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The equation of state for moist unsaturated air

» The state of a sample of moist air is characterized by its:

* Pressure, p

» Absolute temperature, T

Density, p (or specific volume a = 1/p), and

Some measure of its moisture content, e.g.

The water vapour mixing ratio, r, defined as the mass
of water vapour in the sample per unit mass of dry air.

» These quantities are connected by the equation of state.

A

)

‘ Equation of state:

/ specific gas constant for dry air

po=R,T(L+r/g)/(L+e)~R,T(L+0.61r)

N\

&= RyR, = 0.662

specific gas constant water vapour

r is normally expressed in g/kg, but must be in kg/kg in any formula!




Other moisture variables

» The vapour pressure, e = rp/(e + r) which is the partial
pressure of water vapour.

» The relative humidity, RH =100 x e/e*(T).

o e* =e*(T) is the saturation vapour pressure - the
maximum vapour that an air parcel can hold without
condensation taking place

» The specific humidity, q = r/(1 + r), which is the mass of
water vapour per unit mass of moist air.

More moisture variables

> The dew-point temperature, T, which is the temperature
at which an air parcel first becomes saturated as it is
cooled isobarically.

» The wet-bulb temperature, T, which is the temperature
at which an air parcel becomes saturated when it is cooled
isobarically by evaporating water into it. The latent heat
of evaporation is extracted from the air parcel.
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The vertical distribution of r and RH obtained from a radiosonde
sounding on a humid summers day in central Europe.

Aerological (or thermodynamic) diagrams

p | T = constant
Inp
v, ) /( o
T = constant




Aerological diagram with plotted sounding
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The effect of the water vapour on density is often taken into
account in the equation of state through the definition of the
virtual temperature:

T,=T@A+r/e)/(1+€)~T(1L+0.61r)

Then, the density of a sample of moist air is characterized by
its pressure and its virtual temperature, i.e.

Moist air (r > 0) has a larger virtual temperature than dry air
(r=0) => the presence of moisture decreases the density of
air --- important when considering the buoyancy of an air
parcel!




The equation of state for cloudy air

Consider cloudy air as a single, heterogeneous system
specific volume = (total volume)/(total mass)

ocz(Va i +Vi)/(Md W erl +Mi) total mixing ratio of
Divide by M, water substance
o= O(.d(1+r|((l| /(Xd)-i-ri((li /Otd))/(l-l-r-r)
0L:RdT 1 :RdTpd+e 1 :&Il-l-l’/s \
py, 1+1; P py l+1g p1+r;

4

e =R R, =0.622
defines the density temperature for cloudy air: /

specific heat of
water vapour

T =T+l +ry)

The first law of thermodynamics

The first law of thermodynamics for a sample of moist air may
be written alternatively as

dg = c’vdT‘fpm

, incremental changes in
/ = deT —od temperature, pressure

P,
K/ and specific volume

the heat supplied I
per unit mass to
the air sample specific heats of

the air sample

C, =C,(1+0.94r) C, = Cyq(1+0.85r)

The quantities ¢4 (= 1410 Jkg™* K?) and ¢, (~1870J kg™ K1)
are the corresponding values for dry air.




Adiabatic processes

An adiabatic process is one in which there is zero heat input
(dg = 0); in particular, heat generated by frictional dissipation
is ignored.

dInT=(R'/cp)dInp
R' =R (1+r/g)/(1+T)

If the process is also reversible and unsaturated, r is a constant.

The equation can be integrated exactly (ignoring the small
temperature dependence of c¢';) to give:

tant
InT:(R’/c;)Inp+InA

Define A such that, when p equals some standard pressure, p,,
usually taken to be 1000 mb, T = 6.

The potential temperature

The quantity 6 is called the potential temperature and is
given by:
R’ Bli 1+ I’/ te4

ezT[&]Cb :T(&)de 1+rcy, /¢y z-l-(&j
P p p

k' =x(1-0.24r)

The variation in x is < 1 % and is usually ignored \
K= Rd /de

We define the virtual potential temperature, 6, by

K
0,=T, o
p take the value of x for dry air.




Enthalpy

The first law of thermodynamics can be expressed as

dg =d(u+pa)—odp =dk —adp

D

k = u + pa is called the specific enthalpy.

The enthalpy is a measure of heat content at
constant pressure.

For an ideal gas, k =c,T.

