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ABSTRACT

A technique of near-real-time monitoring and prediction of various modes of coherent synoptic to intraseasonal
zonally propagating tropical variability is developed. It involves Fourier filtering of a daily updated global dataset
for the specific zonal wavenumbers and frequencies of each of the phenomena of interest. The filtered fields
obtained for times before the end of the dataset may be used for monitoring, while the filtered fields obtained
for times after the end point may be used as a forecast. Tests of the technique, using satellite-observed outgoing
longwave radiation (OLR) data, reveal its skill for monitoring. For prediction, it demonstrates good skill for the
Madden–Julian oscillation (MJO), and detectable skill for other convectively coupled equatorial modes, although
the decaying amplitude of the predictions with time is a characteristic that users need to be aware of. The skill
for the MJO OLR field appears to be equally as good as that obtained by the recent empirical MJO forecast
methods developed by Waliser et al., and Lo and Hendon, with a useful forecast out to about 15–20 days. Unlike
the previously developed methods, however, the current monitoring and prediction technique is extended to other
defined modes of large-scale coherent zonally propagating tropical variability. These other modes are those that
appear as equatorial wavelike oscillations in the OLR. For them, the skill shown by this empirical technique,
although considerably less than that obtained for the MJO, is still deemed to be high enough for the technique
to be sometimes useful, especially when compared to that of a medium-range global numerical weather prediction
(NWP) model.

1. Introduction

Since the pioneering work of Lorenz and others of
the 1960s (e.g., Lorenz 1969), it is often generally ac-
cepted that the theoretical limit of predictability of syn-
optic-scale weather systems is on the order of a week
or so, given the theoretical growth of baroclinic weather
disturbances (see also Smagorinsky 1969; Lorenz 1982).
In practice, however, useful skill in forecasts from cur-
rent numerical weather prediction (NWP) models is of-
ten shorter due to the influence of inadequacies in the
parameterization of various physical processes. This is
especially the case in the Tropics, due to the over-
whelming influence of the diabatic heating of cumulus
convection there (Tiedtke et al. 1988). Beyond this limit
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of useful skill provided by current NWP models, ex-
tended-range prediction of the weather is thought to rely,
besides improvement and extension of the parameteri-
zations and NWP-like models themselves, on the em-
pirical exploitation of any lower-frequency periodicities,
or quasiperiodicities, that exist in the atmosphere or
land–ocean–atmosphere system (Palmer 1993; van den
Dool 1994).

The idea behind such extended-range prediction is
the intuitive notion that the predictability time of a phe-
nomenon should be proportional to its own period or
lifetime (e.g., van den Dool and Saha 1990). This notion
has been the basis, for example, of the efforts made on
the prediction of the interannual El Niño–Southern Os-
cillation (ENSO) phenomenon (e.g., Barnett et al. 1988).
Yet there exist other low-frequency1 quasiperiodic phe-
nomena that have so far been much less, or not at all,
utilized for prediction. Among them are the various syn-

1 We use the term low-frequency to refer to phenomena that have
timescales that are longer than a few days, which is about the limit
of useful skill of tropical precipitation forecasts from modern NWP
models (this study; Krishnamurti et al. 1994).
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FIG. 1. Regions of wavenumber–frequency filtering (thick boxes) used to obtain the time–longitude information of
the modes of coherent tropical variability for the (a) antisymmetric component and (b) symmetric component of the
field with respect to the equator. These regions overlie the spectral peaks (the contours and shading) of the convectively
coupled waves as identified in the analysis of many years (1979–96) of OLR data in WK99. The thin lines are the
various equatorial wave dispersion curves for the equivalent depths of h 5 8, 12, 25, 50, and 90 m. For more details,
see section 3.

optic to intraseasonal waves and oscillations that exist
in the Tropics (e.g., Madden and Julian 1994; Wheeler
et al. 2000). Such waves and oscillations organize the
individual mesoscale convective elements in the Tropics
on spatial scales that are larger ($1000 km) than the
size of the elements themselves, with periods from a
few days to a number of weeks. As such, they appear
prominently in zonal wavenumber–frequency spectra of
various proxies of the convection, cloud, and precipi-
tation fields in the Tropics (Salby and Hendon 1994;
Wheeler and Kiladis 1999, hereafter WK99; see also
Fig. 1), a fact that implies some potential for predict-
ability. Yet the waves are not well simulated by NWP
models (Waliser et al. 1999; Hendon et al. 2000; and
references therein). We focus on these modes of vari-
ability in this study. In particular, we present a technique
of (near-) real-time monitoring and empirical prediction
of such modes.

As labeled in Fig. 1, the modes of variability we are
concerned with are the Madden–Julian oscillation
(MJO), an eastward zonally propagating signal discov-
ered by Madden and Julian (1971), and various equa-
torial wave–like modes that also appear as zonally prop-
agating signals in tropical convection (e.g., Takayabu
1994; WK99). Of the latter, we examine the modes
known as the convectively coupled Kelvin, n 5 1 equa-
torial Rossby (ER), and mixed Rossby–gravity (MRG)
waves. We do not concern ourselves with the convec-
tively coupled inertio–gravity waves that exist at higher
frequencies, nor do we consider other modes of tropical
variability that may exist as non–zonally propagating
signals.

A review of the observations of the MJO is provided
by Madden and Julian (1994). For the less well-known
convectively coupled equatorial waves, a presentation
of the observed three-dimensional structure is provided
by Wheeler et al. (2000). From these observational stud-

ies, it is known that these modes of variability exist as
large-scale coherent convective anomalies, propagating
either to the east or west, coupled with the large-scale
tropospheric circulation. They thus form an important
part of the ‘‘weather’’ of the Tropics, yet they also may
drive teleconnections to the extratropics, impacting ex-
tratropical weather as well (e.g., Ferranti et al. 1990;
Meehl et al. 1996).

Previous work on the empirical monitoring and pre-
diction of such modes of tropical variability, to our
knowledge, has been limited to the MJO. Von Storch
and Baumhefner (1991) developed an MJO forecast
scheme based on principal oscillation pattern analysis
of equatorial upper-tropospheric velocity potential. Wal-
iser et al. (1999) developed a scheme based on singular
value decomposition of lagged maps of intraseasonally
filtered outgoing longwave radiation (OLR), an indi-
cator of convection, and upper-level zonal wind. Most
recently, Lo and Hendon (2000) developed a forecast
scheme that predicts the evolution of the empirical or-
thogonal functions of OLR and upper-level stream-
function that describe the MJO. Basically, what all of
these schemes have in common is their ability to identify
the large-scale, low-frequency, circulation or convection
anomalies associated with the MJO, and to propagate
these large-scale anomalies slowly to the east as a fore-
cast. The main hurdle for the use of these methods in
real time was considered to be the extraction of the low-
frequency signals without the use of a low- or bandpass
filter requiring information into the future. Useful fore-
cast skill was thought to be achieved out to about 15–20
days, especially during times when the MJO was par-
ticularly active, and this skill surpassed that of various
dynamical models, even for the large-scale circulation.
Thus significant advantage was considered to be af-
forded by the use of such empirical forecast schemes,
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especially for the tropical regions that are directly af-
fected by the MJO.

