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ABSTRACT

We consider the problem of the linear response of a stratified, equatorial, 8-plane model atmosphere to
specified transient sources of heat and momentum. The method of solution involves transforms in all three
spatial coordinates. A finite Stiirm-Liouville transform is used in z, a Fourier transform in x, and a generalized
Hermite transform in y. The resulting spectral equations can then be solved analytically for a specified forcing.
Of particular interest is the case of a Gaussian-shaped heat source centered at latitude y, and with e-folding
radius a. The heat source is transient and has time scale 1/a. Using the Parceval relation we compute how
the forced energy is partitioned between Kelvin, mixed Rossby-gravity, Rossby and gravity modes as a function
of a, y,, a. Model results using a heat source centered at 11°S with an e-folding radius of 750 km and a time
scale of about a day indicate that many aspects of the summertime upper tropospheric circulation over South
America can be explained by the dispersive properties of Rossby and mixed Rossby-gravity waves. These
results also show that the transient heat source excites Kelvin waves which propagate rapidly eastward as a
nondispersive wave group. The existence of the Kelvin waves has implications for the initialization of tropical
forecast models. By applying a nonlinear normal mode initialization procedure in the middle of a model
simulation we investigate how the initialization distorts the subsequent evolution. Much of the distortion is
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associated with the Kelvin wave response.

1. Introduction

Although the zonally symmetric Hadley cell provides
a first approximation to the tropical circulation, there
also exist large east-west asymmetric circulations as-
sociated with the equatorial continental areas of Africa,
South America and the region near Indonesia and New
Guinea. Over these regions, both the convective activity
and the tropospheric circulation fluctuate diurnally
and also on time scales of days or longer.

An example of an east-west asymmetry in the trop-
ical circulation can be seen in Fig. 1 (adapted from
Kreuels et al., 1975), which shows the average 200
and 700 mb flow over South America for four winters
(June-August) and four summers (December-Feb-
ruary) between 1966 and 1970. Also shown are the
long-term rainfall patterns for winter and summer.
The most striking feature of Fig. 1 is the difference
between the nearly zonal upper tropospheric flow over
Brazil in winter and the strong anticyclone in summer.
According to Kreuels et al. (1975) the summertime
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anticyclone (the Bolivian high) appears as a closed
feature above 300 mb and is coupled to the trough
toward the east. Because summertime precipitation
over the Amazon basin is much larger than wintertime
precipitation, one obvious possibility is that the upper
tropospheric anticyclone is maintained by the release
of latent heat.

The circulation pattern over South America also
varies on time scales shorter than the seasonal variation
shown in Fig. 1. For example, a study by Virgi (1981)
of the tropospheric circulation over South America
using satellite derived cloud winds shows that the max-
imum wind, vorticity and divergence can attain values
much above the average and that the position of the
Bolivian high can vary significantly. Kousky (1979)
has shown that some of the variability of cloudiness
and convective activity can be explained by the influ-
ence of midlatitude systems that penetrate to low lat-
itudes over Brazil. In a recent study of the transient
aspects of the upper tropospheric circulation, Kousky
and Gan (1981) found that upper cold lows often form
in summer around 35°W, drift westward and play a

-significant role in the precipitation pattern over Brazil.

We can summarize by saying that the convective ac-
tivity and circulation over the Amazon region varies
on time scales ranging from the annual movement of
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FIG. 1. Streamline patterns at 700 and 200 mb and rainfall in millimeters. The left column is for winter (June-August) and
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the ITCZ through the synoptic to the diurnal (see
Kousky, 1980).

Although certain aspects of low-latitude atmospheric
response to transient forcing can be studied using an
Jf-plane model such as the one developed by Paegle
(1978), the problem at hand would appear to require
an equatorial model. The simplest such model is the
equatorial 8-plane model described by Matsuno (1966)
and Lindzen (1967). The use of equatorial 8-plane
models has a brief but rich history in both meteorology
and oceanography. For example, steady-state and long-
term atmospheric response to convective forcing has
been studied by Webster (1972, 1973a,b, 1981), Gill
(1980) and Geisler and Stevens (1982), while the tran-
sient response to midlatitude cold surges toward the
South China Sea has been studied by Lim and Chang
(1981) and Lau and Lim (1982). For an extensive re-
view of the use of equatorial 8-plane models in geo-
physical fluid dynamics the reader is referred to Chapter
11 of Gill (1982).

In the present paper, the atmospheric response to
localized transient heat sources which simulate con-
vective bursts in the tropical region is studied. The
model development begins with the linearized equa-
tions for a stratified fluid on the equatorial 8-plane.
In Section 2, a finite Stiirm-Liouville transform is ap-
plied in the vertical, which reduces the governing
equations to a series of shallow water equations which
determine the horizontal structure of each vertical
mode. From this point on, the emphasis is placed on
the horizontal structure of the solution for a single
vertical mode (the mode which is most excited by the
heating). The horizontal structure equations with tran-
sient forcing are then solved in a fashion similar to
~ that described by Cane and Sarachik (1976) for an
oceanographic problem. The energy partition between
rotational and gravitational modes as a function of the
latitude, horizontal scale and time scale of the heat
source is considered in Section 3. In Section 4, results
of a model simulation using a heat source centered at
11°S with an e-folding radius of 750 km and a time
scale of about a day are presented. These results are
used to explain some observed features of the Bolivian
high revealed in 200 mb FGGE maps from February
1979. The “fast mode” response in these simulations
raises questions about subsequent distortion which
would result from the use of a nonlinear normal mode
initialization during the period of forcing. This is dis-
cussed in Section 5.

2. Governing equations

Consider a compressible hydrostatic fluid which lies
above an equatorial §-plane and which is forced by
known sources and sinks of momentum and heat. Us-
ng z = In(p,/p), where p, is a constant “surface” pres-
sure, as the vertical coordinate, we can write the gov-
erning equations as
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where u is the eastward component of velocity, v the
northward component, w the vertical log pressure ve-
locity, ¢ the geopotential, T the temperature, 8 the
equatorial value of the northward gradient of the Co-
riolis parameter, and F, G and Q the known momen-
tum and heat source/sink terms.

