as a parameter called the
‘equivalent depth’ in order to translate the solution for a fully
three-dimensional primitive equation system. In the latter con-
text, the equivalent depth hE characterizes a vertical structure of a
wave mode (e.g. Kasahara and Puri, 1981; Fulton and Schubert,
1985).

The equivalent depth hE is further related to the gravity-wave
speed cg by cg = (ghE)1/2 with g the accelerations of the gravity.
In the present analysis, by taking cg as a free parameter of the
problem, we namely consider the two cases: (1) cg = 50 m s−1

corresponding to the free waves (e.g. Milliff and Madden, 1996)
and (2) cg = 12 m s−1 corresponding to the so-called convectively
coupled equatorial waves (cf. Wheeler and Kiladis, 1999).

The analytical solutions for equatorial waves are provided in
various textbooks (e.g. section 11.4, Holton, 2004), thus they are
not repeated here. From these solutions, we have calculated the
RMS ratio between the divergence δ and the vorticity ζ averaged
over the whole β-plane, as defined by eq. (1). The system is
assumed to be periodic in longitudinal direction with the period
equal to the length of Earth’s equatorial circle, and extending to
the infinity in the latitudinal direction. The analytical reduction
is fairly standard, and only a brief summary is provided in the
Appendix.

As usual, the Kelvin wave requires a special treatment, which
also provides the most notable result. In that case, the RMS ratio
is given by a linear function of the longitudinal wavenumber k

r = k
λβ√

2
, (2)

where the equatorial radius of deformation λβ = (cg/β)1/2 is
1480 and 730 km for cg = 50 and 12 m s−1, respectively.

The result (2) shows that the Kelvin wave is only weakly
divergent (i.e. r � 1) for the scales λ 	 λβ ∼ 103 km with
λ = 2π/k the wavelength. Notably, the Kelvin waves are only
weakly divergent for the planetary scale λ ∼ 104 km. The result
may appear rather a surprise, because the Kelvin wave is often
considered as if like gravity waves, satisfying exactly the same
momentum equation in the longitudinal direction. At the same
time, the Kelvin wave satisfies an exact geostrophy in the latitu-
dinal direction. The geostrophy leads to a vorticity (zonal-wind
shear) of the scale λβ , whereas the gravity-wave induces a di-
vergence proportional to the zonal wavenumber k. Thus, it leads
to a result r ∼ k λβ being consistent with eq. (2).

It may also be worthwhile to recall that the Kelvin wave has
no potential vorticity q = ζ − βyη/hE, though it has a relatively
strong vorticity ζ associated with a perturbation η of surface
height. The condition of the vanishing potential vorticity, that
is, q = 0, leads to ζ/η = βy/hE. Furthermore, by noting that
the surface height perturbation η is related to the divergence δ

by ikcg η = hEδ from mass conservation, we obtain a local ratio
δ/ζ = ikλ2

β/y with y the distance from equator. At a distance
y ∼ λβ away from the equator, where a major contribution in
averaging is expected, we obtain δ/ζ ∼ kλβ , again, consistent
with eq. (2).

Note that the RMS ratio is proportional to λβ ∼ c1/2
g ∼ h1/4

E ,
thus the non-divergent tendency of the Kelvin wave is more
pronounced for slower gravity-wave speeds, and for shallower
systems. It follows that the convectively coupled Kelvin waves,
representing smaller effective gravity-wave speed cg ∼ h1/2

E than
free waves, are less divergent, probably against the intuition.
Interestingly, the tendency for non-divergence towards the larger
scales is consistent with the observational analysis of Yano et al.
(2009, see their fig. 7).

Full results of the analysis are depicted in Fig. 1 by plotting
the RMS ratio, r (eq. 1), as a function of the zonal-wavenumber
index m, for the cases with cg = 50 and 12 m s−1, respectively, in
(a) and (b). The RMS ratio is calculated by eqs (A1a) and (A1b)
in the Appendix by substituting the frequency ν for a corre-
sponding equatorial wave and for a given wavenumber k, or the
zonal-wavenumber index m. Recall that the zonal-wavenumber
index m is related to the zonal wavenumber k by m = ka with
a the radius of the Earth. By convention, we assume that a pos-
itive and a negative m correspond to eastward and westward
propagations, respectively.