Here, we present another technique of monitoring and
prediction of large-scale variations in the Tropics. What
sets the technique apart from those of the aforemen-
tioned studies, however, is that we are able to apply it
to all of the modes of variability that appear as spectral
peaks in the wavenumber–frequency domain. This new
technique involves Fourier filtering of a daily updated
global dataset for the specific zonal wavenumbers and
frequencies of each of the phenomena of interest. The
technique, and the data we use, are described in detail
in sections 2 and 3, followed by some examples in sec-
tion 4. Obviously, such one-sided filtering that includes
the most recent day of data may involve spurious edge
effects at the end of the dataset. Validation of the tech-
nique, and analysis of its forecast skill, are thus an im-
portant component of this study, and are presented in
section 5. Comparison of this skill is made to that of
some of the previous studies, and in section 6, com-
parison is made with forecasts derived from the National
Centers for Environmental Prediction (NCEP) Medium
Range Forecast (MRF) model. A discussion and con-
clusions are presented in section 7. Components of this
research may also be viewed in (near–) real time on the
World Wide Web as part of the NOAA–CIRES Climate
Diagnostics Center ‘‘Map Room’’ (http://www.
cdc.noaa.gov/map/clim/olrpmodes/).

2. Data

In this study, we have chosen to concentrate on data
that are representative of the moist convection and pre-
cipitation of the Tropics. The reason is threefold. First,
precipitation has direct importance for the users of
weather forecasts. Second, tropical precipitation has
been notoriously difficult to represent and predict in
NWP-like models. For example, Janowiak (1992)
showed that certain NWP models do not correctly rep-
resent the temporal variations of rainfall in the Tropics,
even if the mean state appears adequate. And third,
through satellite measurements, there are a good number
of observations of proxies for precipitation that can be
adequately used for our daily monitoring and prediction
of the entire Tropics. With this in mind, most of the
results presented in this paper use the 2.58 gridded da-
taset of satellite-observed OLR as described by Lieb-
mann and Smith (1996). Such data have often been used
to distinguish areas of deep tropical convection and as
a proxy for precipitation (e.g., Arkin and Ardanuy
1989). The OLR dataset now extends continuously for
about two decades, and was the primary data used by
WK99 to identify the spectral peaks of the modes of
tropical variability (see Fig. 1). It is this dataset, in its
daily averaged form, and available in near–real time,
that forms the basis of our empirical monitoring and
prediction scheme.

Other data to be used include precipitation output

from some of the dynamic extended-range forecasts
(DERF) computed by the NCEP MRF model as de-
scribed in Schemm et al. (1996). These are the same
numerical model forecast experiments that were used
by Waliser et al. (1999), Lo and Hendon (2000), and
Jones et al. (2000), although here we concentrate on the
precipitation field,2 as opposed to upper-level winds.
The forecast model is the T62L28 reanalysis version of
the NCEP MRF model (Kalnay et al. 1996), for which
50-day forecasts were made each day from the 0000
UTC reanalysis initial conditions. Sea surface temper-
atures in the model were prescribed at the lower bound-
ary, and were damped to climatology from the observed
initial condition with a 90-day e-folding time. For the
purpose of comparison in this study, we use portions of
these forecasts made for days within 1985 to 1988.

Also for the purpose of comparison, we additionally
use the precipitation product from the satellite-borne
Microwave Sounding Unit in this study (MSU; see
Spencer 1993). The MSU precipitation dataset is avail-
able only over ocean, but is on the same 2.58 grid and
daily averaged like the OLR. The MRF model precip-
itation, on the other hand, required linear interpolation
to be on the same 2.58 grid as the OLR and MSU, and
its daily values are taken at 0000 UTC, causing some
ambiguity in the timing. Through these three datasets,
we are able to capture an important component of the
day-to-day weather variability of the real world and of
a typical NWP model.

3. Formulation of technique

For the formulation of our technique of monitoring
and prediction, we start with a recognition of the ex-
istence of various spectral peaks in the wavenumber–
frequency domain that occur in the tropical convection
or precipitation field. A representation of these spectral
peaks, from WK99, is shown in Fig. 1. This figure,
which was calculated using the OLR dataset (see WK99
for details), shows the spectral peaks that exist relative
to a defined background spectrum. The left panel is for
the antisymmetric (w.r.t. the equator) component, and
the right panel is for the symmetric component, where
the power was calculated independently at each latitude
and then summed between 158S and 158N. The ratio of
the raw power to the power of the defined smooth red
background spectrum was then computed, as displayed.
Contours of the ratio less than a value of 1.1 or greater
than 1.4 are omitted. Thus each of the contoured spectral
peaks have power that extends more than 10% above
the background (i.e. a ratio of at least 1.1). Their sta-
tistical significance, considering the use of all data be-
tween 1979 and 1996, is also very high (95%, as esti-
mated by WK99). Not surprisingly, very similar spectral
peaks occur for a long time series of the daily MSU
precipitation data as well (not shown).

2 OLR was not available for the model forecasts.



2680 VOLUME 129M O N T H L Y W E A T H E R R E V I E W

Based on the existence of these spectral peaks, the
procedure of this study is to filter the constantly updated
OLR for the various modes that produce the peaks, and
to extend these filtered fields into the future as a forecast.
This filtering is performed for the specific zonal wav-
enumbers and frequencies enclosed by the boxed re-
gions of Fig. 1. These regions are designed to enclose
the spectral peaks of the disturbances. The boxes are
drawn such that the outlines are inclusive, meaning that
the wavenumber or frequency where the edge of the box
is drawn is included in the filtered data. For the so-
called convectively coupled equatorial waves (i.e.,
Kelvin, n 5 1 equatorial Rossby, mixed Rossby–grav-
ity) the boxed regions are also designed to lie along the
theoretical dispersion curves (in an adiabatic, motion-
less basic state), separately for the symmetric or anti-
symmetric components (see Matsuno 1966). For the
MJO, on the other hand, the regions of filtering are for
the box enclosing eastward moving wavenumbers 1–5
in both the antisymmetric and symmetric components,
and for the frequency range from 1/96 to 1/30 cpd. The
two regions with notable spectral peaks at higher fre-
quencies that are not enclosed by a boxed region are
for the n 5 0 eastward and n 5 1 westward inertio–
gravity waves, in the antisymmetric and symmetric com-
ponents, respectively. We do not consider the inertio–
gravity waves in this study.

For the filtering procedure, it should be noted that the
regions of Fig. 1 are like those employed for filtering
by WK99 (their Fig. 6). Here, as in the previous study,
filtering is performed using forward and inverse com-
plex FFTs, independently at each latitude, retaining only
those Fourier coefficients within each of the defined
regions of filtering before the inverse FFTs. All coef-
ficients outside the regions are assigned to be zero.