Linearizing about a basic state of rest and combmmg
(2.3)-(2.5) yields

u 64) ou
a Pt T a (26)
v d¢ ai)
3 + Byu 6 =% 2.7

e (ra)] -G a)

or|.€ 9z \RT oz ox " ay
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where I'(2) = dT/dz + «Tis the basic state static stability
and d4/dt = F, dv/ot = G, 3(9¢/dz)/0t = RQ/cp are
the momentum and heat source/sink terms (¢ =0at
z = 0). At the upper boundary we require that the
vertical log pressure velocity vanish, while at the lower
boundary (approximated by the z = Q surface) we
require that the actual vertical velocity vanish. Ex-
pressing these boundary conditions in terms of ¢, we
obtain

0[a ~ -
> [a_z (¢ — ¢)] =0, z=1z7, (2.9a)

d

E[—— (¢ - ¢)——(¢ ¢)] 0, z=0. (2.9b)

- Our system of equations is now (2.6)—(2.8) subject to

boundary conditions (2.9). We shall solve this problem'
using transform techniques. A finite Stiirm-Liouville
transform with kernel V,(z) and weight e=*/? will be
used in the vertical. This transform and its inverse can
be written as

0= fo"f(x, ¥, z, )¥(2)e *dz, (2.10)
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Sy, 2z, 0= %fn(x, A t)‘fn(Z)e”z, (2.11)

. n=0

where f(x, ¥, z, {) can represent u, v, ¢, #, D or ¢. The
kernel ¥, of this transform, which is derived in Ap-
pendix A, has been designed to conveniently transform
the first and last terms in (2.8), subject to boundary
conditions (2.9). ‘

Taking the vertical transform of (2.6)-(2.8) and using
the operational relation (AS) we obtain

3¢n _

o’ _
hdac 2.12)

L B v, +

o YT ex T e

6v,, a¢n ai”n ‘

4 By + =2 2.13

ot Byu ay ot ( )
3¢, 2(au,, av,,) 3,
n | o %n ) OOn) _ OOn 2.14
a  “\ox " ay) & (2.14)

which are identical to the governing equations for the
divergent barotropic model (i.e., the shallow water
equations) with pure gravity wave speed ¢, = (gh,)"/%.
Since the equivalent depths h, are determined from
the eigenvalues of (A4), they depend on the static sta-
" bility I'(z), the height of the upper boundary zy and,
to a lesser extent, on the reference temperature T at
z=0. - ' .

Perhaps the least controversial way to proceed would
be to set z to a value which corresponds to a pressure
of a few millibars, solve (A4) using a standard at-
mosphere T and I'(z), project observed (i.e. diagnos-

tically determined) tropical (e.g., Amazon Basin) pro-

files of #, ¥, ¢ onto the vertical modes using (2.10),
solve the horizontal structure equation sets (2.12)-
(2.14) using {#,, D, ¢p», n =10, 1, ..., N} as forcing,
and finally, reconstruct the physical space field u, v,

DIMENSIONLESS TIME
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¢ from (2.11). If the momentum and heat sources were
confined below the tropopause, simulations out to
many days would be possible before false reflections
from the distant upper lid had any effect on the tro-
pospheric part of the solution. In the present calcu-
lations we have opted for the simpler alternative of
including only one term in the summation (2.11). This
approach is in the spirit of Gill (1980), who has argued

~ that important contributions to the total solution in

physical 'space will be from vertical modes whose ver-
tical scale is the same order as the vertical scale of the
forcing. According to Gill, the important contributions
from convective heating should be centered around ¢,
=~ 60 m s~!. For an idealized heating profile, a constant
static stability and a rigid lid at ~3 mb, Geisler and
Stevens (1982, Fig. 2) have computed a vertical mode
projection which centers around ¢, =~ 40 m s™!. They
have also pointed out that for complete quantitative
discussions, a summation over vertical modes is re-
quired. Here we shall not undertake such a complete
quantitative analysis, but will discuss only certain
qualitative aspects of the problem. This concentration
on only one vertical mode allows us to nondimen-
sionalize the single horizontal structure set-and thus
simplify the following mathematical development.
Two other possible interpretations of the above single
vertical mode procedure are that we are dealing with
the response of a standard two-level model with no
external mode or that we are dealing with the first
internal mode of a multi-level model with a lid at 100
mb. For such a multi-level model, S. Fulton (personal
communication, 1982) has solved the Stiirm-Liouville
problem [Eq. (A4)] using the mean Marshall Islands
sounding of Yanai et al. (1973) and with the upper
boundary condition (A4c) applied at 100 mb. The re-
sulting values of ¢, for the external and first two in-
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FIG. 2. Time dependence of the momentum and heat
source/sink terms for two values of the parameter .
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ternal modes are, respectively, 287.3, 51.2 and 29.4
m s~'. Fulton has also computed how the ¢ which
results from Yanai’s apparent heat source profile pro-
jects onto the various vertical modes. In terms of the
total available potential energy generated by the ap-
parent heat source, over 90% ends up in the first in-
ternal mode. Based on this result we shall use 51 m
s~! as our single value of ¢,. Thus, the results shown
in later sections on thermally forced motions are es-
sentially the small-amplitude response that would be
calculated with a GCM having a lid at 100 mb and
with a specified heat source profile in agreement with
Yanai’s Marshall Islands data®.

It is now convenient to convert (2.12)-(2.14) into
nondimensional form by choosing as the unit of time
[T1 = (1/c,8)'?, the unit of horizontal distance [L]
= (c,/8)"? and the unit of vertical distance 4,. The
horizontal length scale [L] can be interpreted as the
usual Rossby radius of deformation A = ¢,/f evaluated
at y = [L}, i.e. [L] = M[L]) = ¢./B[L]. Similarly, [T]
is the inverse of the Coriolis parameter at y = [L]
(Cane and Sarachik, 1976). Using the same symbols
X, ¥, t for the new dimensionless independent variables,
u, v, ¢ for the new dimensionless dependent variables,
and #, U, ¢ for the space-dependent part of the source/
sink terms, Eqgs. (2.12)~(2.14) become

(;_W + LW = Whalt2e ™, (2.15)
where
0
- 0o -y <
u u‘ y i
w=| v W= o L= 0o 2
b v ’ y ay
“ Jd 9
¢ ¢ o 3 0
(2.16)

Here we have assumed that the time-dependent part
of the source/sink terms is given by Y2a’t%¢™*. Small
values of the dimensionless parameter a correspond
to slow forcing and large values to rapid forcing (see
Fig. 2), but the total forcing is independent of « since

f —o’tPedt = 1.