Water substance and phase changes

The latent heat associated with a phase transition of a substance
is defined as the difference between the heat contents, or
enthalpies, of the two phases; i.e.

subscripts refer to
<—— the two phases

L = ki - ki,

The dependence of L;; on T and p may be obtained by
differentiation using k =u + pa. (for details see e.g. E94, p114).

Itturns out that: L;; =L, + (€ - ) (T — 273.16 K)

i,iio

L. iio Is the latent heat at the so-called triple point (T = 273.16 K
= 0.01°C, and e = 6.112 mb) where all three phases of water
substance are in equilibrium.

e is the water vapour pressure




The Clausius-Clapeyron equation

The pressure and temperature at which two phases are
in equilibrium are governed by the Clausius-Clapeyron

equation:
(d_p) _ Liii
dT /)i Tlogi — o)

For liquid-vapour equilibrium, a, << a.,, and using the ideal
gas law for vapour, we obtain an equation for the saturation
vapour pressure, e*(T):

de* L.,e*

dT  R,T?

L, = the latent heat of vaporization.

de* _ Loe*
dT  R,T?

This equation may be integrated for e*(T).

A more accurate empirical formula is (see E94, p117):
Ine*=53.67957-6743.769/ T—-4.8451InT

e*inmband Tin K

A corresponding expression for ice-vapour equilibrium is:
Ine*=23.33086—-6111.72784 /T +0.15215InT

These formulae are used to calculate the water vapour content
of a sample of air. If the air sample is unsaturated, the dew
point temperature (or ice point temperature) must be used.




Moist enthalpy

» Define the moist enthalpy k of a sample of cloudy air by
the formula:

Mgk = Mgky + Mk, + Mk

> Then k =k, + rk, + r k_, expressed per unit mass
of dry air.

> BUEL(T) =k, -k, => K = ky + Lt + K,
ForrEraL
> Since k, = deT andk =c¢,T, __— C, is the specific heat

of liquid water
k= (Cpg+rec)T + L

The moist enthalpy is conserved in an isobaric
process as long as dg = 0 and dr; = 0.

Entropy

An excellent reference is Chapter 4 of the book:
C. F. Bohren & B. A. Albrecht
Atmospheric Thermodynamics

Oxford University Press
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The moist entropy and related quantities

» In analogy with the definition of k, we define the total
specific entropy per unit mass of dry air as:

S=Sy+ IS, + IS,

> s4,8,,ands,_are the specific entropies of dry air, water
vapour and liquid water, respectively.

» The equality of the Gibbs free energy in phase equilibrium
between water vapour and liquid water leads to the

expression: .
L, =T(s,—s.)

\

the saturation specific
entropy of water vapour

Some algebra

S=S,+IS, +rs

L,r
S= sd+rTs +r(s s,)

v =1, —
Substitute C
= |_

Sqg=Cpg INT—RyInpy

sy=Cp INT-R,Ine

# s=(Cpq +1xCL)INT =Ry Inpy +

Sy =Cpn INT=R,Ine
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Conservation of entropy

S=(Cog +1;0)INT Ry Inpy + "Tvr

—rR, In(RH)

> s is conserved under reversible moist adiabatic
transformations
> It is not conserved when
» dq = 0: radiative heating or cooling, or conduction
» dr = 0: by external evaporation, precipitation loss

* by evaporation of rain into unsaturated air

Equivalent potential temperature

Put s=(Cpy +1:C_)INO, —R, Inp,

This defines the equivalent potential temperature, 6,

Rd/(cpd+rTcL)
.= T(&J (RH) /o L) exp{—l'Vr }

Py (de +r.c)T
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Entropy

> Entropy s is defined by a process in which heat and water
substance are added to air which is kept just saturated by
reversible evaporation from a planar water surface as its
temperature is raised from a reference temperature and partial
pressure p, to the state (T, p,).

> s is conserved under reversible moist adiabatic transformations.

(Tref’ pd) — (T, pd)

Tref ﬁ T

Equivalent potential temperature

Rd/(cdeT/L) i C,q+I-C
0 :T[&] (RH) v/ TL)exp{—l'Vr }

(de + I’TCL)T
\ -1

=P B =1

» Fordryair (r=0,r_=0,r;=0), 6,reducesto6.

> Note that 0, is not a state variable — isopleths of constant
0, cannot be plotted on an aerological diagram.