The result can be separated into the two major categories of
waves: the inertial-gravity waves, those tend to be more diver-
gent, and the Rossby waves, those tend to be non-divergent.
The RMS ratio for the inertial-gravity waves always exceeds
unity, reflecting highly divergent nature of these waves. How-
ever, it is important to note that the ratio remains the order of
unity: a contribution of vorticity is always comparable to the
divergence,

On the other hand, the equatorial Rossby waves are predomi-
nantly rotational: the RMS ratio remains less than 0.1 almost for
all the wavenumbers, and it decreases for higher wavenumbers.
The result is rather surprising considering a smallness of the
Coriolis parameter over the equator.

Two particular waves cross over these two major categories.
The mixed-Rossby gravity wave behaves like an inertial-gravity
wave to a limit of high positive wavenumbers (eastward prop-
agation), and like a Rossby wave to a limit of high negative
wavenumbers (westward propagation). It gradually transits from
one limit to another over a small wavenumber zone. Another
particular case already discussed is the Kelvin wave, whose
RMS ratio simply linearly increases with the wavenumber. Thus,
the value is comparable to those of Rossby waves in a small
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Fig. 1. The plots of the RMS ratio between the divergence and the
vorticity for linear free equatorial waves as function of zonal
wavenumber index m for (a) cg = 50 m s−1 and (b) cg = 12 m s−1.
Types of the waves are marked by K (Kelvin wave), R (Rossby waves),
MRG (mixed Rossby-gravity waves), and IG (inertial-gravity waves)
with the corresponding latitudinal-mode index n marked on curves.
The positive and the negative wavenumbers correspond to the eastward
and the westward propagating waves, respectively.

wavenumber limit, and it is comparable to those of inertial-
gravity waves in high wavenumber limit.

Last to remark may be a relatively weak dependence of the re-
sults on the gravity-wave speed cg. Contrast between the inertial-
gravity and Rossby waves for the high wavenumber limit is
somehow more pronounced for faster gravity waves, but no
qualitative change is seen for the RMS-ratio curves.

3. Analysis: forced-wave case

It is often interpreted that various large-scale tropical features
are generated by interactions between the large-scale circula-
tions and moist convection. Extensive efforts have been made to
interpret these features in terms of linear waves ‘forced’ by con-
vection. There are two major approaches to consider this prob-
lem. The first approach solely focuses on a dynamical response
of waves against a prescribed convective forcing (e.g. Webster,
1972; Gill, 1980; Lau and Lim, 1982), whereas the second at-
tempts a closed formulation in which the convective forcing
is determined in a self consistent manner within a model (e.g.
Hayashi, 1970; Lindzen, 1974; Emanuel, 1987; Neelin et al.,
1987; Yano and Emanuel, 1991). However, for the present pur-
pose of defining the ratio between the divergence and the vor-
ticity, the second approach reduces to the first for the reason
explained immediately below.

The forced problem can be considered by adding a forcing
term Sn to an equation for the meridional wind

[
∂2

∂y2
−

(
βy

cg

)2

+
(

ν

cg

)2

− k2 − kβ

ν

]
vn = Sn (3)

in the linear free-wave problem considered in the last section,
where we assume Sn = S̃nHn(y/λβ )e−(y/λβ )2/2ei(kx−νt) for the
forcing with S̃n a constant. A general problem may be con-
sidered by taking a sum of n for forcing. Note that the forcing
Sn includes all types of physical forcing on the system, not only
the convective heating. Furthermore, this ‘integrated’ forcing Sn

for the nth mode does not necessarily correspond to a forcing
of the nth mode in the original shallow-water equation, and vice
verse. For example, diabatic heating (a source term is in mass
conservation equation) with the nth mode is defined by a linear
combination of Sn−1, Sn and Sn+1.