Defining W(k, y, #) as the Fourier transform of W(x,
¥, t) we can write the Fourier transform pair as

Wk, y, 1) = f W(x, y, De *dx, (2.17)

(2 )1/2

3 It should be noted that apparent heat source profiles for different
geographical regions can show considerable differences, as evidenced
by comparing average Marshall Islands and GATE profiles. To our
knowledge, the vertical structure of the apparent heat source over

the Amazon Basin has yet to be determined.
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W, ) = f Wk, y, e dk, (2.18)

@r )‘/2
with similar expressions for W(k, y)and W(x, ). Fou-
rier transforming (2.15) we obtain
éay + LW = Wiaalr?e el
where L is identical to L but with 9/dx replaced
by ik.
Our next task is to transform (2.19) in y. We consider
the complex three-component vectors f and g, all the

(2.19)

— components of which go to zero as y — +oo. The

inner product of f and g is defined as

(f,g) = f (figt +fig? + figDdy, (2.20)

where ( )* denotes the complex conjugate. We now
introduce the meridional transform pair
Wik, 1) = (WK, y, 1), Kn,(K, 1)),

Wk, y, 8) = 2 Wk, 0Ky, (K, ¥),

m,r

(2.21)
(2.22)

where K,, (k, y) is a complex, three-component, time-

" independent vector kernel which satisfies

LK, + vy, Kn, = 0. (2.23)

The adjoint of L with respect to the inner product
(2.20) is an operator L which satisfies

(i1, g = (f, L'g) (2.24)

for all f and g satisfying the boundary conditions. We
can show (see Appendix 1}) that the operator L is skew-
Hermitian (i.e., L' = —L) so that (2.24) becomes

(i1, &) = —(f, Lg). (2.25)

As shown by Kasahara (1977), an analogous relation
holds in the spherical case. Since L is skew-Hermitian,
the eigenvalues v,,, of (2.23) are real and the eigen-
functions K,,, are orthogonal as long as degeneracy
does not occur. The eigenvalues and eigenfunctions
of (2.23) have been thoroughly discussed by Matsuno
(1966) and Cane and Sarachik (1976). For a summary
of the results relevant here, see Appendix B. Taking
the inner product of (2.19) with K,,,, we obtain

(aa—w K., ,) + (LW, K,,, )

= (W, K, )2ot2™.  (2.26)

Using (2.21), (2.23) and (2.25) we.can rewrite (2.26)
as
aw,,,

- W Won,r

= W, PP, (2.27)
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The solution of (2.27)is

3

= er k trmrl
Wik, ) @t iy r( )e‘
X {1 =1+ (a+ vy, )t + Yla + vy, )12
X g tetima) - (2.28)

We can now summarize the procedure for obtaining
the solution W(x, y, ¢). First, the spec1ﬁed forcing W(x,
y) is transformed to spectral space using (2.17) and
(2.21). The right-hand side of (2.28) is then computed
to obtain W, ,(k, f), the solution in spectral space.
Finally, we use (2.22) and (2.18) to transform back to
physical space.

3. Energy partition

The vertically transformed equations (2.15) have
the energy equation

-g;f_ f_ (u? + v? + ¢*)dxdy
= a@3t2e™™ f f (uii + vd + ¢pd)dxdy, (3.1)

which relates the time change of total energy to the
generation by the specified momentum and thermal
forcing. The total energy can be computed from the

solution in physical space or from the solution in spec- -~

tral space using the Parseval relation

f f (w? + v? + ¢*)dxdy

Lo o}

© 2
= 2 2 Wk, t)*dk,

—® m=—1 r=0

3.2)

where W, ,(k, t) is given by (2.28). From (2.28) we
note that the amplitude of W,,, changes with time.
For large ¢ the factor e™* becomes small compared to
unity, and in the limit t — co we obtain
.az -
, ) W OP. (3.3)

2 -
Wl o) = (e
The above equation is valid after the forcing becomes
negligible and the amplitude of W, , becomes constant
with time. The final amplitude of W,,, depends on
the time scale of the forcing compared to the frequency
of a given mode. For very rapid forcing, the term in-
volving « becomes close to unity, and in the limit as
a— 00, |W,,,(k, )|* becomes | W,, (k)]*. The limiting
case o — oo is equivalent to impulsive forcing where
all the momentum and/or heat is added instanta-
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neously. The total energy generated in this case is given
by

a0

[ 2
> 2 W lk)Pdk.

0 m=—1 r=0

T = 3.4)

The term involving a in (3.3) increases as « increases,
so the total energy generated is a maximum for the
case of 1mpu151ve forcing. Since the solution technique
we have used is equivalent to a normal mode expan-
sion, many characteristics of the solution can be in-
ferred from the partition of energy between the different
modes. In order to measure the partition of energy at
a particular time, the following definitions are made:

f E 2 | Wk, £)|2dK, (3.5)
© m=—1 r=0
' 1
K- F,f W ke, )Pk, (3.6).
MRG =+ [~ z |Wo (K, t)lzdk 3.7
11V r—0
" R =— 2 [ Wonolk, 0)|°dk, (3.8)
T m=]
G-z[ = 3 W 0Pl G9)
TI % m=0 r=2,m=0 .

r=1,m>0

The above parameters are measures of the total energy,
the energy associated with the Kelvin modes, mixed
Rossby-gravity modes, Rossby modes and gravity
modes respectively. Each parameter is normalized by
the total energy for the case of impulsive forcing.

Eq. (2.28) gives the solution of the transformed gov-
erning equations for arbitrary spatial dependence of
the forcing terms. We now consider the case where
the nondimensional, vertically projected forcing terms
in (2.15) are given by #(x, y) = ¥(x, y) = 0 and

Lo ) (5] o

Thus, we have a heat source centered at a distance y,
from the equator, with an e-folding radius a. The “total
heating” is independent of y, and a since (3.10) implies
2 2, é(x, dxdy = 1. Using (3.10), (2.17), (2.20),

(2.21) and (B.4) we find that the transformed forcing
is given by* .

o(x, y) =

4 The Hermite transforms required here can be found in Erdelyi
et al. (1954), Vol. 2, pp. 288 and 290.
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1 k*a? ]
VEL CXD(— 2 )[‘/Z(Vm,r = KBt = M1 + k)Byi],
2
exp(_ Yo 2) - . m = 0’
. 2+a k#0 when r=0
Wm,r(k)=m§—< ) m=0 r , (3.11)
_— [ — = .
Emo(k) [ /2Bm+l (m + 1)Bm—l]’ k=r=0
! — k_za_z B m=—1,
Vari2 CP\" Tq )70 r=2 |
where that as the forcing becomes more rapid, the amount
3 — g2\ 2 of gravity wave energy generated increases while the
( 2) H,,,(—A—“) , a#\2 amount of Rossby wave energy generated remains ap-
B,=1{ \2+ta 4—a proximately constant.
m - The amount of energy in the higher frequency modes
Yo a= is also dependent on the spatial scale of the forcing.
(3.12) For a fixed «, the energy in the high-frequency modes

As can be seen from (3.11) the transform of the forcing
contains a factor exp(—k?a?/4). The e-folding half
width of the Fourier spectrum is then k = 2/q so that
a narrow initial condition (small @) projects onto a
broad band of zonal waves while a wide initial con-
dition (large a) projects onto a narrow band of zonal
waves. The factor B,, which arises from the transform
in y indicates that W,, (k) will have an oscillatory
behavior as m increases.