The filtering is performed on the OLR anomalies cre-
ated by the removal of the long-term mean and first
three harmonics of the seasonal cycle. Such filtering,
when performed in conjunction with the separation of
the OLR dataset into antisymmetric and symmetric com-
ponents, successfully isolated the modes of concern in
WK99. The geographical distribution of the variance of
the filtered data, for example, matched the distribution
expected from theory for the equatorial wave modes
(see also Figs. 6, 11, 15, and 19 in this study), and some
individual examples of the filtered anomalies success-
fully captured large-scale convective events evident in
the total field. However, since the filtering in WK99 was
designed as a diagnostic tool to be used well away from
the temporal end points of the dataset, and not for up-
to-the-present monitoring or prediction, the dataset was
tapered toward zero at each end to prevent spectral leak-
age. To adapt this technique for monitoring and predic-
tion, we instead apply a taper only to the beginning of
the OLR anomalies to be filtered, and pad the end of
the dataset with over 1 yr of zeroes. This allows the
maximum amount of information to be retained at the
end of the dataset, and as shown below, appears to work

quite well. The zero padding, on the other hand, is an
important step to prevent information at the beginning
of the dataset from distorting the signals produced by
the filtering at the end. While we have found that the
results are generally insensitive to the length of the zero
padding employed, it is thought that at least several
months are required to prevent this problem arising from
the dataset periodicity that is assumed by the FFT. The
padding also helps to increase the computational speed
of the FFT, as it can be adjusted to allow the length of
the dataset to be an integral power of 2. For example,
using 1 yr of the most recent actual data, plus 659 days
of zero padding, gives 1024 points in time.3 Addition-
ally, the 1 yr of OLR anomalies has a linear least squares
fit subtracted to remove any trend due to interannual
variability before the filtering, and each day of gridded
data is smoothed spatially by converting to spherical
harmonics and applying a rhomboidal truncation at
wavenumber 21 (R21) to emphasize the larger-scale
anomalies. This step of truncating to R21 effectively
increases some measures of the apparent skill of the
technique, yet it is not necessary for the success of the
technique. Importantly, all of these steps for preparing
the data for filtering can be performed in real time.

Figure 2 presents a schematic of this procedure, as
applied to the monitoring and prediction of a MJO-like
signal. In this schematic, which shows the OLR data to
be filtered at a single latitude–longitude location only,
notice how the presence of a strong MJO-like signal
near the end of the actual data continues as a signal in
the filtered time series beyond the end point of the da-
taset (i.e., into the zone that was padded with zeroes).
Of course, this filtered signal is influenced by the pres-
ence or absence of an MJO-like signal at other longi-
tudes as well. It is the part of the real-time filtered anom-
alies leading up to the end point (i.e. ‘‘day 0’’) that we
refer to as the real-time monitoring, while it is the part
of the filtered data beyond day 0 that we use as a pre-
diction. These predicted OLR anomalies are with respect
to the seasonal cycle and any variability acting on longer
timescales. In this schematic, they can be seen to decay
toward zero rather rapidly beyond day 0. Such decay is
a general property of all such forecasts, and will be
discussed next. Further, although the schematic shows
the forecast for a single mode of variability only, the
real-time filtering procedure may efficiently produce a
signal for each of the modes of variability labeled in
Fig. 1. Such forecasts for each of the modes may be
summed together, or used individually.

Evidently, the prediction component of this technique
is rather unconventional, as it relies on how well (or
rather, not well) the retained wavenumbers and fre-
quencies approximate zero in the zero-padding region.
The amplitude of the predicted signal is not only influ-

3 The technique was also tested using 5 yr of the most recent actual
data, plus 223 days of zero padding, giving 2048 points in time. The
results were virtually identical with those using 1 yr of actual data.



NOVEMBER 2001 2681W H E E L E R A N D W E I C K M A N N

FIG. 2. Schematic of the procedure of real-time filtering for monitoring and prediction, as
applied to a time series with an MJO-like signal.

enced by the presence of a strong wavelike signal at the
end of the observed dataset, but is also influenced by
the number of retained wavenumbers and frequencies
for the mode of interest. At one extreme, if all the wave-
numbers and frequencies were retained (i.e., if the boxed
region of filtering, as displayed in Fig. 1, enclosed the
whole region), then the predicted signal would exactly
reproduce the zero padding. At the other extreme, if
only a single frequency was retained, then the predicted
signal would be perfectly sinusoidal, and would main-
tain its (rather low) amplitude into the future. The tech-
nique of filtering we have described above lies between
these two extremes, where we have set the width of
each of the boxed regions of filtering in the wave-
number–frequency domain by the width of the observed
spectral peaks in the OLR dataset. Thus the predicted
signal by this technique decays with time, and this decay
can be related to the statistical properties of the observed
disturbances. For example, the width of the spectral
peak of the MJO (as seen in detail in Salby and Hendon
(1994) is determined partly by the fact that MJO events
often come in groups of only one, two, or three events
at a time.4 This localization of the MJO signal in time
causes its spectral peak to be rather broad in frequency.
Thus the decay of the predicted signal by this technique,
which is related to the width of the MJO spectral peak
in frequency, has, in part, a physical origin. Neverthe-
less, the utility of the technique requires extensive test-
ing, including the decay of the amplitude of the pre-
dicted anomalies.

In subsequent sections, we will look at the predicted
anomalies of the individual modes and compare them
to both the total OLR field, and also to anomalies of
the modes derived from the filtering when calculated
using the dataset without nearby end points (i.e., in-
cluding a knowledge of the future, as in the filtering of

4 The width of the spectral peak of the MJO is also determined by
the range of speeds at which the MJO signal in OLR propagates to
the east.

WK99). We will refer to the latter as the diagnostically
filtered anomalies, while those of this new technique of
monitoring and prediction (i.e., with an end point) as
the real-time filtered anomalies. Comparisons will also
be made with verifying high-pass filtered OLR anom-
alies. Examples of the real-time filtering are provided
next.

4. Examples

For examples, we concentrate on the time of the year
around the onset of the Southern Hemisphere monsoon
in southern equatorial latitudes. These examples come
from the most recent few years, and do not necessarily
represent either particularly strong or weak events of
the various modes.

a. October–November–December 1996

Figure 3a presents a time–longitude plot of the total
OLR and filtered OLR for the MJO and n 5 1 ER wave
components for late 1996. The filtered fields of this first
panel were calculated using the filtering on the whole
dataset, that is, what we call the diagnostic filtering.
Each of the fields are averaged between the latitudes of
108S and 58N to concentrate on the equatorial to south-
ern equatorial convection. During this period, it can be
seen that the convective variability was strongly influ-
enced by disturbances like the ‘‘climatological’’ MJO
and n 5 1 ER waves, where the MJO is indicated by
the planetary-scale features propagating to the east, and
the ER waves are the slightly smaller-scale features
propagating to the west. In particular, it appears that a
combination of such disturbances was intimately in-
volved in the timing and evolution of the most vigorous
convection in the Australian–Indonesian region during
early December.

