

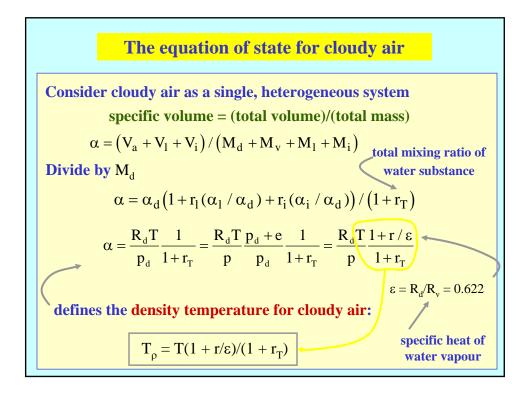
The effect of the water vapour on density is often taken into account in the equation of state through the definition of the virtual temperature:

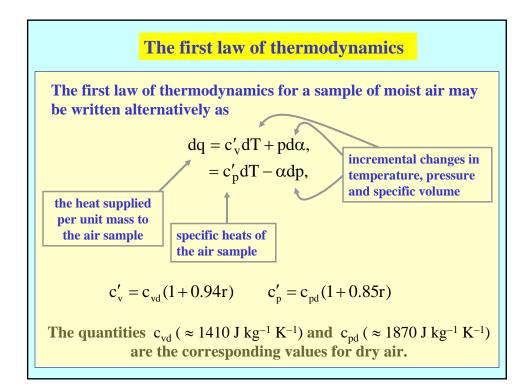
$$T_v = T(1 + r / \varepsilon) / (1 + \varepsilon) \approx T(1 + 0.61 r)$$

Then, the density of a sample of moist air is characterized by its pressure and its virtual temperature, i.e.

$$\rho = \frac{p}{RT_v}$$

Moist air (r > 0) has a larger virtual temperature than dry air $(r = 0) \Rightarrow$ the presence of moisture decreases the density of air --- important when considering the buoyancy of an air parcel!





Adiabatic processes

An adiabatic process is one in which there is zero heat input (dq = 0); in particular, heat generated by frictional dissipation is ignored.

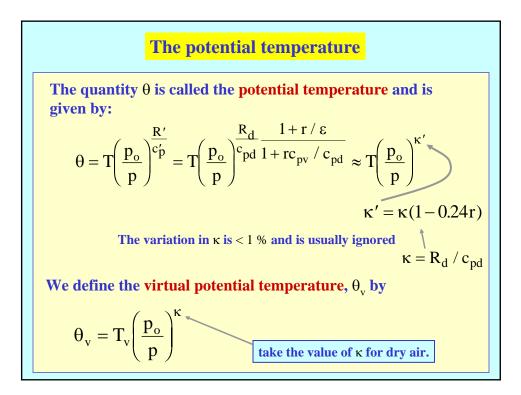
$$d \ln T = \left(\frac{\mathbf{R}' / \mathbf{c}'_{p}}{\mathbf{R}'}\right) d \ln p$$
$$\mathbf{R}' = \mathbf{R}_{d} (1 + r / \varepsilon) / (1 + r)$$

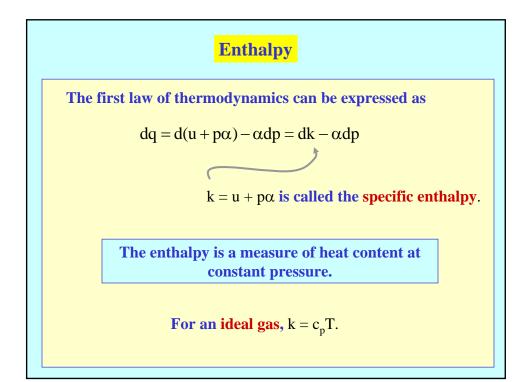
If the process is also reversible and unsaturated, r is a constant.

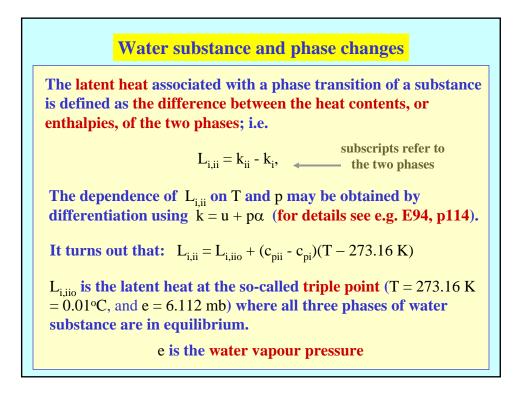
The equation can be integrated exactly (ignoring the small temperature dependence of c'_{p}) to give:

$$\ln T = (R'/c'_p) \ln p + \ln A$$
 a constant

Define A such that, when p equals some standard pressure, p_o , usually taken to be 1000 mb, $T = \theta$.