If we now substitute (3.11) into (2.28) and the result
into (3.5)-(3.9) we can compute the modal energy par-
tition for any a, 3y, a at any time ¢. Fig. 3 shows the
modal energy partition for t — oo as a function of the
spatial scale of the forcing (a) for two different values
of yp and a. In Fig. 3 the Rossby wave energy increases
as the spatial scale of the forcing increases. For in-
creasing a, the disturbance which results from the forc-
ing should then have a larger amplitude in the local
region near the forcing, since the Rossby modes have
low frequencies and are slowly dispersive. Comparing
Fig. 3a with 3¢ and Fig. 3b with 3d, the Rossby wave
energy also increases as the latitude of the forcing in-
creases.

Comparison of Fig. 3a with 3b, and Fig. 3¢ with 3d
shows the effect of the time scale on the forcing. The
forcing is a maximum when ¢ = 2/«, which corresponds
to ~4 h for « = 4 and ~12 h for @ = %, using the
time scale for the first internal mode. As can be seen
from (3.3), the amplitude of a given mode is reduced
when the frequency is close to a. As a decreases, the
forcing excites less energy in the high-frequency modes.
In Fig. 3, as « decreases, there is much less energy in
the Kelvin modes, the mixed Rossby—gravity modes,
and the gravity modes. For the time scale of the forcing
considered here, the frequencies of the Rossby modes
are much less than «, so the Rossby mode energy
remains approximately constant. These results show

increases with g, reaches a maximum and decreases
again. For large a, the decrease in gravity wave energy
is related to the classical result from geostrophic ad-
Jjustment which indicates that a disturbance in the mass
field will excite less gravity wave energy and more
energy in the geostrophically balanced flow as the scale
of the disturbance increases. The decrease in gravity
wave energy for small a is related to the time scale of
the forcing. As discussed previously, when a is small,
the forcing will be projected onto a wide range of zonal
waves. The forcing is then projected onto higher and
higher frequency gravity and Kelvin modes. From (3.3),
for a given «, the amplitudes of high-frequency modes
are greatly reduced. This accounts for the peaks in Fig.
3 for the Kelvin and gravity modes. '

Comparing Fig. 3a with 3¢ and Fig. 3b with 3d, it
can be seen that the amount of gravity wave energy
excited does not vary strongly as a function of latitude,
but the Kelvin wave energy increases with decreasing
latitude while the mixed Rossby—gravity wave energy
decreases with decreasing latitude. These are expected
results since the gravity waves are not strongly affected
by the earth’s rotation, while the Kelvin wave is trapped
near the equator. The mixed Rossby-gravity wave en-
ergy is exactly zero when y, = 0 since the forcing is
in the mass field and is symmetric about the equator,
but the mass field of the mixed Rossby~gravity wave
is antisymmetric about the equator. In Fig. 3, the
amount of energy in the Kelvin modes is quite striking.
In many cases, the Kelvin wave energy exceeds the
Rossby wave energy. Since Kelvin waves propagate
toward the east and are nondispersive, a large response
to the east side of the forcing should appear.

4. Simulation of upper tropospheric circulations

In the previous section we have considered the en-
ergy partition associated with transient thermal forcing
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FiG. 3. The normalized modal energy partitions in the limit as ¢ — oo for the case of a heat source centered at
latitude y, with time parameter « as a function of the e-folding radius of the heat source a. The energy in the Rossby,
Kelvin, mixed Rossby-gravity and gravity waves is denoted by R, K, MRG and G, respectively, and T is the total
energy.

as a function of the time scale o', the e-folding radius shown and the results are compared with the observed
a, and the latitude y, of the forcing. In this section, upper-level flow over South America.
the temporal evolution of some particular cases are Fig. 4a shows the wind and geopotential fields for
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the case when « = %, a = 0.5 and y, = —0.8 at
t = 2,4, 6 and 8 nondimensional units. Also shown
is the contribution to the total field from the Kelvin
waves (Fig. 4b), mixed Rossby—gravity waves. (Fig. 4¢)
and Rossby waves (Fig. 4d). The wind and geopotential
fields are equally scaled in Fig. 4 with the maximum
wind vector corresponding to 0.12 nondimensional
units. For the internal mode corresponding to ¢ = 51
m s~! the dimensional time scale [T] is 8 h and the
spatial scale [L] is ~ 1500 km. This particular scaling
was justified in Section 2 based on the vertical pro-
jection of a typical convective heating using an ob-
served temperature profile in the tropical region. Using
this scaling, the e-folding radius of the thermal forcing
is then 750 km and the latitude of the forcing is 11°S.
As can be seen in Fig. 2 for a = 4, the forcing is a
maximum at ¢ = 1.5 nondimensional units and be-
comes negligible after 1 = 6 nondimensional units
which corresponds to z = 12 h and ¢ = 48 h respectively.
Many interesting features can be seen in Fig. 4a
which shows the total fields. Atz = 16 h (left column)
the high-pressure center that developed in response to
the forcing is displaced slightly south of the maximum
forcing. Also noticeable is the asymmetry of the re-
sponse. There is a strong cross-equatorial flow with
the maximum wind speed in the neighborhood of the
equator. The flow pattern becomes more geostrophic
as the latitude increases in agreement with the larger
Coriolis parameter. At ¢ =.32 h the forcing has de-
creased to 25% of its maximum intensity and the flow
pattern is becoming more geostrophic although the
cross-isobaric flow is still intense near the equator. At
t = 32 h there are several features that deserve attention:
(i) the southerly and southeasterly flow on the northeast
side of the anticyclone have become more intense, (ii)
the center of the anticyclonic circulation is now dis-
placed west of the maximum forcing, (iii) a trough is
beginning to develop east of the anticyclonic circu-
lation, (iv) westerlies have developed along the equator
with maximum wind speed at x = 3000 km and max-
-imum pressure perturbation displaced slightly towards
the Northern Hemisphere and (v) the flow across the
equator now has an anticyclonic curvature in the
Northern Hemisphere. At ¢t = 48 h and ¢t = 64 h the
above characteristics tend to become more evident ex-
cept that the cross-equatorial flow north of the main
high pressure has decreased and a new region of cross-
equatorial flow with a northerly component has de-
veloped between x = 1500 km and x = 4500 km. By
t = 48 h the forcing has decreased to 4% of its maximum
value and the whole flow pattern is slowly dispersing.
The main anticyclone is becoming elongated toward
the west and a sharp east-west geopotential gradient
is forming between the low centered near x = 1500
km and the main high. Accordingly, strong winds are
also observed in this region. Also noticeable is the
rapid eastward drift of the circulation pattern discussed
in item (iv).
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Comparing Fig. 4a with Fig. 4b shows that the cir-
culation pattern described in item (iv) which propagates
rapidly eastward is associated with the Kelvin wave
contribution. Thus, the cross-isobaric flow observed
on the northeast quadrant of Fig. 4a at 1 = 16 h moves
eastward and propagates as a nondispersive wave
group. At first it may appear that the Kelvin waves in
Fig. 4 are exhibiting a dispersive behavior since the
initially narrow disturbance at ¢ = 16 h becomes elon-
gated at later times. This, however, is due to the con-
tinual generation of Kelvin waves while the forcing is
active. After ¢ = 48 h when the forcing becomes neg-
ligible the Kelvin wave group propagates eastward
without changing shape.