13



Differential form for s

» The differential form of s for (saturated) cloudy air
(RH=1,r 20)is

dT dp Lt
ds = (de + I‘TCPV)?— Rd p—dd+ d (?j

> An alternative form is, using 0 =dr" +dr_

dT de” dp Lr

Alternative forms

> Betts showed that the two forms can be written more
symmetrically as:

% _ Com de*e = cpmd—TJrﬁdq* —Rm@

1+1; 0 T T P
ds do, dT L, dp
1+, ™o, ™T T 4=

p
(L+1) Coy = (Cpg T 17Cy, +1,.C)
where 1+ Ry =Ry +R)
q =r/l+ry)
q=r /(1+rg)

14



The equations l’

ds de, dT L

dp
=C 2 =C = d - R

p

ds ao, aT L dp
—_—= — = VA d

141, Com 0, Com 7 M7 ™ b

define ‘.‘

> the saturation equivalent potential temperature, 6_*

> the liquid-water potential temperature, 0

Approximate forms of 6,* and 6,

Let ¢~ Cppr Ry~ Ry then

ds —c, de* —c, dT LV dq” — dp
1+17 0. T T p
‘ ded&:de@‘i‘ﬁdr*
and 0. 06 T
ds ae, dr L, dp
=Cyn —~ =Com = ——dq,-R, —
1+r, ™o, ™MT T 4r=Rm
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Assume that

(L/T)dr* ~d(Lr/T) and (L/T)dr_ ~d(Lr,/T)

Then d@: e L, , «
C T:C 7+7dr
Mo, Mg T
* L r*
EE) 0~ 0exp |
cpdT

R /(c y+ICy )

c/f . d™\pd T TEL
0, :T(&J exp —Lvr
Py (de + rTCL)T

do___ do L,
de?—cpdg—? I’L

‘ 0.~ 6exp(-L,r/c,T)

Note that when r, =0, 6, =6

— the liquid water potential temperature is the potential
temperature attained by the evaporation of all liquid
water in an air parcel through reversible moist descent.

16



0.~ 0exp(-L,r /cyT)

An unapproximated expression for 6, is:

g ro V(o) L.
0, ET(&] 1-— | 1= exp i
p e+, rr (de + rTch)T

where r=(Ry +rTRV)/(de +rTva)

vy =R, /(Cpq + 1€y )

The liquid-water virtual potential temperature

The liquid-water virtual potential temperature 6,, is defined by:

k r e Y (o) —L,r
o,=T, | 1T [l1- D1 1= | exp| =
p 1+r; e+r1; I (Cpy +1C, )T

> Note that 6, ,=6,whenr =0

17



Some notes

> 0,,6,,and 6, are conserved in reversible adiabatic
processes involving changes in state of unsaturated or
cloudy air.

> 0,, 6., and 0, are not functions of state - they depend on
p, T,randr

» — Curves representing reversible, adiabatic processes
cannot be plotted in an aerological diagram

» In a saturated process, r =r*(p, T)

The pseudo-equivalent potential temperature

> Approximation: neglect the liquid water content (set r, = 0).

> This makes the approximate forms of 6, 6,, and 0, ,,
functions of state which can be plotted in an aerological
diagram.

» Adiabatic processes where the liquid water is ignored are
called pseudo-adiabatic processes. They are not reversible!

» The formula 6,*~ 6 exp (Lvr*/cpdT) is an approximation for
the pseudo-equivalent potential temperature 6, . A more
accurate formula is:

0.2854/ (1-0.28r)
0, = T(p"j exp[r(1+ 0.81 r)(3376 - 2.54]}
p T

Pt

Temperature at the LCL =~

18



The Lifting Condensation Level Temperature

» T, is given accurately (within 0.1°C) by the empirical
formula:

-1
1, In(Tk /Td)} -

T ~ =
Het [Td—56 800

T and T, in degrees K

[Formula due to Bolton, MWR, 1980]

> If an air parcel is lifted pseudo-adiabatically to the high
atmosphere until all the water vapour has condensed out,
0, = 0.

» The pseudo-equivalent potential temperature is the
potential temperature that an air parcel would attain if
raised pseudo-adiabatically to a level at which all the
water vapour were condensed out.