The Clausius-Clapeyron equation

The pressure and temperature at which two phases are in equilibrium are governed by the Clausius-Clapeyron equation:

$$\left(\frac{\mathrm{d}p}{\mathrm{d}T}\right)_{\mathrm{ii},\mathrm{i}} = \frac{\mathrm{L}_{\mathrm{i},\mathrm{ii}}}{\mathrm{T}(\alpha_{\mathrm{ii}} - \alpha_{\mathrm{i}})}$$

For liquid-vapour equilibrium, $\alpha_1 \ll \alpha_v$, and using the ideal gas law for vapour, we obtain an equation for the saturation vapour pressure, e*(T):

$$\frac{\mathrm{d}\mathrm{e}^{*}}{\mathrm{d}\mathrm{T}} = \frac{\mathrm{L}_{\mathrm{v}}\mathrm{e}^{*}}{\mathrm{R}_{\mathrm{v}}\mathrm{T}^{2}}$$

 $L_v =$ the latent heat of vaporization.

$$\frac{\mathrm{d}\mathrm{e}^{*}}{\mathrm{d}\mathrm{T}} = \frac{\mathrm{L}_{\mathrm{v}}\mathrm{e}^{*}}{\mathrm{R}_{\mathrm{v}}\mathrm{T}^{2}}$$

This equation may be integrated for e*(T).

A more accurate empirical formula is (see E94, p117):

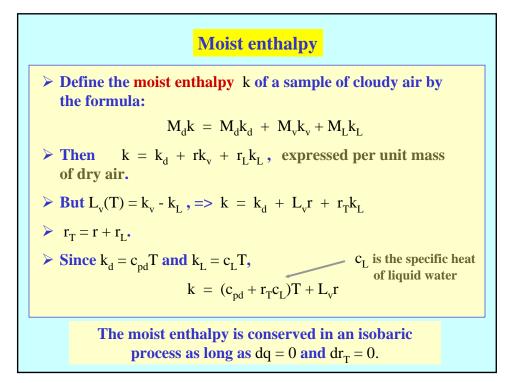
 $\ln e^* = 53.67957 - 6743.769 / T - 4.8451 \ln T$

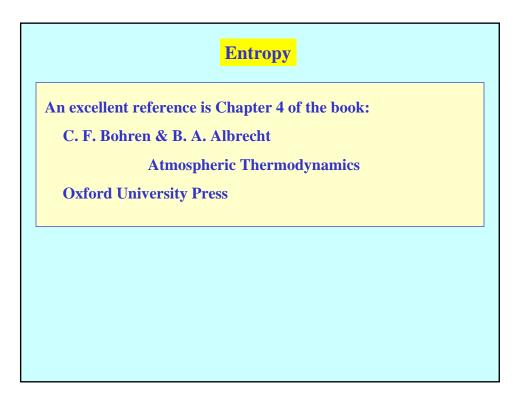
e* in mb and T in K

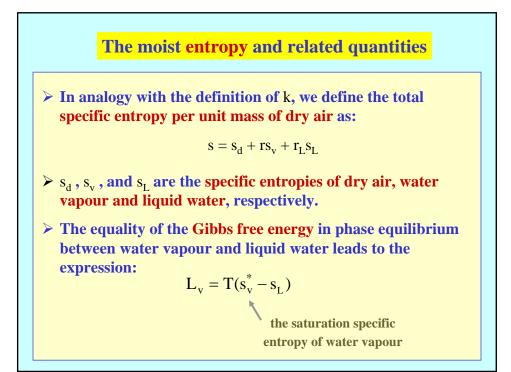
A corresponding expression for ice-vapour equilibrium is:

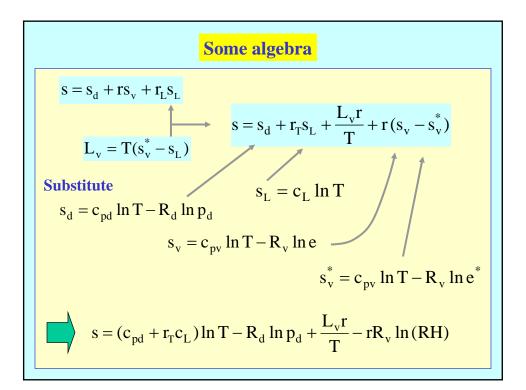
 $\ln e^* = 23.33086 - 6111.72784 / T + 0.15215 \ln T$