The contribution from the mixed Rossby—gravity
waves shown in Fig. 4¢ is small, but is responsible for
certain features of the total flow field. The mixed
Rossby—gravity waves have a westward phase speed,
but propagate energy eastward which can be seen in
Fig. 4c as a successive eastward reinforcement of the
geopotential and wind maxima. Comparing Fig. 4a
with Fig. 4c at ¢ = 48 h and ¢ = 64 h shows that the
northwesterly flow at the equator between x = 1500
km and x = 3000 km, and the lowering of the geo-
potential near y = —1500 km and x = 1500 km in
the total solution, are associated with the mixed
Rossby-gravity waves. The formation of this trough
east of the main anticyclone is also caused partially
by the eastward dispersion of short Rossby waves which
can be seen by comparing Figs. 4a and 4d at t = 64
h. The formation of the low geopotential region at
x = 3000 km and y = 2000 km, which is most evident
at ¢ = 64 h, is also primarily related to the mixed
Rossby—gravity waves with some contribution from
the shorter Rossby waves.

Fig. 4d shows the contribution to the total solution
from the Rossby waves. Comparing Figs. 4d and 4a
after ¢t = 32 h shows that the high geopotential con-
figuration which appears in the Northern Hemisphere
is 2 manifestation of the Rossby waves. This high pres-
sure is generated in response to the heat source and

_ migrates westward in the early stages of the transient

solution. The pattern continues moving westward after
the forcing becomes negligible. This evolution in time
can be explained by the group velocity of Rossby waves.
The solid lines in the- lower portion of Fig. 9 are the
frequencies of the Rossby modes for several values of
m as a function of the zonal wavenumber k. The zonal
component of the group velocity is given by —dv/dk
which is the slope of each of the curves. Since the slope
of the frequency curves for the Rossby modes changes
sign (except for m = 0), it is evident that the group
velocity is eastward for short Rossby waves and west-
ward for long Rossby waves. Thus, the westward elon-
gation of the geopotential field in Fig. 4d is due to the
dispersion of long Rossby waves and the intensification
of the east-west gradient of the geopotential field east
of the main high is a result of the eastward dispersion
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FIG. 4. Horizontal structure of the wind and geopotential fields at ¢ = 16, 32, 48 and 64 h (columns 1, 2, 3 and 4, respectively)
for the case of a heat source centered at y, = —1200 km (1 1°S) with time constant &' = 6 h and horizontal scale a = 750,
km. The total field is shown in (a) and the contribution to the total field from the Kelvin, mixed Rossby-gravity and Rossby-

waves are shown in (b), (c) and (d), respectively.
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of short Rossby waves. The appearance of a stronger
meridional flow at the longitude of maximum forcing
is also predictable from the dispersive properties of
Rossby waves since short Rossby waves are almost
nondispersive and have more kinetic energy in the
meridional than in the zonal component of the wind
(Longuet-Higgins, 1964; Silva Dias and Schubert,
1979). The strong easterly flow along the equator and
the predominately symmetric pattern that develops in
Fig. 4a can be associated with the m = 1 Rossby mode.
This particular mode is expected to have a large con-
tribution to the solution because of its horizontal sim-
ilarity with the forcing function.

Fig. 5 shows the total wind and geopotential fields
for the case when the heat source discussed previously
is centered at the equator (@ = %, a = 0.5 and y,
= 0). As discussed in Section 3, more of the energy
of the final adjusted state is in the Kelvin modes than
in the Rossby modes (Fig. 3d). This explains the large
amplitude configuration which moves rapidly eastward
in Fig. 5. Since the forcing is symmetric about the
equator, the initial outward spreading mass builds up

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 40

two high-pressure centers which are separated by an
equatorial trough. During the initial development
(t = 16 h) it is evident that the mass tends to flow
primarily along the equator with the streamlines curv-
ing toward the poles and away from' the heat source.
After the Kelvin waves propagate toward the east, the
symmetric Rossby waves which remain in the region
of the heat source slowly disperse.

The fields shown in Fig. 5 differ somewhat from the
case where the equatorial heat source is stationary in
time as discussed by Gill (1980). The stationary case
shows a zone of upper-level westerlies to the east of
the forcing which is much more extensive than the
zone of upper easterlies to the west of the forcing. Gill
pointed out that the continual generation of the Kelvin

‘waves by the stationary forcing coupled with the large

eastward group velocity of the Kelvin waves compared
to the westward group velocity of the long Rossby
waves, explained the relative sizes of the east-west
circulations. In the transient case shown in Fig. 5 the
forcing becomes negligible after 1 = 48 h so that very
little Kelvin wave energy is being generated. The pre-

FIG. 3. Horizontal structure of the wind and geopotential fields at z = 16, 32, 48 and 64 h [(a), (b), (c) and (d), respectively],
for the case of a heat source centered at the equator with time constant «~' = 6 h and horizontal scale @ = 750 km.
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FiG. 6. ECMWF 200 mb maps for 0000 GMT 6 February (a) and for 0000 GMT 9-12 February 1979: (b)-(e) respectively.

viously generated Kelvin waves propagate to the east
leaving only the upper-level easterly flow to the west
of the forcing which is associated with the slower prop-
agating Rossby waves. .