It is now interesting to see how the real-time moni-
toring and prediction would have performed for these
latitudes at this time. This is presented in Fig. 3b, where
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FIG. 3. (a) Time–longitude plot of the total OLR (with R21 spatial truncation, and a 1–2–1 filter applied in time)
and filtered OLR anomalies averaged between 108S and 58N during late 1996 to early 1997. Shading is for the total
OLR, and contours are for the diagnostically filtered anomalies of the MJO and n 5 1 ER wave. Solid contours
represent negative OLR anomalies, while dashed contours are for positive anomalies, with the contour interval for
both wave filtered bands being 10 W m22, and the zero contour omitted. (b) Same as in (a) except that the filtering
was performed with the last day of data being on 5 Dec 1996. After 5 Dec, when the real-time filtered anomalies are
continued into the future as a forecast, the contour interval is halved.

we have computed the real-time filtering with the end
of the dataset on 5 December 1996. In this presentation,
we have halved the contour interval of the plotted anom-
alies after day 0 due to the known decaying property
of the predictions by the technique. Despite this decay-
ing amplitude, however, we see that the technique per-
forms quite well in this case at identifying the presence
and phase of not only the mature wave packet of ER
waves, but also the development of the enhanced-con-
vective phase of the MJO over the Indian Ocean in late
November. The continuation of these filtered anomalies
into the zero-padded region after 5 December also pro-
vides some good qualitative indications of the future
behavior of the convection out to about a forecast of 10
days or more. For example, at around 608E on 15 De-
cember, the suppressed convection associated with the
suppressed phase of the MJO is depicted well.

b. October–November–December–January 1997/98

Compared to the evolution of the convection in the
latitudinal range of 108S–58N during late 1996, that of
late 1997 provides an interesting contrast. In Fig. 4a, as
in Fig. 3a, we show the total OLR field averaged for
these latitudes for this new period. As this period was

during an El Niño event, the bulk of the convection is
shifted into the central Pacific longitudes (the longitudes
of the plot are also shifted by 408). In addition, the
synoptic to intraseasonal variability appears quite dif-
ferent, with the variations associated with the MJO (and
ER waves) being weaker, and those of the convectively
coupled Kelvin waves being stronger. This Kelvin wave
variability is indicated quite well by the diagnostic fil-
tering of Fig. 4a. In particular, there are events where
the relatively fast eastward moving Kelvin waves prop-
agate across the entire Pacific.

Turning now to the real-time filtering produced with
the last day of data on 5 January (Fig. 4b), we see that
the Kelvin wave filtering on this day provides some
predictive value for equatorial South America by pre-
dicting an enhancement of convection there on about 8
January. For the real-time filtering of the MJO, on the
other hand, the filtering predicts the suppressed con-
vective phase around 1208E on 10 January, also quite
consistent with what actually occurred.

c. November–December–January 1998/99

As a further example, the evolution of the convection
during the 1998/99 season is displayed in Fig. 5. As in
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FIG. 4. (a) Same as in Fig. 3a except for the 1997/98 period, and the MJO and Kelvin wave filtering are displayed.
The range of longitudes has also been shifted by 408. Contour interval for the MJO filtered anomalies is 10 W m22,
and for the Kelvin wave anomalies is 15 W m22. Positive contours of the Kelvin wave anomalies are omitted. (b)
Same as in Fig. 3b except for the real-time filtering of 5 Jan 1998, and only the MJO and Kelvin wave anomalies are
displayed.

Figs. 3 and 4, we present a panel showing the total OLR
and diagnostic filtering on the left, and a panel showing
what the real-time filtering produced assuming a par-
ticular end of the dataset on the right. Only the MJO
and convectively coupled n 5 1 ER waves appeared to
significantly affect the evolution of the convection dur-
ing this time, so only their filtered anomalies are shown.
Of note is the only particularly strong enhanced-con-
vective event of the MJO during this period, occurring
in January, with the ER waves also reasonably strong
at this time.

Looking at the real-time filtering as would have been
produced with the end of the dataset on 18 January (Fig.
5b), we see that again the technique appears to be able
to identify the modes of variability quite well. The con-
tinuation of the filtered anomalies into the future also
does quite well at reproducing the phase of the anom-
alous component of the total OLR field, especially the
envelope of enhanced convection associated with the
MJO sweeping eastward toward 1608E by mid-Febru-
ary. Obviously, however, due to the zero padding (of
anomalies) employed, the predicted signals decay with
time.

5. Validation and skill
Beyond showing such examples of our technique of

monitoring and prediction, the technique may be more

fully tested through a statistical analysis of multiple
cases. Multiple cases of the real-time filtering have been
generated by imposing end points to the OLR dataset
every second day for the 10-yr period of 1985–94, giv-
ing 1826 cases. We may then validate the technique by
comparing the real-time filtered OLR with either the
verifying diagnostically filtered OLR (as calculated us-
ing the mode-specific wavenumber–frequency filtering
without nearby end points), or against a dataset of ver-
ifying high-pass OLR (i.e., like the diagnostically fil-
tered OLR, except including all wavenumbers, and all
frequencies higher than the high-pass cutoff ). A Lan-
czos filter of 301 weights was used for the high-pass
filtering.

a. Madden–Julian oscillation

Before analyzing the skill of the technique for mon-
itoring and predicting the MJO, it is first useful to view
maps of the part of the variance that we are attempting
to explain by the MJO. Such maps are presented in Fig.
6, in the form of standard deviations, separately for
southern summer (defined here as Nov–Apr) and north-
ern summer (May–Oct). These standard deviations were
calculated from the diagnostically filtered data for the
same 10-yr period for which we have made the multiple
real-time filtering forecasts. Of note is the concentration
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FIG. 5. (a) Same as in Fig. 3a except for the 1998/99 period. (b) Same as in Fig. 3b except for the real-time
filtering of 18 Jan 1999.

FIG. 6. Standard deviation of the diagnostically filtered MJO OLR
for the 10-yr period of 1985–94, separately for southern summer
(above) and northern summer (below).

of the MJO OLR variance in the Southern Hemisphere
during southern summer, and the Northern Hemisphere
during the opposite season, a well-known feature of the
observed MJO. It is this portion of the total variance of
OLR that we are attempting to monitor and predict with
the technique when applied to the MJO. This MJO stan-
dard deviation in OLR is quite similar, although of a
slightly smaller magnitude, to that defined in the study
of empirical prediction of Waliser et al. (1999, their Fig.
13).