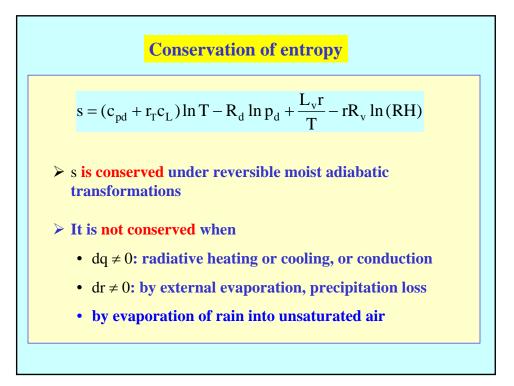
These formulae are used to calculate the water vapour content of a sample of air. If the air sample is unsaturated, the dew point temperature (or ice point temperature) must be used.



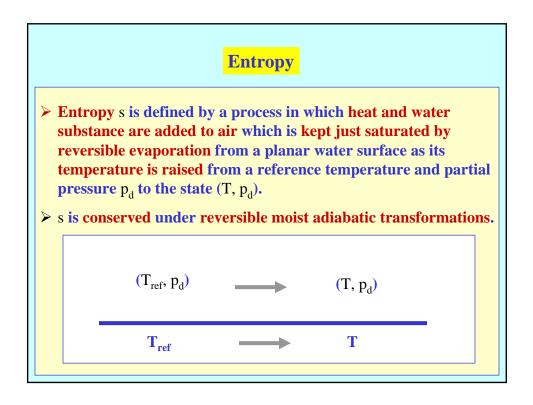


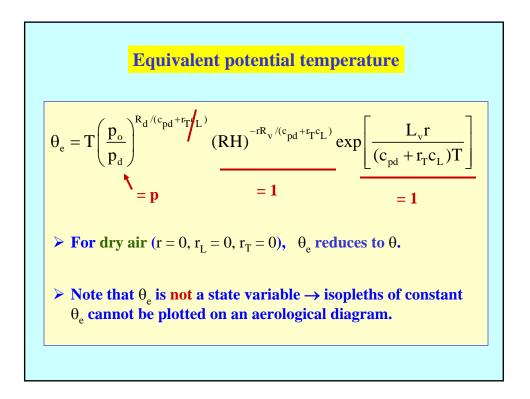


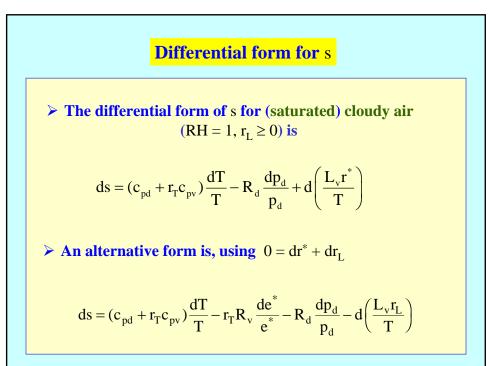




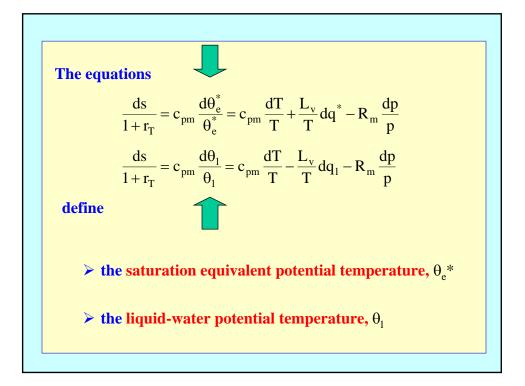
Equivalent potential temperaturePut
$$s = (c_{pd} + r_T c_L) \ln \theta_e - R_d \ln p_o$$
This defines the equivalent potential temperature, θ_e $\theta_e = T \left(\frac{p_o}{p_d} \right)^{R_d/(c_{pd} + r_T c_L)} (RH)^{-rR_v/(c_{pd} + r_T c_L)} exp \left[\frac{L_v r}{(c_{pd} + r_T c_L) T} \right]$