> The isopleths of 6, can be plotted on an aerological
diagram. These are sometimes labelled by their
temperature at 1000 mb which is called the wet-bulb
potential temperature, 6,,.
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The adiabatic lapse rate

» Lift a parcel of unsaturated air adiabatically
> it expands and cools, conserving its 6,

> its T decreases with height at the dry adiabatic lapse rate, I';:

= __(d_Tj _ 9 l+r
d 0Z Jgo  Cpg 14T(Cp, /Chq)

> Note that r is conserved, but r* decreases because e*(T)
decreases more rapidly than p.

» Saturation occurs at the lifting condensation level (LCL)

whenT=T, . andr=r(T ., p).

Above the LCL, the rate of which its temperature falls, ',
is less than I"; because condensation releases latent heat.

For reversible ascent:

r :_(d_Tj _ 9 l+n
Too\dz) e S

Cog
L,r
R,T

c. L2 (L+r/€)r
CCtrc,,  R,T(C,y+rC,,)

1+

1+,

When r- is small, the ratio I' /T, is only slightly less than unity,
but when the atmosphere is very moist, it may be appreciably
less than unity.

20



The moist static energy and related quantities

The first law gives
dq = dk — a,dp
where dq is expressed per unit mass of dry air.
Adiabatic process (dg=0) — dk — a,dp=0
oy =o(l+r;)
For a hydrostatic pressure change, adp = —gdz.

Under these conditions:

dh=(c,y + e )T +d(L,r)+(L+1r;)gdz=0

Some notes

If r; is conserved, we can integrate

h=(Ccpg +17C)T+L,r+(1+r;)gz =constant.

» The quantity h is called the moist static energy.

> his conserved for adiabatic, saturated or unsaturated
transformations in which mass is conserved and in which
the pressure change is strictly hydrostatic.

> h is a measure of the total energy:

(internal + latent + potential)

21



The dry static energy

> Define the dry static energy, h,,.

> Putr.=r =>
hy =(c,y +1c )T+ (1+r)gz.

> This is conserved in hydrostatic unsaturated
transformations.

> hand h, are very closely related to 6, and 6.

The (virtual) liquid water static energy

> Define two forms of static energy related to 6, and 6, ..
» These are the liquid water static energy:
hy =(Cpg +rCo )T —Lyr +(1+17)02

and the virtual liquid water static energy
E+T L.r
hLv:de — T T _LL_FQZ
p
e+ —r 1+r1;

> h,, is almost precisely conserved following slow adiabatic
displacements.

> 1f r =0, hy, =c,T, +9z (justas 6 reduces to 6).

22



Vertical profiles of dry conserved variables
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Vertical profiles of moist conserved variables
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The stability of the atmosphere

» Consider the vertical displacement of an air parcel from its
equilibrium position

» Calculate the buoyancy force at its new position

» Consider first an infinitesimal displacement &; later we
consider finite-amplitude displacements

» Parcel motion is governed by the vertical momentum
equation
da _

dt?

b(i):—g(pp_pang[ap_an is the buoyancy force
Pp s, per unit mass

Newton's law for an air parcel:

d*¢ _ buoyancy force

dt? unit mass
buoyancy force ob
Iy 2. be) =2 e+
unit mass 0z,
2
dt® oz|,,

The motion equation for small displacements is:

2
‘;'lt?ng:o where N =——

24



The motion equation for small displacements is:

d*¢ 2

—+N°E=0

dt? 5
where N2 _ g

oz

For an unsaturated displacement, 6, is conserved and we

can write
T, —-T 0, -0
b = vP va | _ vp va
@© g[ j g( . j

Since 6,,, = constant = 6

va’

oo b _ 8, 08,

— ~

d_, 00,,
oz "0, oz

9
0, 0z

Stability criteria

» Parcel displacement is:
* stable if 00,,/0z>0
* unstable if 00,,/02<0

* neutrally-stable if 00,,/02=0

> A layer of air is stable, unstable, or neutrally-stable if these

criteria are satisfied in the layer.

25



» In asaturated (cloudy) layer of air, the appropriate
conserved quantity is the moist entropy s (or the
equivalent potential temperature, 6,)

» Must use the density temperature to calculate b.

> Replace o, in b by the moist entropy, s.

p
> In this case

N? = ! {Fmﬁ—(cLlenTJrg)ai}
1+r; 0z 0z

> A layer of cloudy air is stable to infinitesimal parcel
displacements if s (or 6,) increases upwards and the total
water (r;) decreases upwards. It is unstable if 6, decreases
upwards and r; increases upwards.