We now turn to Fig. 7, which shows maps of the
correlations between the MJO real-time filtered OLR
and the verifying diagnostically filtered MJO OLR, for
a number of lead times, where the lead time is with
respect to the end point of the data used for the real-

time filtering. For example, the map for day 27 presents
the correlation at each point between the real-time fil-
tered OLR output 7 days before the imposed end point,
and the actual (diagnostically filtered) OLR of the MJO
that occurred on that day. This map at negative lag thus
reflects the skill of the technique for real-time moni-
toring of the MJO. The maps at positive lag, on the
other hand, reflect the performance of the real-time fil-
tering as a prediction of the MJO, that is, after the end
point. Note that although the diagnostically filtered OLR
that has been used for verification in this plot is a dataset
that can only be produced after the fact, the predicted
fields used in these correlations are a true indication of
what could have been produced by this technique in an
operational setting.5 Also of note is that we are able to
apply the technique to any season; thus, we display the
correlations here separately for southern summer (upper
panels) and northern summer (lower panels).6 Given that
906 and 920 samples (spaced 2 days apart) went into
these separate calculations of the correlations, respec-
tively, and that the autocorrelation of the MJO suggests
that a more conservative estimate of the number of in-

5 In this way, this technique has a practical advantage over that of
Waliser et al. (1999), as, among other differences, Waliser et al. used
bandpass filtered OLR as an input to their prediction scheme, which
cannot be obtained in a true operational setting.

6 In this way, this technique has at least one advantage over that
presented in Lo and Hendon (2000), as, among other differences, they
developed and applied their technique for southern summer only.
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FIG. 7. Correlations of the MJO real-time filtered OLR with the
validating diagnostically filtered MJO OLR for southern summer (up-
per panels) and northern summer (lower panels), for a number of
lead times in days. Lead time is with respect to the end point of the
data input into the real-time filtering procedure as indicated in the
lower left of each panel. All 10 yr of the sample forecasts were used.

FIG. 8. Correlations of the MJO real-time filtered OLR with the
validating diagnostically filtered MJO OLR at the point 108S, 1308E
as a function of lead time. The correlations were calculated using all
seasons, southern summer only, and ‘‘active’’ periods only of the 10
yr of sample forecasts, as labeled. Additionally shown are correlations
for a persistence forecast with the diagnostically filtered MJO OLR
at this point, equivalent to its autocorrelation function at this point.
Note that this ‘‘persistence forecast’’ cannot be performed in real
time.

dependent samples for these correlations is around 60
each (over the 10-yr period), a correlation of 0.35 is
significant at the 99% level. Thus almost all parts of
the maps show correlations that are statistically signif-
icant.

Inspecting the maps of Fig. 7 further then, we see that
the predictions of the MJO, by this measure of skill,
perform best in the regions of the eastern Indian to west-
ern Pacific Oceans and South America south of the equa-
tor, in southern summer, and in the regions of the Indian
Ocean and eastern Pacific, to the north of the equator, in
northern summer. Obviously, the skill reduces as one goes
to longer lead forecasts, yet the 15-day forecasts show
correlations greater than 0.6 over a broad region for
southern summer, and greater than 0.5 over a broad region
for northern summer. These correlations for the forecasts
compare quite favorably with those calculated for the
similar empirical prediction schemes of Waliser et al.
(1999, their Fig. 11) and Lo and Hendon (2000) (their
Fig. 6). For a similar lead forecast of the MJO OLR,
Waliser et al. (1999) obtained correlations of around 0.6–
0.7, yet their forecasts could not be performed in real
time due to the bandpass filtering of predictors employed.

Lo and Hendon (2000), on the other hand, obtained cor-
relations of around 0.5 for 15-day forecasts of the leading
principal components of OLR.

Figure 7 further shows the correlations at negative
lag. These correlations show that the real-time filtering
field before the end point is quite well correlated (values
generally greater than 0.8) with the diagnostically fil-
tered MJO field, especially in the regions where the MJO
is strong (cf. Fig. 6). Thus we feel that the technique
is also quite adequate for real-time monitoring.

Given that the MJO is quite sporadic in nature, being
identifiable in the observational record perhaps less than
half of the time, it is also of interest to see how such
correlations should change if calculated only for times
when the MJO is determined to be active. We present
such information in Fig. 8, in the form of the correlations
as a function of lead time at a single point in the Timor
Sea, together with the correlations at the same point for
all seasons and southern summer for reference. Our def-
inition of ‘‘active’’ is determined completely from the
real-time filtered field and is, thus, a decision that can
be made in a true operational setting. It is simply based
on whether the real-time filtered MJO field has a value
of greater magnitude than 1.3 standard deviations at the
point at any time from day 214 to day 114. This cri-
terion retained 401 of the total 1826 values for the cor-
relations. The predictions made at these times can be
seen to be significantly improved, consistent with the
results of the previous studies of von Storch and Baum-
hefner (1991) and Lo and Hendon (2000) that empirical
forecasts of the MJO are much better at times when
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FIG. 9. As in Fig. 8 except for the normalized rms error between
the real-time filtered MJO OLR and the diagnostically filtered MJO
OLR at the point 108S, 1308E. Also shown is the normalized rms
error for a persistence (of the diagnostically filtered field) forecast.
Note that this persistence forecast cannot be performed in real time.

FIG. 10. As in Fig. 7 except for the correlation between the real-
time filtered MJO OLR and the corresponding 96-day high-pass OLR
anomalies.

there is a large initial projection onto the MJO. The
forecasts can also be seen to beat a persistence forecast
of the diagnostically filtered OLR after about 5 days
(dotted line). The quick reduction of the correlations for
the persistence forecast to zero around days 12 and 13
reflects the MJO’s timescale of around 50 days. Note
that such a persistence forecast cannot actually be per-
formed in real time, as the diagnostically filtered field
uses information from the future.

Another way to look at the performance of the tech-
nique for real-time monitoring and prediction of the
MJO is as shown in Fig. 9, in the form of the normalized
root-mean-square (rms) errors relative to the diagnos-
tically filtered field. The rms errors are shown for the
same point and seasons/periods as that used for presen-
tation in Fig. 8, and are normalized by the standard
deviation of the field that is being predicted (e.g., Fig.
6). As both the predicted and verifying fields are quite
spatially coherent, such rms errors at a point are in fact
representative of those over a fairly wide area. Knowing
that the forecasts by the technique decay toward zero,
their rms errors asymptote toward a value of 1, yet are
at a value of only between 0.7 and 0.8 for a 10-day
forecast. The rms errors of the persistence forecast, on
the other hand, asymptote to , and they greatly ex-Ï2
ceed this value for 15–30-day forecasts due to the op-
posite phase of the MJO that tends to occur around that

time. In comparison to the studies of Waliser et al.
(1999) and Lo and Hendon (2000), these rms errors,
like the correlations, are also quite favorable. For ex-
ample, if the rms errors of the prediction technique of
Waliser et al. are normalized (i.e., their Fig. 12 divided
by their Fig. 13), one obtains values of around 0.7 to
0.8 for their 5–10-day forecasts.