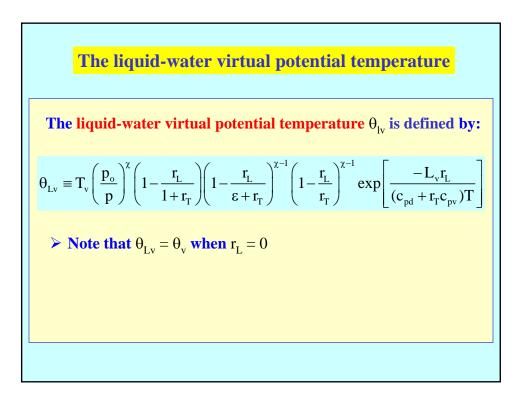
$$c_{pd} \frac{d\theta_{L}}{\theta_{L}} = c_{pd} \frac{d\theta}{\theta} - \frac{L_{v}}{T} dr_{L}$$

$$\bigoplus \quad \theta_{L} \approx \ \theta \ exp \ (-L_{v}r_{L}/c_{pd}T)$$
Note that when $r_{L} = 0$, $\theta_{L} = \theta$

$$\rightarrow$$
 the liquid water potential temperature is the potential temperature attained by the evaporation of all liquid water in an air parcel through reversible moist descent.

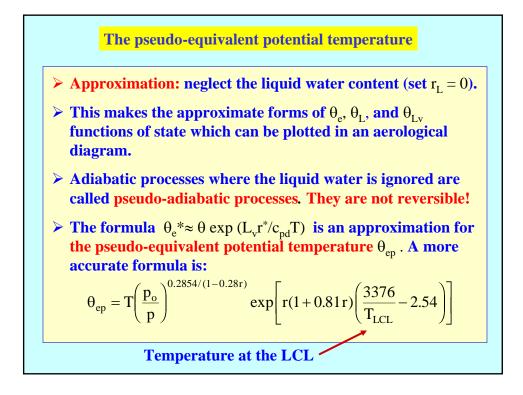
$$\theta_{L} \approx \theta \exp\left(-L_{v}r_{L}/c_{pd}T\right)$$
An unapproximated expression for θ_{1} is:

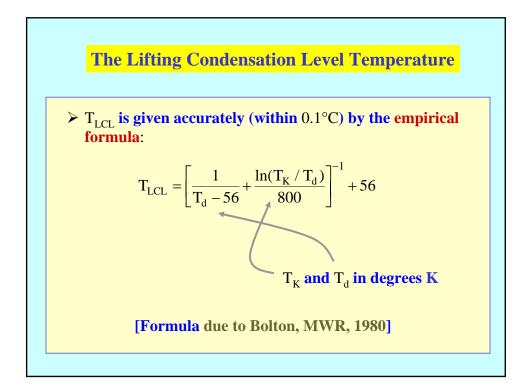
$$\theta_{L} \equiv T\left(\frac{p_{o}}{p}\right)^{\chi} \left(1 - \frac{r_{L}}{\varepsilon + r_{T}}\right)^{\chi} \left(1 - \frac{r_{L}}{r_{T}}\right)^{-\gamma} \exp\left[\frac{-L_{v}r_{L}}{(c_{pd} + r_{T}c_{pv})T}\right]$$
where $\chi \equiv (R_{d} + r_{T}R_{v})/(c_{pd} + r_{T}c_{pv})$
 $\gamma \equiv r_{T}R_{v}/(c_{pd} + r_{T}c_{pv})$

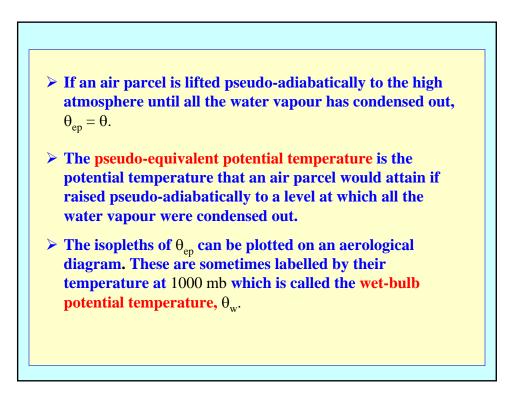


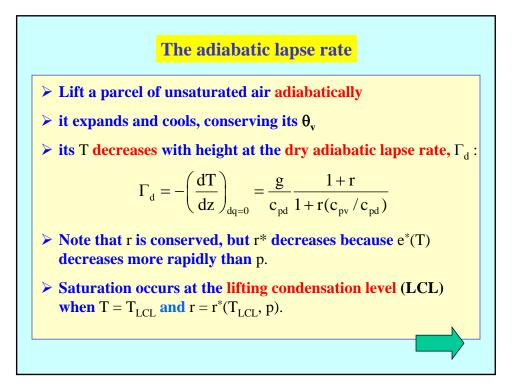
Some notes

- > θ_e , θ_L , and θ_{Lv} are conserved in reversible adiabatic processes involving changes in state of unsaturated or cloudy air.
- $\succ \theta_e, \theta_L, \text{ and } \theta_{Lv}$ are not functions of state they depend on p, T, r and r_L
- ➤ → Curves representing reversible, adiabatic processes cannot be plotted in an aerological diagram
- In a saturated process, r = r*(p, T)