Some notes

» The stability criterion does not tell us anything about the

finite-amplitude instability of an unsaturated layer of air that

leads to clouds.

» Parcel method okay, but must consider finite displacements
of parcels originating from the unsaturated layer.
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Potential Instability

> A layer of air may be stable if it remains dry, but unstable
if lifted sufficiently to become saturated.

» Such a layer is referred to as potentially unstable.

> The criterion for instability is that do,/dz < 0.

unstable

lift ‘ saturated/cloudy

stable

unsaturated

Conditional Instability

» The typical situation is that in which a displacement is
stable provided the parcel remains unsaturated, but which
ultimately becomes unstable if saturation occurs.

» This situation is referred to as conditional instability.

» To check for conditional instability, we examine the
buoyancy of an initially-unsaturated parcel as a function of
height as the parcel is lifted through the troposphere,
assuming some thermodynamic process (e.g. reversible
moist adiabatic ascent, or pseudo-adiabatic ascent).

> If there is some height at which the buoyancy is positive,
we say that the displacement is conditionally-unstable.
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» If some parcels in an unsaturated atmosphere are
conditionally-unstable, we say that the atmosphere is
conditionally-unstable.

» Conditional instability is the mechanism responsible
for the formation of deep cumulus clouds.

» Whether or not the instability is released depends on
whether or not the parcel is lifted high enough.

» Put another way, the release of conditional instability
requires a finite-amplitude trigger.

» The conventional way to investigate the presence of
conditional instability is through the use of an
aerological diagram.
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1
1000 K 1 \
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Positive and Negative Area
Convective Inhibition (CIN)

The positive area (PA)

The negative area (NA) or convective inhibition (CIN)

NA=CIN = [ (T,, - T,, )Ry dInp

PLFC

Convective Available Potential Energy - CAPE

The convective available potential energy or CAPE is the net

amount of energy that can be released by lifting the parcel from
its original level to its LNB.

CAPE = PA - NA

We can define also the downdraught convective available
potential energy (DCAPE)

DCAPE; = [? Ry(T,, —T,,)dInp

The integrated CAPE (ICAPE) is the vertical mass-weighted
integral of CAPE for all parcels with CAPE in a column.
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Buoyancy and 0,

z Lifted parcel Environment
b _ _g (pp - po)
Po
Tvp pp ............................................................ TO(Z)’ ro(z)1 p(z), po(z)
or b:g—(TVp ~ )
TO
Lifted parcel Environment

(Tpp - Tvo)

b=g =
Tpp Pp 6 ............................................................ To(z)’ ro(z)' p(2), po(z)

Below the LCL (T ,=T,,)

sgn (b) =sgn { T (1 +er) - To(L +er)) =T, — T, +&[T,r, = Tor 1}

\ _
Atthe LCL (T,=T,) €=061

sgn (b) =sgn [T, (1 +&r'(p,T,)) — T,(1 +er,)]

=sgn [T (1 +er'(pT,) — Tyl +er’(p,Ty) +eTo(r"(p,T,) — 1)l
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sgn (b) =sgn [T,(1 +er'(p,T,) — To(L +&er'(p,Ty)) + eTo(r(p,T,) — 1)

Since T, is a monotonic function of 0,, p o (ezp —0. +A)

; 1 small

parcel saturated

LFC

LCL

moist adiabat

(T, 6, r) (T, 6.* r*) (Tyrp) (rr=r*+r,
E \F G

P2 * / *
P=PcL—P,>0

LCL or saturation level — 28+ (TicL s PLc)

r* - isopleth P=PreL =P <0
Py o v

5 A A
(Ta 1) (T O, 1) (TOr)
dry adiabat

After Betts
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The saturation point

» The point (T, , p.c.) is referred to as the saturation point.

» The saturation point of an air parcel is a conserved quantity
in the absence of diabatic or mixing processes.

» One can plot the saturation points of parcels from a
radiosonde sounding on an aerological diagram.

» The state of a parcel of air is characterized by its saturation

point and the departure of the actual pressure from the
saturation pressure, i.e. P=p.c —p.

> If P >0, the parcel is cloudy, if P <0 it is unsaturated.
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