A further, and more conservative, way to view the
skill of the technique is via comparison with a verifying
OLR field that includes all the synoptic to intraseasonal
tropical variability. Figure 10 shows such a comparison
in the form of correlations of the MJO real-time filtered
OLR with a 96-day high-pass OLR dataset. Obviously,
the correlations are much lower than those presented in
Fig. 7, as they are now an indication of the portion of
the variance of the total synoptic to intraseasonal var-
iability that is linearly accounted for by the real-time
filtering. Such correlations, however, are no less statis-
tically significant, and these correlations may also be
compared to similar calculations presented by Waliser
et al. (1999) and Lo and Hendon (2000) for their em-
pirical prediction schemes (their Figs. 14 and 9, re-
spectively). The regions where the forecasts perform
best, and worst, are notably the same, and when one
takes into account the 5-day means used for the com-
parison dataset by Waliser et al., and the greater spatial
smoothing of the comparison dataset employed by Lo
and Hendon (they spectrally truncated their OLR dataset
to T12), the magnitude of the correlations indicate that
the current technique is equally as skillful. Consistently,
the location and time of year for which 15-day forecasts
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FIG. 11. As in Fig. 6 except for the n 5 1 ER wave.

FIG. 12. As in Fig. 7 except for the correlations of the n 5 1 ER
wave real-time filtered OLR for southern summer only.

FIG. 13. As in Fig. 9 except for the n 5 1 ER wave OLR real-time
filtering at the point 108N, 1408E.

by this technique are able to account for the largest
portion of variance of OLR is in southern summer
around the Timor Sea, and also in the region to the east
of the Solomon Islands around 108S, 1708E. There, the
correlation coefficient of greater than 0.3 indicates that
somewhat more than 9% of the variance of the daily
varying, 96-day high-pass, R21 spatially truncated OLR
dataset is accounted for by the 15-day forecasts in south-
ern summer.

Also of note is that the correlations as presented in
Figs. 7, 8, and 10 are appreciably higher than what are
obtained if the same procedure of real-time filtering is
performed for an equivalent region of the wavenumber–
frequency domain that is characterized more by red
noise, that is, a region of the wavenumber–frequency
domain of Fig. 1 that does not contain a spectral peak
(not shown). Hence the success of the technique for the
MJO is not just a statistical artifact, but relies on the
existence of the MJO as a quasi-periodic phenomenon
in the first place.

b. n 5 1 equatorial Rossby wave

Turning now to the n 5 1 ER waves, Fig. 11 displays
the geographical distribution of their standard deviation.
Compared to the standard deviation of the MJO (Fig.
6), the n 5 1 ER waves can be seen to have less variance,
with the local maxima being off the equator around 108N
and 108S. By design of the filtering (e.g., Fig. 1), this
standard deviation is also symmetric about the equator.
It can also be seen that the n 5 1 ER waves tend to be
stronger in southern summer.

Concentrating on southern summer, the performance
of the real-time filtering technique for monitoring and
prediction of the n 5 1 ER wave can be ascertained
from Fig. 12. For a 6-day forecast, these correlations
against the diagnostically filtered n 5 1 ER wave OLR
are greater than 0.6 over four off-equatorial regions.
These regions are around 108N and S in the far western
Pacific, and also over the far western Indian Ocean to
eastern Africa. Based on a conservative estimate of 90
degrees of freedom (dof’s), a correlation of 0.27 is sta-
tistically significant at the 99% level; thus, this apparent
skill is quite significant. Compared to the correlations
of the MJO in Fig. 7, however, these correlations show
that the technique for the n 5 1 ER wave for a 6-day

forecast is only about as skillful as the technique is for
a 15-day forecast of the MJO. Obviously, as the n 5 1
ER waves have a shorter timescale than the MJO, they
cannot be predicted as far in advance, consistent with
the study of midlatitude variability of van den Dool and
Saha (1990).

The other measure of skill that we use in this study,
that is, the normalized rms error, is displayed for the
real-time filtering of the n 5 1 ER wave in Fig. 13.
These rms errors are displayed for the point at 108N,
1408E, and show the errors separately for all seasons,
southern summer only, and for certain defined active



2688 VOLUME 129M O N T H L Y W E A T H E R R E V I E W

FIG. 14. As in Fig. 10 except for the correlations of the n 5 1 ER
wave real-time filtered OLR against the corresponding 40-day high-
pass OLR for southern summer only.

FIG. 15. As in Fig. 6 except for the Kelvin wave.

FIG. 16. As in Fig. 7 except for the correlations of the Kelvin
wave real-time filtered OLR for all seasons.

periods of the n 5 1 ER waves. These active periods
were selected based on the magnitude of the real-time
filtered field between day 28 and day 18, and retained
668 of the total 1826 forecasts made. For the predictions
made with the technique during these active periods, a
normalized rms error of 0.8 is not reached until about
the 7-day forecast. Such an error is far less than that
obtained for a similar-lead forecast using persistence of
the diagnostically filtered n 5 1 ER wave as a prediction
(shown as the dotted line).

We also show a more conservative estimate of the
skill of the technique for the n 5 1 ER wave in Fig.
14. As in Fig. 10 for the MJO, this figure shows the
correlations for the real-time filtering of the n 5 1 ER
wave when compared to an OLR field that contains a
more complete spectrum of variance. The OLR field we
compare to is the 40-day high-pass OLR, which contains
all the variability of the total OLR field on timescales
from daily up to a period around the maximum of that
of the n 5 1 ER wave. Unlike the maps of Fig. 12,
these maps are not purely symmetric about the equator
since the 40-day high-pass field is not symmetric. Cor-
relations of the real-time filtered field against this field
are on the order of 0.1 to 0.3 for the 6-day forecast
across the western Pacific and central Indian Ocean re-
gions. Also of note, however, are a few regions of neg-
ative correlation, indicating that the real-time filtered n
5 1 ER wave component was a particularly bad forecast
of the synoptic to intraseasonal variability in these re-
gions.

c. Kelvin wave

Maps of the standard deviation of the diagnostically
filtered Kelvin wave field are displayed in Fig. 15. As
can be seen, the variance of these waves in OLR is
mostly confined to within about 108 latitude of the equa-
tor, and is spread more evenly with longitude than that
for the MJO or n 5 1 ER waves. It is this portion of
the total synoptic to intraseasonal variance that we are
attempting to monitor and predict when we apply the

real-time filtering technique to the Kelvin wave region
of the wavenumber–frequency spectrum.

Given that the seasonal cycle of the Kelvin wave
variance is not very pronounced, we next look at an
indicator of the skill of the technique for the Kelvin
wave for all seasons (Fig. 16). As for the other waves,
this figure shows correlations between the real-time fil-
tered data and the diagnostically filtered data for the
Kelvin wave for a number of lead and lag times. These
correlations can be seen to be maximized on the equator,
and show that the technique performs best for the Kelvin
wave in the region of the central to eastern Pacific for
which the correlations are greater than 0.4 for the 4-day
forecasts.