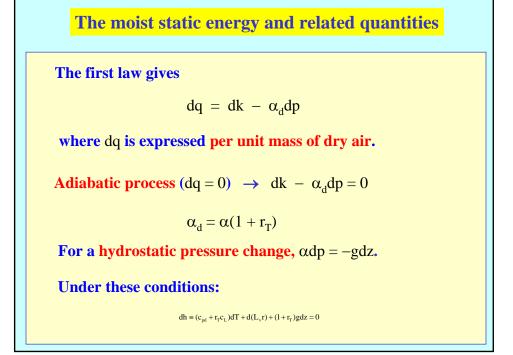


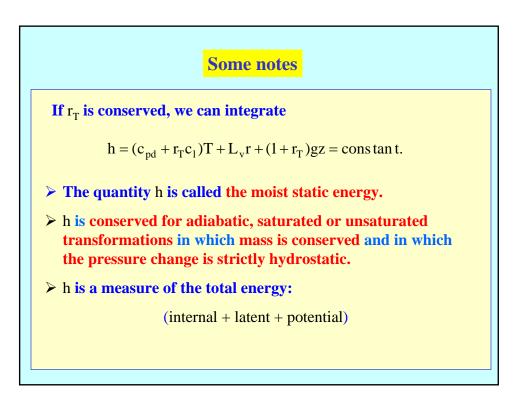




Above the LCL, the rate of which its temperature falls, Γ_m , is less than Γ_d because condensation releases latent heat. For reversible ascent: $\Gamma_m \equiv -\left(\frac{dT}{dz}\right)_s = \frac{g}{c_{pd}} \frac{1+r_T}{1+r \frac{c_{pv}}{c_{pd}}} \times \left[\frac{1+\frac{L_v r}{R_d T}}{1+r_L \frac{c_L}{c_{pd}}+rc_{pv}} + \frac{L_v^2(1+r/\epsilon)r}{R_v T^2(c_{pd}+rc_{pv})}\right]$ When r_T is small, the ratio Γ_m/Γ_d is only slightly less than unity,

When r_T is small, the ratio Γ_m/Γ_d is only slightly less than unity, but when the atmosphere is very moist, it may be appreciably less than unity.





The dry static energy

- **Define the dry static energy**, h_d.
- **Put** $r_T = r \implies$

$$\mathbf{h}_{d} = (\mathbf{c}_{pd} + r\mathbf{c}_{L})\mathbf{T} + (1+r)\mathbf{g}\mathbf{z}$$

- This is conserved in hydrostatic unsaturated transformations.
- \succ h and h_d are very closely related to θ_e and θ .

The (virtual) liquid water static energy

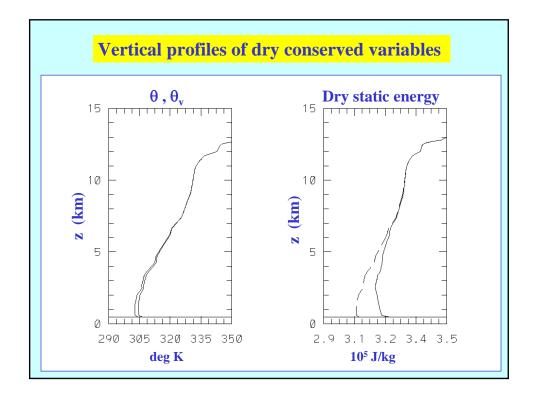
- > Define two forms of static energy related to θ_{L} and θ_{Ly} .
- **These are the liquid water static energy:**

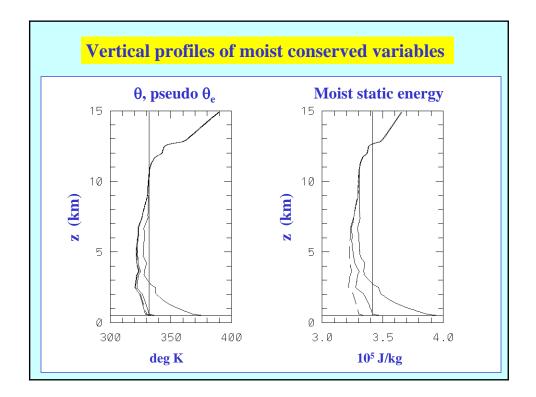
$$h_w = (c_{pd} + r_T c_{pv})T - L_v r_L + (1 + r_T)gz$$