The meridional wind solution is given by vn =
Hn(y/λβ )e−(y/λβ )2/2ei(kx−νt) under the forced problem as for the
free-wave problem. However, a major difference now is that both
the wavenumber k and the frequency ν are prescribed externally
by a given forcing, rather than being prescribed by a wave dis-
persion relation. Thus, the same formula (eqs A1a and A1b) is
applicable as before for computing the RMS ratio, but with the
frequency ν and the wavenumber k externally varied.

The principle for calculating the RMS ratio does not change,
either, when a theory is considered in which the convective
forcing is self-consistently defined. For the present purpose, such
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a self-consistent solution is reproduced simply by substituting a
wavenumber and a frequency obtained by a given theory into eq.
(3), then into eqs (A1a) and (A1b). In other words, regardless of
either approach is taken, the ratio between the divergence and the
vorticity of these solutions can be evaluated simply by solving
a forced wave problem with a fixed forcing period, as long as
the imposed forcing period corresponds to the one obtained by
a given theory.

Many of a latter type of theories consider a linear growth
rate of the perturbations. Here, for re-interpreting their results
in terms of a linear forced waved problem, we simply suppose
that these linear growing modes would arrive at an equilibrated
state under a weak non-linearity, thus only the obtained preferred
periods of the modes do matter in the end. It may also be em-
phasized that regardless of the actual horizontal structure of the
solutions obtained by a linear stability analysis, a solution can be
decomposed by Hermite polynomials due to their completeness,
thus a generality of the analysis here is guaranteed also in this
respect.

Fig. 2. The RMS ratio between the divergence and the vorticity for forced linear equatorial waves are shown by grey tones as a function of periods
(horizontal axis) and the scale (wavelength: vertical axis) for the latitudinal-mode index n = 0 (a), n = 1 (b) and n = 2 (c) for the cases with cg =
50 m s−1. Superposed are the dispersion curves for the eastward-propagating mixed-Rossby gravity waves in (a), and those for the inertial-gravity
waves in (b) and (c). The positive and the negative periods correspond to the eastward and the westward propagations, respectively.

The RMS ratio, r (eq. 1), as functions of the externally-
imposed period and scale (horizontal wavelength) evaluated in
this manner is presented in Fig. 2 for the first three latitudinal
modes: (a) n = 0, (b) n = 1 and (c) n = 2. Here, we take cg =
50 m s−1. Though the case with cg = 12 m s−1 is not shown,
what is going to be said for the case with cg = 50 m s−1 also
equally applies for the case with cg = 12 m s−1. The period and
the wavelength are used as coordinates in place of the frequency
ν and the wavenumber k in order to enable a direct comparison
with fig. 7 of Yano et al. (2009), which presents the observa-
tional RMS ratio as functions of time and space scales. Here,
the positive and negative periods correspond to the eastward and
the westward propagations, respectively. For a graphical pur-
pose, both the period and the horizontal scale are changed in a
reasonably continuous manner.

For all the latitudinal modes considered, a strongly divergence
response is obtained only for the shortest periods (order to mag-
nitude of period less than a day) for all the horizontal scales.
The RMS ratio rapidly decreases with increasing periods, and
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beyond the 5-d period (not shown), the wave response becomes
predominantly rotational with the divergent contribution much
less than the former (well below 0.1).

The obtained result appears to be a rather simple extrapola-
tion of the results with the free waves: the RMS ratio is larger
when the forced response is close to that of the inertial-gravity
waves and eastward-propagating mixed Rossby-gravity waves,
and substantially smaller when the forced response is closer to
that of the Rossby waves. Thus, the largest RMS ratio is ex-
pected to a vicinity of the dispersion curve for the former type
of waves.

In support of this interpretation, dispersion curves for the
eastward-propagating mixed-Rossby gravity waves (for n = 0)
and the inertial-gravity waves (for n = 1, 2) are superposed
on the plots of the RMS ratio. Zone of strong divergence re-
sponse closely follow the dispersion curves for the eastward-
propagating mixed-Rossby and the inertial-gravity waves. Con-
sequently, high RMS values can loosely be understood as a
consequence of ‘resonance’ with free inertial-gravity waves and
eastward-propagating mixed Rossby-gravity waves. However,
note that this ‘resonance’ interpretation is valid only qualita-
tively, and the actual maximum of the RMS ratio does not
exactly coincide with the dispersion curves for the divergent
waves.