Looking at the rms errors for a point in the eastern
Pacific in Fig. 17, we see that the skill of the technique
for the Kelvin wave, like for the other waves, may also
be improved by concentration on active periods of the
waves. These active periods were chosen based on times
when the real-time filtered field exceeded a threshold
of 1.4 times the standard deviation at the point for any
lead or lag time between 65 days. This retained 491
samples for the calculation of the rms error. For the
Kelvin wave during active periods at this location, a
normalized rms error of 0.8 is exceeded for the 3-day
forecast. Thus the performance of the technique of real-
time filtering dwindles much more quickly for the
Kelvin wave than for the MJO or n 5 1 ER wave.
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FIG. 17. As in Fig. 9 except for the Kelvin wave OLR real-time
filtering at the point 08N, 958W.

FIG. 19. As in Fig. 6 except for the MRG wave, and for the season
of northern fall (defined as Aug–Jan) only.

FIG. 18. As in Fig. 10 except for the correlations of the Kelvin
wave real-time filtered OLR against the corresponding 30-day high-
pass OLR for all seasons.

FIG. 20. As in Fig. 7 except for the correlations of the MRG wave
real-time filtered OLR for northern fall only. The correlation is not
shown at the equator as the defined antisymmetric OLR field of the
MRG waves is zero there.

A further view of the skill of the technique is pre-
sented in Fig. 18, which shows correlations between the
real-time filtered Kelvin wave forecasts and a 30-day
high-pass OLR field. These correlations are thus an in-
dication of how much of the total synoptic to intrasea-
sonal variability, excluding that of the MJO, the Kelvin
wave forecasts account for at each point. Obviously, the
forecasts with the Kelvin wave only produce useful in-
formation within about 108 latitude of the equator. Out-
side this latitude range the forecasts (i.e. the maps at
positive lag) are mostly negatively correlated with the
verifying 30-day high-pass OLR field. For the 4-day
forecasts, relatively large areas of correlation of greater
than 0.1 are seen only over the equatorial eastern Pacific

and Africa. Given a conservative estimate of 800 dof’s
for this calculation, these correlations are still statisti-
cally significant at the 99% level at 4 or 5 days. The
range considered to be ‘‘useful’’ by an operational fore-
caster, however, would no doubt be less, but even a
useful 1- or 2-day forecast is still better than that which
is often obtained for precipitation by NWP models in
these regions (e.g., Krishnamurti et al. 1994; Janowiak
1992; next section).

d. Mixed Rossby–gravity wave

As for the other waves, we display figures of the MRG
wave standard deviation, and those showing the skill of
the technique for monitoring and predicting the MRG
wave, in Figs. 19–22. Previous studies have shown that
these waves tend to have maximum amplitude during
northern fall (e.g., Hendon and Liebmann 1991), so we
concentrate on this season.

The maximum OLR variance of this wave can be seen
to be located near the date line at 7.58N and 7.58S (Fig.
19). The skill of predictions of this wave, however, when
compared to the diagnostically filtered field, is maxi-
mized somewhat to the east of this location (Fig. 20).
These correlations are greater than 0.6 for a 4-day fore-
cast, seemingly better than that for the Kelvin wave for
the same lag forecast (Fig. 16).

As with the other modes studied in this paper, the
skill of the technique for monitoring and prediction is
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FIG. 21. As in Fig. 9 except for the MRG wave OLR real-time
filtering at the point 7.58S, 1608W.

→

FIG. 23. (a) As in Fig. 3a except for the period, latitudes, and longitudes as specified. Contour interval for the diagnostically filtered MJO
OLR anomalies is 10 W m22. (b) Time–longitude plot of the 5-day real-time filtering forecasts of the MJO OLR that verify on the days as
specified. (c) As in (b) except for the 15-day forecasts of the MJO OLR. Contour interval for (b) and (c) is as specified with positive contours
dashed. (d) Time–longitude plot of the verifying MSU precipitation. Missing data is left blank and land areas hatched. Spatial and temporal
smoothing applied to mimic R21 truncation and temporal smoothing of the OLR in (a). (e) As in (b) except for the 5-day forecasts of
precipitation from the NCEP model in mm day21. Spatial smoothing applied to match (a). (f ) As in (e) except for the 15-day forecasts.

FIG. 22. As in Fig. 10 except for the correlations of the MRG wave
real-time filtered OLR against the corresponding 7-day high-pass
OLR for northern fall only.

improved for the MRG wave when concentrating on
active periods of this wave (Fig. 21). These active pe-
riods were chosen in a way similar to that for the other
modes, a choice that can be made in real time. The
normalized rms error calculated for the 438 points re-
tained for the active periods does not exceed 0.8 until

the 4-day forecast at the point displayed in Fig. 21. This
measure of the skill of the technique also appears better
than that for the Kelvin wave (Fig. 17).

Finally, a more conservative estimate of the skill of
the technique for the MRG wave is displayed in Fig.
22 in the form of correlations of the real-time filtered
field at various lags against a verifying 7-day high-pass
OLR field. This figure shows that the real-time moni-
toring of the MRG wave locally accounts for the greatest
portion of the 7-day high-pass variance in the regions
of the Bay of Bengal, and the central Pacific to the north
of the equator. Although such correlations can be de-
termined to be statistically significant, the small amount
of variance accounted for suggests that the technique
when applied to the MRG wave would provide only
quite minimal operational usefulness. Nevertheless,
such forecasts of the convective activity associated with
MRG waves may still at times be better than that ob-
tained by a modern NWP model, as demonstrated in the
next section.

6. Comparison with NWP model

To further assess the usefulness of the real-time fil-
tering of the modes of variability for prediction, we
compare the OLR forecasts of the real-time filtering with
forecasts obtained from the NCEP MRF model. As long-
wave radiation data were not available from the model,
however, we use precipitation data from the model. This
is an extreme test of the model as tropical precipitation
and clouds have been notoriously difficult to represent
and predict in such models. Of course, the MRF model
theoretically provides a prediction of all resolvable time
and space scales, which may include not only the modes
of variability we are concerned with in this study, but
other tropical variability as well, including the variety
of phenomena that constitute the red noise background
spectrum (e.g., tropical depressions, cold surges, trop-
ical cyclones). For this reason we concentrate on two
cases in which two of the modes were particularly strong
and observable in the total OLR field and, thus, theo-
retically possible to observe in unfiltered data from the
MRF model as well. Note that such cases will shed the
best possible light upon the usefulness of the real-time
filtering because, as already shown, forecasts with this
real-time filtering technique perform best when the
modes are strong. The two cases are for a period of
MJO events in late 1987 to early 1988 (Fig. 23), and
for a period of convectively coupled MRG waves in
April–May 1985 (Fig. 24).
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FIG. 24. (a) As in Fig. 23a except for the period, latitudes, and longitudes as specified, showing
the MRG wave diagnostic filtering, and without a 1–2–1 filter applied in time. Contour interval
for the MRG wave filtering is 7 W m22. (b) Time–longitude plot of the 2-day real-time filtering
forecasts of the MRG wave OLR that verify on the days as specified. Contour interval is as specified.
(c) Time–longitude plot of the verifying MSU precipitation. Missing data is left blank and land
areas hatched. Spatial smoothing applied to mimic that of the OLR in (a). (d) As in (b) except for
the 2-day forecasts of precipitation from the NCEP model in mm day21, and spatial smoothing
applied to match (a).