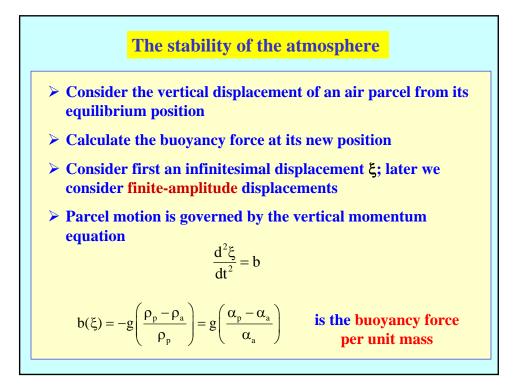
and the virtual liquid water static energy

$$h_{Lv} = c_{pd} \left(\frac{\epsilon + r_{T}}{\epsilon + r_{T} - r_{L}} \right) T_{\rho} - \frac{L_{v}r_{L}}{1 + r_{T}} + gz$$

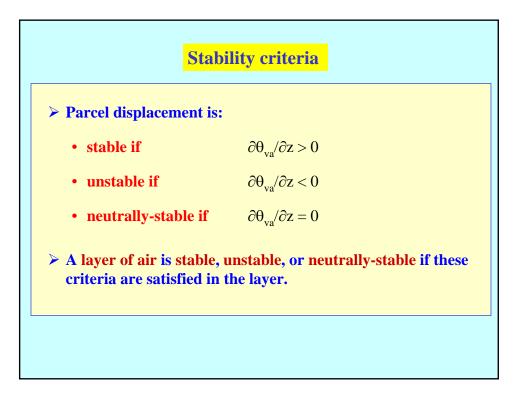
- h_{Lv} is almost precisely conserved following slow adiabatic displacements.
- > If $r_L = 0$, $h_{Lv} = c_{pd}T_v + gz$ (just as θ_L reduces to θ).

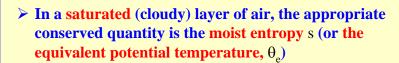






Newton's law for an air parcel: $\frac{d^{2}\xi}{dt^{2}} = \frac{buoyancy force}{unit mass}$ $\frac{buoyancy force}{unit mass} : b(\xi) = \frac{\partial b}{\partial z}\Big|_{z=0} \xi + \frac{d^{2}\xi}{dt^{2}} - \frac{\partial b}{\partial z}\Big|_{z=0} \xi = 0$ The motion equation for small displacements is: $\frac{d^{2}\xi}{dt^{2}} + N^{2}\xi = 0 \quad \text{where} \quad N^{2} = -\frac{\partial b}{\partial z}$ The motion equation for small displacements is: $\frac{d^{2}\xi}{dt^{2}} + N^{2}\xi = 0$ where $N^{2} = -\frac{\partial b}{\partial z}$ For an unsaturated displacement, θ_{vp} is conserved and we can write $b(\xi) = g\left(\frac{T_{vp} - T_{va}}{T_{va}}\right) = g\left(\frac{\theta_{vp} - \theta_{va}}{\theta_{va}}\right)$ Since $\theta_{vp} = \text{constant} \cong \theta_{va}$, $N^{2} = -\frac{\partial b}{\partial z} = g\frac{\theta_{vp}}{\theta_{va}^{2}}\frac{\partial \theta_{va}}{\partial z} \cong \frac{g}{\theta_{va}}\frac{\partial \theta_{va}}{\partial z}$