The strongly non-divergent response for longer periods re-
flects the nature of the equatorial Rossby waves as already
well depicted by Fig. 1. The degree of non-divergence is much
stronger than the one obtained by an observational analysis of
Yano et al. (2009). They found that the RMS ratio decreases to
the order of 0.2 for the intraseasonal timescale, compared to a
value 0.3 obtained for shorter and smaller scales. On the other
hand, the RMS ratio decreases to a value much smaller in a limit
of long periods under the linear forced-wave problem considered
here.

The discrepancy is so substantial that it seems reasonable to
conclude the observed so-called convectively coupled equatorial
waves cannot be interpreted as linearly ‘forced’ waves for the
periods longer than 5 d. A major missing element in the present
analysis is the advective non-linearity. Advective non-linearity
is likely critically contributing in determining the observed hor-
izontal structures. In other words, these so-called convectively
coupled equatorial waves are strongly non-linear.

4. Discussions

The present analysis for the free linear waves shows that the
observed asymptotic non-divergence of the large-scale tropical
atmosphere is ‘qualitatively’ consistent with the calculated RMS
ratio both for the Kelvin and the Rossby waves. On the other
hand, the inertial-gravity and the mixed-Rossby gravity waves
are too divergent to be consistent with the observed large-scale
flows. The conclusions are found to be insensitive regardless of
whether a typical free gravity-wave speed (i.e. cg = 50 m s−1, e.g.

Milliff and Madden, 1996) or an effective gravity-wave speed es-
timated for the so-called convectively coupled equatorial waves
(i.e. cg = 12 m s−1, Wheeler and Kiladis, 1999) is chosen.

Hence, the result implies that the large-scale tropical atmo-
spheric dynamics must be dominated by Kelvin and Rossby
waves, if they are to be ‘effectively’ interpreted in terms of
the free equatorial waves. It may be worthwhile to note that
a longwave approximation introduced by Lighthill (1969) and
adopted, for example, by Gill (1980), Lau and Lim (1982) and
Stevens et al. (1990) provides an optimal method for filtering
out less important mixed Rossby-gravity and the inertial-gravity
waves. The present analysis, in turn, shows that both Kelvin and
the Rossby waves can be considered to be asymptotically non-
divergent. An asymptotically non-divergent formulation for the
Kelvin and the Rossby waves is still to be developed. It may turn
out that a traditional longwave approximation could simply be
re-interpreted qualitatively as an asymptotically non-divergent
approximation.

Alternatively, an asymptotically non-divergent approximation
may be introduced into a global system defined on a sphere. A
generalization of the quasi-geostrophic system equally applica-
ble to the low latitudes is obtained as a result (Verkley, 2001,
2009). However, a problem with this approach is that only the
Rossby waves are retained and the Kelvin waves are filtered
out.

The results for the forced waves can be understood in a rela-
tively straightforward manner from those for the free waves. In
a short timescale limit (for periods less than a day), the wave
response is dominated by that of inertial-gravity waves, thus
highly divergent. On the other hand, for long timescales (say,
periods longer than 5 d), the wave response is predominantly
of Rossby waves, thus only weakly divergent. The degree of
non-divergence obtained from the linear forced waves of in-
traseasonal timescales is much stronger than the one found ob-
servationally (Yano et al., 2009). Note that the same conclusion
also follows from the linear free-wave analysis. The obtained
RMS for the linear Rossby waves is much smaller than those
observed. Hence, we should conclude that non-linearity is criti-
cal in order to explain the observed degree of ratio between the
vorticity and the divergence.