The simulations presented in Figs. 4 and 5 show
the response of the model to a transient heat source
centered at two different latitudes. For comparison,
Fig. 6 shows 200 mb FGGE maps at 0000 GMT for
6 February and for 9-12 February 1979 prepared by

the European Centre for Medium Range Weather
Forecasting (ECMWF). During a period of 2-3 days
before 6 February, the Bolivian high was not well-
developed and the main synoptic feature in the equa-
torial region of South America was an upper-level cy-
clone off the northeast coast of Brazil. This is the type
of upper low studied by Kousky and Gan (1981). After
6 February, the anticyclonic circulation began to or-
ganize and during the period 9~12 February (Figs. 6b-
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6e), the Bolivian -high was again established. On 10
February- there was a strong cross-equatorial flow at
50°W which turned and became a westerly flow at
about 30°W. The most significant change occurred
between 10 and 11 February with the sudden increase
in speed of the southerly component between the center
of the Bolivian high and the upper trough off the
northeast coast of Brazil. On 10 February the cross-
equatorial flow was well established and the anticy-
clonic circulation was developing in the Northern
Hemisphere as a result of the change in sign of the
Coriolis parameter. The trough off the northeast coast
of Brazil was elongated and tilted northwest to south-
east. On 12 February the Bolivian high was stretched
in the cast-west direction with the flow more zonal in
the vicinity of the equator and with the wind stronger
in the eastern and northeastern sectors of the Bolivian
high.

The model results shown in Fig. 4 and Fig. 5 re-
produce some of the transient aspects of the Bolivian
high. As noted by Virji (1981), a southerly component
of the wind dominates over most of the region east
and north of the Bolivian high. This is evident in the
9-12 February period shown in Fig. 6, and can also

.be seen in the model results shown in Fig. 4a. The
model results indicate that initially cross-equatorial
flow dominates north of the forcing and that it is re-
placed by easterly flow as the forcing becomes negli-
gible. A similar feature can be seen in Fig. 6. Between
the 9th and 10th cross-equatorial flow is established
north of the Bolivian high which turns to easterly flow

by the 12th. Virgi (1981) also observed maximum mean

wind speeds greater than 10 m s™' and exceeding 25
m s~! on certain days within the latitudinal band be-
tween S and 10°S. The model results indicate that this
equatorial easterly jet appears when the Rossby wave
component of the solution becomes dominant after
the forcing becomes negligible.

As is shown in Fig. 6, the Bolivian high has become

elongated in the east-west direction and has maximum
winds to the northeast by 12 February. These features
were also seen in the model results shown in Fig. 4.
The westward elongation of the main high was caused
by the westward dispersion of long Rossby waves while
the sharp geopotential gradient and large wind speeds
to the east were caused by the eastward dispersion of
_ short Rossby waves.
. The model results also showed the formation of a
trough east of the main high cell. The modal decom-
position shown in Fig. 4 indicated that this was a man-
ifestation of the eastward dispersion of the Rossby and
rmixed Rossby~gravity waves emanating from the
source region. A similar trough east of the Bolivian
high can be seen in Fig. 6 which gradually sharpens
up and acquires a NW-SE tilt between the 9th and
12th. ' :

The anticyclonic flow which developed in the
Northern Hemisphere in the model also has its coun-
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terpart in the observed flow shown in Fig. 6. As can
be seen in Fig. 6 on the 12th, the anticyclonic circu-
lation in the Northern Hemisphere is closer to the -
equator than the model-produced anticyclone in Fig.
4. The observed anticyclone also shows a larger wind
speed on its poleward side than the model results. This
difference might be attributed to interaction with the
Northern Hemisphere westerlies or possibly to the ac-
tive convection that usually develops near the equator
along the Pacaraima mountain range on the northern
border of the Amazon basin.

The relatively strong northerly wind observed on
the western sector of the Bolivian high in Fig. 6 is also
not reproduced by the transient solution of our simple
model. This observed strong northerly wind off the
west coast of South America may be a result of the
interaction between the anticyclonic circulation over
South America and the westerlies over the South Pacific
Ocean.

5. Implications for the initialization of tropical models

The existence of Kelvin wave structures emanating
from tropical regions of transient convection poses an
interesting question about initialization procedures in
tropical forecast models. A part of nonlinear normal
mode initialization techniques (Machenhauer, 1977,
Baer, 1977; Baer and Tribbia, 1977; Daley, 1981) con-
sists of a diagnostic relation between the gravitational
and rotational components of the motion. As discussed
by Leith (1980), the inclusion of heating and friction
in the model equations means that these effects should
also appear in the diagnostic initialization relation. In
the simple problem considered here, nonlinear normal
mode initialization® might proceed as follows. First we
divide (2.27) into a slow (low-frequency) mode part
and a fast (high-frequency) mode part, i.e.

aw, .
T Wy = W dha’e™™,  (5.1a)
dw, .

dt’”’f — o Wiy = Wi ptra’%¢™.  (5.1b)

As in Tribbia (1979), we must somewhat arbitrarily
choose a frequency which separates the fast and the
slow modes. One possibility is that |v,,,| < 2772 defines
slow modes and |,,,| > 27"/ defines fast modes. This
separation frequency is marked by the intersection of
the Kelvin mode and the mixed Rossby-gravity mode
in Fig. 9. -

Suppose we have an observed initial distribution of
geopotential and wind at ¢ = #;. We can project this
initial condition onto the normal modes to obtain
W, {k, t;) and W,, r(k, t;), the first of which we retain
and the second of which we discard. However, we do

* Although our problem is linear we use the terminology “nonlinear
normal mode initialization™ because of the inclusion of forcing.
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not set W, s(k, ;) equal to zero, but rather proceed
on the belief that the atmosphere has evolved so that
it is close to Leith’s slow manifold, i.e., dW,, //dt is
small enough that (5.1b) yields

iW,, ;(K)

Vm, f
which is the initialization relation for the fast modes.
In this type of initialization procedure the past history
of the fast modes is ignored since only the current
projection of the forcing determines the fast mode
component.