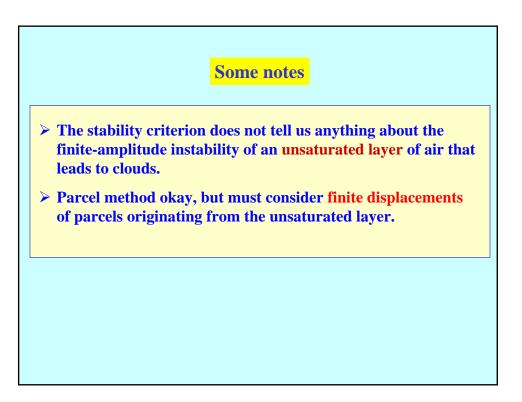


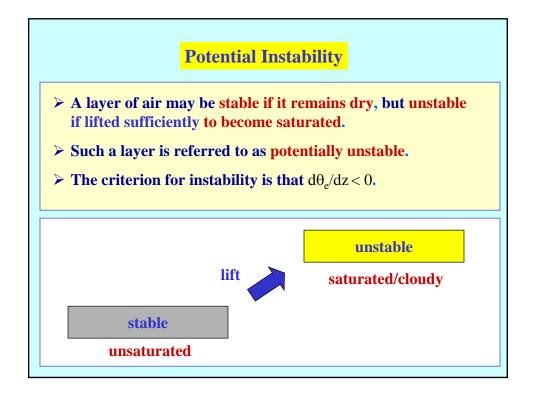


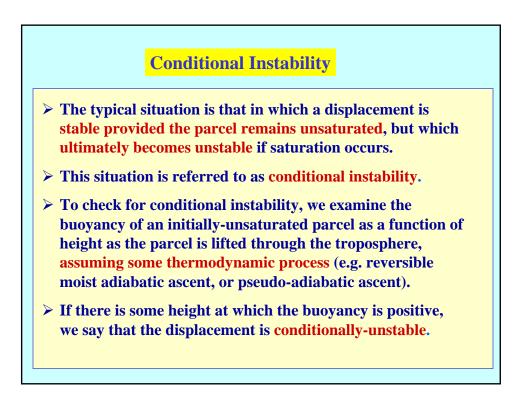
- > Must use the density temperature to calculate b.
- > Replace α_p in b by the moist entropy, s.
- > In this case

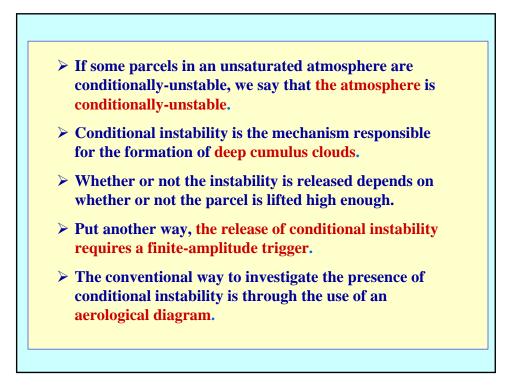
$$N^{2} = \frac{1}{1 + r_{T}} \left[\Gamma_{m} \frac{\partial s}{\partial z} - \left(c_{L} \Gamma_{m} \ln T + g \right) \frac{\partial r_{T}}{\partial z} \right]$$

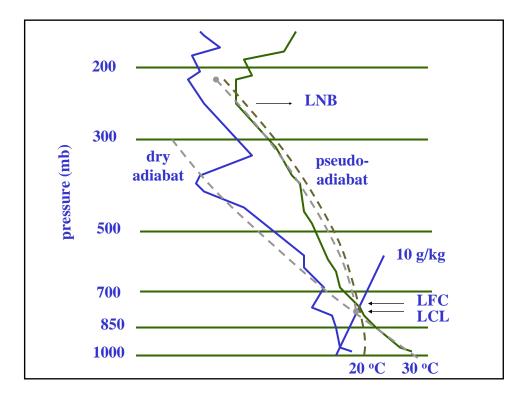
A layer of cloudy air is stable to infinitesimal parcel displacements if s (or θ_e) increases upwards and the total water (r_T) decreases upwards. It is unstable if θ_e decreases upwards and r_T increases upwards.











Positive and Negative Area Convective Inhibition (CIN)

The positive area (PA)

$$PA = \frac{1}{2}u_{LNB}^2 - \frac{1}{2}u_{LFC}^2 = \int_{p_{LNB}}^{p_{LFC}} (T_{vp} - T_{va})R_d d\ln p$$

The negative area (NA) or convective inhibition (CIN)

$$NA = CIN = \int_{p_{LFC}}^{p_{parcel}} (T_{vp} - T_{va}) R_{d} d\ln p$$

Convective Available Potential Energy - CAPE

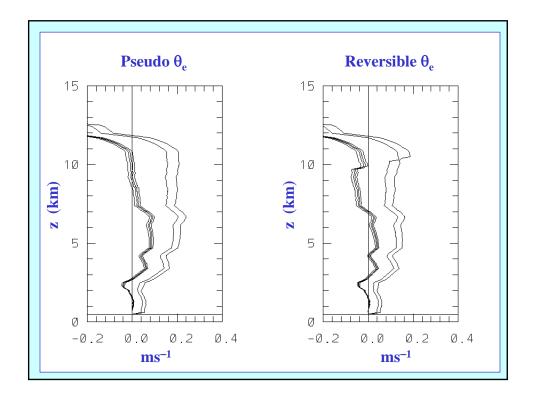
The convective available potential energy or CAPE is the net amount of energy that can be released by lifting the parcel from its original level to its LNB.