Figure 23a shows the total OLR field along with con-
tours of the diagnostically filtered MJO OLR for a 5-
month period. The presence of MJO events is easily
discerned in the unfiltered field at this time. Figure 23b
shows a sequence of 5-day forecasts made with the real-
time filtering technique that verify at the time as spec-
ified. Comparing the contours of the forecasted anom-
alies with the position of the contours of the verifying
fields in Fig. 23a, one can see that the 5-day forecasts
from the real-time filtering perform quite well at pre-

dicting the phase of the MJO events, although the am-
plitude of the predicted anomalies is about half that of
the verifying anomalies. As discussed in section 3, the
reduced amplitude of the predicted anomalies is a known
characteristic of this technique, and is also a trait of the
previous empirical MJO prediction techniques of Wal-
iser et al. (1999) and Lo and Hendon (2000). This re-
duced amplitude of predicted anomalies is further evi-
dent in Fig. 23c showing a sequence of the 15-day fore-
casts with the technique. The predicted phase of the
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anomalies, however, is still quite good, although there
are some times during which the forecasts are slightly
leading or lagging the verification field.

Figure 23d shows the MSU-derived precipitation for
this same 5-month period. Noting that this observed
precipitation field shows very similar variability to the
observed OLR (Fig. 23a), we may then compare the
real-time filtering forecasts to those of precipitation of
the MRF model (Figs. 23e and 23f). The 5-day forecasts
(Fig. 23e) shows some evidence of the intraseasonal
MJO variability, presumably due to the existence of such
variability in the initial conditions, but the 15-day fore-
casts (Fig. 23f) show no evidence of the MJO variability
at all. Instead, the significant precipitation in the model
shows a tendency to accumulate near the island of Papua
New Guinea. This result is consistent with that of Hen-
don et al. (2000) that the MRF model is not able to
sustain the slowly varying anomalies associated with
the MJO beyond about a 7-day forecast, even if the
MJO is strongly present in the initial conditions. Knowl-
edge of the future MJO progression provided by the
real-time filtering is obviously of greater benefit during
this period.

Turning now to a case of strong MRG waves ap-
pearing in the OLR and precipitation fields of the Pacific
ITCZ (Figs. 24a and 24c, respectively), we see that the
MRG wave real-time filtering 2-day forecasts (Fig. 24b)
provide a good qualitative prediction of this westward
propagating synoptic-scale variability, especially during
the later stages of the wave packet. The 2-day precip-
itation forecasts of the MRF model (Fig. 24d), on the
other hand, did not capture this variability with a near-
5-day period. Thus again we are able to present a case,
even for relatively short range forecasts (2 days), in
which the predictions provided by the real-time filtering
of a known mode of variability are able to outperform
a modern NWP model.

7. Summary and discussion

In this study, we have presented a technique of mon-
itoring and prediction of various modes of coherent syn-
optic to intraseasonal zonally propagating tropical var-
iability, which we apply to observed OLR data. The
modes of variability considered are the MJO, and the
convectively coupled n 5 1 ER, Kelvin, and MRG
waves. The technique demonstrates good predictive skill
for the MJO, and notable skill for the other convectively
coupled equatorial modes. Compared to the previously
developed methods of empirical prediction of such
modes of variability (i.e., von Storch and Baumhefner
1991; Waliser et al. 1999; Lo and Hendon 2000), the
technique’s strength is that it is possible to apply to any
mode that appears as a significant spectral peak in the
wavenumber–frequency spectrum, and not just the MJO.
The technique can also be applied in near–real time, and
the same procedure may be used in any season. It is
also conceptually simple, exploiting the method of Fou-

rier filtering of the particular wavenumbers and fre-
quencies of the modes. Further, the technique’s skill for
the MJO appears to be as equally as good as that of the
previously developed methods. As with these previous
methods, however, the decay of the amplitude of the
forecasts is a characteristic of the technique that a user
needs to be aware of.

With a mind toward the application of the technique
for operational monitoring and prediction, the maps of
correlations presented in this paper, especially those
against a high-pass filtered field (Figs. 10, 14, 18, and
22), may be used as an indication of where and when
the technique typically works, and does not work. At
locations where the technique shows positive correla-
tions at positive lags, the technique typically beats a
persistence forecast (see rms errors in Figs. 9, 13, 17,
and 21). More importantly, however, is that the tech-
nique (on OLR) is also able to, at least occasionally,
beat (in terms of phase) forecasts produced by the NCEP
MRF model (of precipitation). This is particularly the
case during times when the modes of variability are
quite active (e.g., Figs. 23 and 24). Part of the reason
for this relatively poor performance of the MRF model
is its inability to adequately simulate the modes of var-
iability, as has been demonstrated for the MJO by Jones
et al. (2000), and as will be demonstrated for the con-
vectively coupled equatorial waves in a future paper.
Early results show that its simulated convectively cou-
pled equatorial waves are too high in frequency. Another
part of the reason is likely related to inadequate initial
conditions, especially in the equatorial regions that are
not covered by the conventional observations (winds,
temperatures, and humidities) that are ingested into the
model.

Future improvement of the empirical technique may
come with an alteration of the regions of filtering, as
presented in their current form in Fig. 1. For example,
it may be found that the long-range predictions of the
MJO may be able to account for more variance by the
inclusion of wavenumber 0 in its region of filtering. So
far we have done little experimentation with the regions
of filtering, except to discover that the technique does
not provide a useful prediction (relative to persistence)
if applied to a region of the wavenumber–frequency
domain that does not contain a spectral peak (not
shown). Experimentation has been performed, however,
with the length of the zero padding and the length of
the actual data input to the FFTs. Relatively little dif-
ference was found between using 5 yr of actual data
and 7 months of zero padding compared to the 1 yr of
actual data and 659 days of zero padding that we even-
tually employed for the multiple forecasts (see also sec-
tion 3).

Finally, while this and other empirical techniques
show some promise for use by forecasters in the Tropics,
eventually it is hoped that predictions by NWP models
should be able to surpass them. The current empirical
schemes, for example, while generally good for predic-
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tions of the phase of the wave modes, suffer from prob-
lems in predicting the amplitude. As a consequence,
predictions of extratropical teleconnections are even
more problematic. NWP models may be able to improve
this aspect of the predictions. After all, an empirical
scheme cannot match the ability of NWP models to take
into account the effects of the full three-dimensional
basic state (see also Meehl et al. 2001). Improvement
of the NWP models ability to simulate the various
modes of tropical variability is paramount for this future
goal.
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