Now suppose that this initialization procedure is
applied in the middle of one of the simulations of
Section 4. How might the subsequent evolution be
changed? Fig. 7 is an energy partition diagram with
axes &¢and &, where the energies [normalized as in
(3.5)~(3.9)] are in the fast and slow modes, respectively.
The energy partition for the simulation shown in Fig.
4 (a=0.5 a=4%,y,=—0.8)is denoted by the curve
§, in Fig. 7, with the dots indicating equally spaced
points in time (every 4 h). The energy in fast modes
in simulation & increases rapidly initially, reaches a
maximum, and then decreases while the energy in slow
modes increases throughout the simulation. Eventually,
a fixed point is approached as the forcing decays to
zero. It is interesting to note that there is less fast mode
energy in the final state (f = oo) than there was at
previous times during the simulation. This indicates
that the forcing can remove fast mode energy if the
fast mode contribution to the temperature field has
cold air in the region of heating. The curve M in Fig.
7 shows the energy partition when the amplitudes of
the slow modes are the same as in & and the amplitudes
of the fast modes are calculated using (5.2). Along
curve M, the energy in fast modes reaches a maximum
when the forcing is a maximum (¢ = 12 h) and ap-
proaches zero as the forcing decays. When nonlinear
normal mode initialization is applied to data from &
at t; = 16 h, the model state is brought to a point on
M, after which evolution occurs along the forecast
curve Fy. Linear normal mode initialization eliminates
all the energy in fast modes which brings the model
state to a point along the & axis and evolution occurs
along ¥, . In both cases, the initial balancing procedure
results in a reduced contribution from the fast modes,
but more energy in the fast modes is eventually gen-
erated for the linear initialization case. The nonlinear
initialization procedure reduces the total energy by
30% while the linear initialization procedure reduces
the total energy by 52% when applied at ¢; = 16 h.
This indicates that it may be difficult to accurately
determine an initial condition in regions where there

W, (k, t) = hatt2e™™,  (5.2)

is forcing which has a large projection onto the fast

modes.

In order to further understand how close the slow
manifold M is to the simulation &, Fig. 8 displays the
physical space fields for & at 1 = 16 and 32 h and the
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are the energy in the slow modes &, and the energy in the fast modes
&¢. The curve § shows the model states for the simulation with y,
= ~1200 km, o' = 6 h and @ = 750 km where the dots indicate
equally spaced points in time (every 4 h). Curve M is the state the
model would be brought to if nonlinear normal mode initialization
were applied at any time during the simulation. The curves ¥, and
F are the forecast states after linear or nonlinear initialization are
applied at ¢ = 16 h.
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corresponding fields after nonlinear normal mode ini-
tialization has been applied (i.e., Figs. 8a and 8b cor-
respond to points along curve & in Fig. 7, while Figs.
8c and 8d correspond to points along curve JM). The
initialization causes some distortion in the geopotential

.field when applied at ¢; = 16 h. At ¢; = 32 h the am-

plitude of the disturbance to the east of the forcing
has been greatly reduced. This disturbance, which is
mainly composed of Kelvin modes, is reduced since
it has propagated to a region where the forcing is small
and the initialization procedure calculates the energy
in the fast modes assuming a balance between the
forcing and the fast modes. Although this disturbance
was generated by the forcing, it was produced before
the initialization time, so it cannot be balanced by the
forcing at the initialization time.

6. Concluding remarks

The atmospheric response to transient heat sources
in the tropical region has been investigated. Convective
bursts have been simulated using the linearized equa-
tions for a stratified fluid on an equatorial 8-plane with
a specified heat source. The model equations have been
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FIG. 8. Wind and geopotential fields before and after nonlinear normal mode initialization is applied. The simulation y, = ~1200 km, ™! =
hand g =750 km at ¢ = 16 h and ¢ = 32 h is shown in (a) and (b) and the corresponding fields after the initialization is applied at = 16 h and
t = 32 h are shown in (c) and (d).

solved using transform techniques, with only the first
- internal vertical mode being considered. For this case,
the governing equations are analogous to shallow water
equations.

The results presented in Sections 3 and 4 show that
the response of the model to the heat source depends
on which of the basic types of waves permitted in the
model are generated. The high-frequency modes of the
model tend to disperse energy away from the region
of the forcing while the lower-frequency modes tend
to leave a slowly dispersing flow field in the region of
the forcing. It is shown that the spatial and temporal
scales, as well as the latitude of the forcing affect the
partition of the energy between the fast and slow modes,
with the fast modes being favored as the forcing be-
comes more rapid, closer to the equator and smaller
in size.

In Section 4, results were presented from a model
simulation using a heat source centered at 11°S with’
an e-folding radius of 750 km and a time scale of about
one day. This heat source excites the Kelvin waves of
the model which propagate rapidly toward the east,

leaving the Rossby and mixed Rossby-gravity wave
contribution to the solution in the region of the forcing.
The results from this simulation reproduce many of
the transient aspects of the Bolivian high. The agree-
ment between the model results and the observations
suggests that the release of latent heat has a large effect
on the upper tropospheric circulation over tropical
South America, as was indicated by Kousky and Ka-
gano (1981). This agreement also indicates that many
aspects of the upper tropospheric circulation in this
region can be explained by considering the dispersive
properties of the Rossby and mixed Rossby-gravity
waves as discussed in Section 4.

The Kelvin mode contribution to the transient ad-
justment problem raises some interesting questions
about the dynamics of the equatorial region. As was
discussed in Section 3, the amount of Kelvin wave
energy generated is greater when the forcing is rapid
and when the heat source is close to the equator. The
convection that occurs over the South American con-
tinent and also over the Indonesian region has large
variations on short time scales. Since both of these
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regions are close to the equator, there should be a large
Kelvin wave response to this convective forcing. Fig.
4b shows that in the upper levels, convergence occurs
on the eastern side of the Kelvin wave group with
divergence on the western side. This convergence-di-
vergence pattern and associated vertical motion field
may be important for modulating convection in areas
far to the east of the forcing. There is some observa-
tional evidence for this modulation of convection by
the Kelvin waves. Lau (1982) has presented a study
of satellite cloud imagery from 1 December 1974-31
January 1975 in the area between 90-180°E and

10°N-10°S. In Lau’s study, the convective activity -

over Borneo was often enhanced in association with
cold surges from the Northern Hemisphere. After the
surge, a region of enhanced convective activity which
was symmetric about the equator could be identified
for up to six days as it propagated toward the east. A
feature similar to this has also been observed by Wil-
liams (1981).