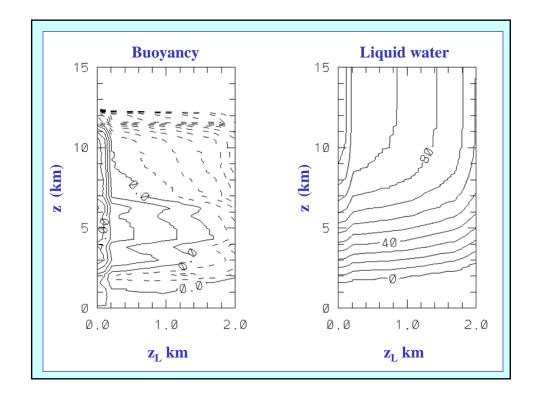
$$CAPE = PA - NA$$

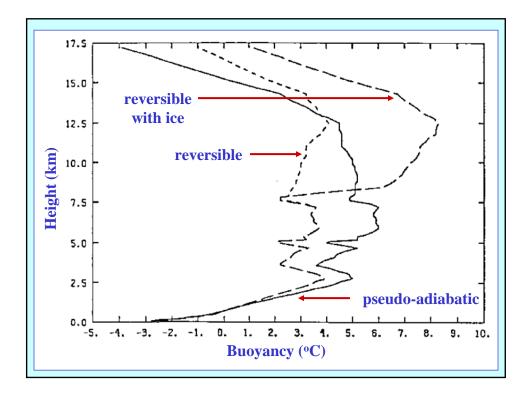
We can define also the downdraught convective available potential energy (DCAPE)

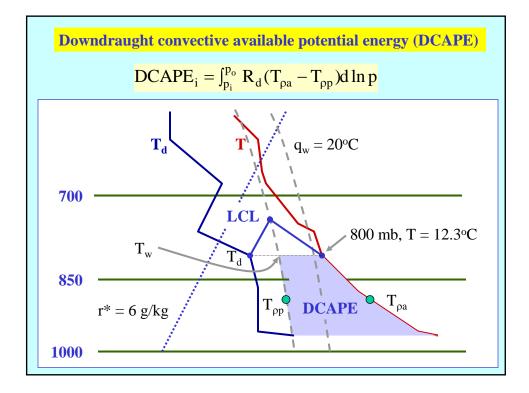
$$DCAPE_i = \int_{p_i}^{p_o} R_d (T_{\rho a} - T_{\rho p}) d\ln p$$

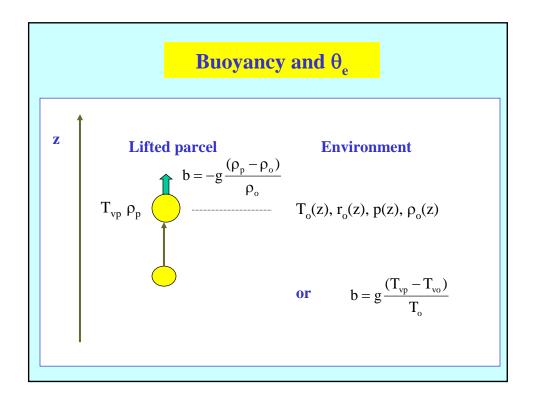
The integrated CAPE (ICAPE) is the vertical mass-weighted integral of CAPE for all parcels with CAPE in a column.











$$Lifted parcel Environment$$

$$T_{\rho p} \rho_{p} = g \frac{(T_{\rho p} - T_{v o})}{T_{o}}$$

$$T_{o}(z), r_{o}(z), p(z), \rho_{o}(z)$$

$$Below the LCL (T_{\rho p} = T_{v p})$$

$$sgn (b) = sgn \{ T_{p}(1 + \varepsilon r_{p}) - T_{o}(1 + \varepsilon r_{o}) = T_{p} - T_{o} + \varepsilon [T_{p}r_{p} - T_{o}r_{o}] \}$$

$$At the LCL (T_{\rho p} = T_{v p})$$

$$\varepsilon = 0.61$$

$$sgn (b) = sgn [T_{p}(1 + \varepsilon r^{*}(p, T_{p})) - T_{o}(1 + \varepsilon r_{o})]$$

$$= sgn [T_{p}(1 + \varepsilon r^{*}(p, T_{p}) - T_{o}(1 + \varepsilon r^{*}(p, T_{o})) + \varepsilon T_{o}(r^{*}(p, T_{o}) - r_{o})]$$