Note that the results of any linear convectively coupled equa-
torial wave theory is reproduced under the present framework
for the forced-wave response analysis, once the preferred period
and scale obtained by the theory is substituted. Consequently,
our analysis suggests that the large-scale tropical circulation is
strongly non-linear in the sense that linear wave theories do not
provide even a leading-order approximation as assumed under
weakly non-linear theories. Rather the non-linearity makes both
the wavenumber-frequency relation (dispersion) and the hori-
zontal structure of the waves qualitatively different from those
predicted from linear theories. A major non-linear effect playing
a role here is likely to be self-advection of waves, because that
is the major effect neglected under the linear analysis.
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Though the importance of non-linearity in the tropical large-
scale atmospheric dynamics has been investigated by for exam-
ple, Gill and Phlips (1986), Van Tuyl (1986, 1987), only the
weakly non-linear regimes have been considered so far by limit-
ing their attention to a circulation generated as a direct response
to a given diabatic heating. On the other hand, the present study
suggests that unforced background flows, which are not neces-
sarily zonal, substantially contribute to the whole circulations
of the large-scale tropical atmosphere in defining the ratio be-
tween the vorticity and the divergence. It may turn out that the
modon theory that describes strongly non-linear free Rossby
waves driven by self advection (Flierl et al., 1980; Flierl, 1987;
Butchart et al., 1989) also provides a good analogue for those
so-called convectively coupled equatorial waves.
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6. Appendix

By following (section 11.4 Holton, 2004), we set a solution for
the meridional wind for the nth latitudinal mode as

vn = Hn(ξ )e−ξ2/2ei(kx−νt),

where Hn(ξ ) is the nth Hermite polynomial, k the wavenum-
ber, ν the frequency. The latitudinal dependence is presented
in terms of a non-dimensionalized coordinate ξ = y/λβ with y
the dimensional distance from the equator, λβ = (cg/β)1/2 the
equatorial radius of deformation defined by the equatorial beta
parameter β and the gravity-wave speed cg. Subscript n is added
to the meridional wind v in order to indicate that this is a par-
ticular solution with the nth Hermite mode. Subscript n is also
added to all the subsequent formulas obtained with v = vn. In
the following derivation, the recursive relations

∂

∂ξ
vn = nvn−1 − 1

2
vn+1

ξvn = nvn−1 + 1

2
vn+1

are used.
Substitution of the solution vn into the linear shallow-water

equation provides an expression for the zonal wind

un = iβλβ

[
nvn−1

kcg + ν
− vn+1

2(kcg − ν)

]
.

By further substituting these expressions for un and vn into the
definitions of the divergence and vorticity, δn = ikun + ∂vn/∂y

and ζn = ikvn − ∂un/∂y, respectively, we obtain

δn =
(

1

λβ

) [
n

kcg/ν + 1
vn−1 + 1

2(kcg/ν − 1)
vn+1

]

ζn = iβ

ν

{
− n(n − 1)

kcg/ν + 1
vn−2 +

[
kν

β
+ n

2(kcg/ν + 1)

+ n + 1

2(kcg/ν − 1)

]
vn − 1

4(kcg/ν − 1)
vn+2

}
.

Multiplying by complex conjugates δ† and ζ †, and integrating
them over the latitudes, we obtain

〈δδ†〉n =
(

1

λβ

) [
n2

(kcg/ν + 1)2
hn−1 + 1

4(kcg/ν − 1)2
hn+1

]

(A1a)

〈ζ ζ †〉n = λβ

(
β

ν

)2
{[

n(n − 1)

kcg/ν + 1

]2

hn−2

+
[

kν

β
+ n

2(kcg/ν + 1)
+ n + 1

2(kcg/ν − 1)

]2

hn

+ 1

16(kcg/ν − 1)2
hn+2

}
, (A1b)

where 〈 〉 = ∫ +∞
−∞ ( )dy designates an integral over latitude,

hn = √
π2nn! is a normalization factor for the nth Hermite poly-

nomial.
In calculating the RMS for the divergence and the vorticity

from eqs (A1a) and (A1b) for the free waves, a frequency ν(k, n)
for a given type of equatorial waves with a given wavenumber
k and latitudinal mode n is substituted into ν in the formula.
Formulas for the wave dispersions ν(k, n) are given in section
11.4 of Holton (2004) for example.
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