The generation of Kelvin waves by transient con-
vection has some implications for the initialization of
tropical forecast models. The basic idea of many non-
linear normal mode initialization procedures is to ob-
tain the slow mode part of an initial field from ob-
servations, and then to diagnose the fast mode part in
such a way that the initial tendency of the fast modes
is zero. When this type of procedure is applied, the
magnitude of the nonlinear interaction of the slow
modes and the magnitude of the forcing terms at the
initialization time determine the amplitude of the fast
modes. For the case of transient convection, the am-
plitude of the Kelvin modes will be fairly large after
the amplitude of the forcing has decreased. Since the
Kelvin waves are considered to be fast modes (except
for very long waves), it may not be possible to diagnose
these after the magnitude of the forcing has decreased
and the waves have propagated away from the source
region.

As discussed previously, the time and space scales
of the heat source affect the response of the model. It
should be emphasized that these scales are a function
of the vertical structure of the heating. In the current
model formulation, the time and length scales were
based on the first internal mode, since the vertical
structure of Yanai’s apparent heat source is associated
with deep convection and has a large projection onto
this mode. In different geographic areas, the vertical
structure of the apparent heat.source might be different
than the structure of Yanai’s heat source so that other
vertical modes may also be important. Further work
is needed in this area to evaluate the applicability of
the single equivalent depth analysis and the nature of
the forcing which drives the tropical circulation.
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APPENDIX A
The Vertical Transform
The only z derivatives appearing in the governing

equations (2.6)—(2.8) are those in the first and last
terms of (2.8), which can be combined into

9[-
i [RI‘ 0@ "”]'

(A1)

We consider the finite Stiirm-Liouville transform of
the function f(x, ¥, z, ),

S, 0= fo."f(x, Y, z, YW (2)e 7*dz, (A2)

where ¢ 72 is the weight and ¥, is the kernel of the
transform. We now attempt to discover the form of
¥, which is most convenient for our problem, i.e., the
one which allows (A1) to be transformed, subject to
boundary conditions (2.9), into a constant times ¢,
— ¢,. Taking the transform of (A1) and integrating
by parts twice, we obtain

o dfe” 8 .
z - _ —z/2
fo Yn2e 5, [RI‘ a9z ¢ "’)]e dz

—z ] . 9 Z/Z\I’n . zr
- [e— {ezﬂ\lf,, 2@ H -~ ¢)}]
z o

R dz

T [e dePW
+ — z/2 okl
L @~ @™ o7 [RI‘ oz

If we choose ¥,(z) to be the solution of the Stiirm-
"Liouville problem

:Ie"z/ %dz. (A3)

d [eF 9e**V¥ 1
e — )+ — ¥, = A
€ 5z (RI‘ 0z ) + ghy, 0, (Ada)
3e”?¥, T
——67—" - —Te’/z\ll,, =0 at z=0, (Adb)
z/2
de 62‘1"’ =0 z=2z (Adc)

and if we use the boundary conditions (2.9), then (A3)
becomes
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—_ —z/2

[T L[ s e
1

—%Gﬁ

This is the desired operational property of the Stiirm-
Liouville transform whose kernel is defined by (A4).

= n J’n)

(A5)

APPENDIX B
The Mendnonal Transform

We first prove that the operator L is skew-Hermitian.
Consider the complex, three-component vectors f and
g. Using (2.20) we can write

(Lf, g) = f_z [(—.sz ikf3)et + (yﬁ f’)gf

(zkf + & )g?]dy (B1)

After integration by parts, rearrangement and use of
(2. 24) we obtain
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V0= [ [Aver + ket + A ~vet - %)

+ Aliket - B2 v + 1515 + s
(B2)

The final term in (B2) vanishes because of the boundary
conditions. Then, using (2.20) we conclude that

0 y -ik
L= -y 0 -—|=-L (B3)
dy
d
_'k —_—
i 3 0

i.e., L is skew-Hermitian.

The eigenfunctions of (2.23) form a complete and
orthogonal set (Matsuno, 1966; Cane and Sarachik,
1976) in the space of square integrable functions on
the interval (—oo, o0). The eigenfunctions and eigen-
values were thoroughly discussed by Matsuno (1966)
and Lindzen (1967) and can be written

[ [ Vmr = OH i) + M, + OHpa )
e
i(”%n,r - kz)Hm(y) s =
. VE,., (k)
/2(Vm,r - k)Hm+l(y) - m(”m,r + k)Hm—l(y)
Km,r(k’ ,V) = 9 r > (B4)
e—l/2y2
—, m=—1
(2‘/;)1/2
[V J
where
k 0 Rdssby
For m > 0, vZ, — k?+ =2m+ 1 r=11 west gravity
Y east gravity
r 3
. 1
_ - 0 if k> —
_E+ I_€2+1 v r = V2 mixed
A ‘ 2 [\2 i . 1 Rossby-gravity
Form =0, Uy = : 1 if k< B f
k - k 2 =1/2
-5~ (E) + 1 r=2 east gravity
Form = —1, Vmr = —k r=2 Kelvin J
(B.5)

If the normalization factor E,, (k) is defined by

Ep (k) = 2"mWVal(m + 1), — k)

+ M, + kY + (Vh, — kP,

the eigenfunctions K,,,(k, ) satisfy the orthonormality
condition

1, (m',r)=(m, r)l
(Km,r(k, »), Kmr’,r(k, y)) = {

0, (m,rY#*(m,r) '
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FIG. 9. The absolute value of the eigenfrequencies of the linearized
shallow water equations on the equatorial S-plane. The dimensional
axes are for a phase speed of the first internal vertical mode.

When m > 0 the roots of the dispersion relation have
been classified as either a Rossby wave (r = 0), a west-
ward gravity wave (r = 1), or an eastward gravity wave
(r = 2). When m = 0, the v = k root must be discarded.
Of the two remaining roots, one is negative and one
is positive. The negative root has been classified as an
eastward gravity wave (r = 2), while the positive root,
or mixed Rossby—gravity wave, is classified as a gravity
wave (r = 1) if Kk < 272 and as a Rossby wave (r
= 0) if k > 27"/, Finally, when m = —1, the only root
is classified as a Kelvin wave. Solutions of the dispersion
relation (BS) are shown in Fig. 9.
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