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Chapter 2
Thermodynamics of moist air

Thermodynamics of moist and cloudy air
Literature:

• Wallace and Hobbs (1977, Chapter 2)
• Iribarne and Godson (1973)
• Houze (1993)
• Emanuel (1994)
• Smith (1997, NATO Chapter 2)
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The equation of state for moist unsaturated air

The state of a sample of moist air is characterized by its:

• Pressure, p

• Absolute temperature, T

• Density, ρ (or specific volume α = 1/ρ), and

• Some measure of its moisture content, e.g.

• The water vapour mixing ratio, r, defined as the mass 
of water vapour in the sample per unit mass of dry air.

These quantities are connected by the equation of state.

Equation of state:

p R T r R T rd dα ε ε= + + ≈ +( / ) / ( ) ( . )1 1 1 0 61

specific gas constant for dry air

specific gas constant water vapour

ε = Rd/Rv = 0.662

r is normally expressed in g/kg, but must be in kg/kg in any formula!
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Other moisture variables

The vapour pressure, e = rp/(ε + r) which is the partial 
pressure of water vapour.

The relative humidity,  RH = 100 × e/e*(T).

• e* = e*(T) is the saturation vapour pressure - the 
maximum vapour that an air parcel can hold without 
condensation taking place

The specific humidity, q = r/(1 + r), which is the mass of 
water vapour per unit mass of moist air.

More moisture variables

The dew-point temperature, Td, which is the temperature 
at which an air parcel first becomes saturated as it is 
cooled isobarically.

The wet-bulb temperature, Tw, which is the temperature 
at which an air parcel becomes saturated when it is cooled 
isobarically by evaporating water into it. The latent heat 
of evaporation is extracted from the air parcel.
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The vertical distribution of r and RH obtained from a radiosonde 
sounding on a humid summers day in central Europe.

Aerological (or thermodynamic) diagrams
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Aerological diagram with plotted sounding

The effect of the water vapour on density is often taken into 
account in the equation of state through the definition of the 
virtual temperature:

T T r T rv = + + ≈ +( / ) / ( ) ( . )1 1 1 0 61ε ε

Then, the density of a sample of moist air is characterized by 
its pressure and its virtual temperature, i.e.

Moist air (r > 0) has a larger virtual temperature than dry air
(r = 0) =>  the presence of moisture decreases the density of 
air --- important when considering the buoyancy of an air 
parcel!

ρ =
p

RTv
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The equation of state for cloudy air

Consider cloudy air as a single, heterogeneous system
specific volume = (total volume)/(total mass)

( ) ( )α = + + + + +V V V M M M Ma l i d v l i/

( ) ( )α α α α α α= + + +d l l d i i d Tr r r1 1( / ) ( / ) /

α
ε

=
+

=
+

+
=

+
+
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total mixing ratio of 
water substanceDivide by Md

ε = Rd/Rv = 0.622

specific heat of 
water vapour

defines the density temperature for cloudy air:

Tρ = T(1 + r/ε)/(1 + rT)

The first law of thermodynamics

The first law of thermodynamics for a sample of moist air may 
be written alternatively as

dq c dT pd
c dT dp

v

p

= ′ +
= ′ −

α
α

,
,

The quantities cvd ( ≈ 1410 J kg−1 K−1) and cpd ( ≈ 1870 J kg−1 K−1) 
are the corresponding values for dry air.

the heat supplied 
per unit mass to 
the air sample specific heats of 

the air sample

incremental changes in 
temperature, pressure 
and specific volume

v vd p pdc c (1 0.94r) c c (1 0.85r)′ ′= + = +
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Adiabatic processes

An adiabatic process is one in which there is zero heat input
(dq = 0); in particular, heat generated by frictional dissipation 
is ignored.

( )d T R c d ppln / ln= ′ ′

If the process is also reversible and unsaturated, r is a constant.

pln T (R / c ) ln p ln A′ ′= +

′ = + +R R r rd( / ) / ( )1 1ε

Define A such that, when p equals some standard pressure, po, 
usually taken to be 1000 mb, T = θ.

The equation can be integrated exactly (ignoring the small 
temperature dependence of  c'p ) to give:

a constant

θ

ε
κ

=
F
HG
I
KJ =
F
HG
I
KJ ≈

F
HG
I
KJ

′
′

′
+

+T p
p

T p
p

T p
p

o o pv pd o

R
cp

Rd
cpd

r
rc c

1
1

/
/

The variation in κ is < 1 % and is usually ignored

′ = −κ κ( . )1 0 24r

κ = R cd pd/
We define the virtual potential temperature, θv by

θ
κ

v v
oT p

p
=
F
HG
I
KJ take the value of κ for dry air.

The quantity θ is called the potential temperature and is 
given by:

The potential temperature
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Enthalpy

The first law of thermodynamics can be expressed as

dq d(u p ) dp = dk  dp= + α − α − α

The enthalpy is a measure of heat content at 
constant pressure.

k = u + pα is called the specific enthalpy.

For an ideal gas, k = cpT.

Water substance and phase changes

The latent heat associated with a phase transition of a substance 
is defined as the difference between the heat contents, or 
enthalpies, of the two phases; i.e.

Li,ii = kii - ki,

The dependence of Li,ii on T and p may be obtained by 
differentiation using k = u + pα (for details see e.g. E94, p114).

It turns out that:  Li,ii = Li,iio + (cpii - cpi)(T − 273.16 K)

Li,iio is the latent heat at the so-called triple point (T = 273.16 K 
= 0.01oC, and e = 6.112 mb) where all three phases of water 
substance are in equilibrium. 

subscripts refer to 
the two phases

e is the water vapour pressure
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The pressure and temperature at which two phases are 
in equilibrium are governed by the Clausius-Clapeyron
equation:

dp
dT

L
T(ii i

i ii

ii i

⎛
⎝
⎜

⎞
⎠
⎟ =

−,

,

)
.

α α

For liquid-vapour equilibrium, αl << αv, and using the ideal 
gas law for vapour, we obtain an equation for the saturation 
vapour pressure, e*(T):

de
dT

L e
R T

v

v

* *
= 2

The Clausius-Clapeyron equation

Lv = the latent heat of vaporization.

This equation may be integrated for e*(T).

de
dT

L e
R T

v

v

* *
= 2

A more accurate empirical formula is (see E94, p117):

ln * . . / . lne T T= − −53 67957 6743 769 4 8451

A corresponding expression for ice-vapour equilibrium is:

ln * . . / . lne T T= − +23 33086 6111 72784 015215

These formulae are used to calculate the water vapour content 
of a sample of air. If the air sample is unsaturated, the dew 
point temperature (or ice point temperature) must be used.

e* in mb and T in K
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Moist enthalpy

The moist enthalpy is conserved in an isobaric 
process as long as dq = 0 and drT = 0.

Define the moist enthalpy k of a sample of cloudy air by 
the formula:

Mdk  =  Mdkd +  Mvkv + MLkL

Then k  =  kd +  rkv +  rLkL , expressed per unit mass 
of dry air.

But Lv(T) = kv - kL , =>  k  =  kd +  Lvr  +  rTkL

rT = r + rL.

Since kd = cpdT and kL = cLT,

k  =  (cpd + rTcL)T + Lvr

cL is the specific heat 
of liquid water

Entropy

An excellent reference is Chapter 4 of the book:

C. F. Bohren & B. A. Albrecht

Atmospheric Thermodynamics

Oxford University Press
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The moist entropy and related quantities

In analogy with the definition of k, we define the total 
specific entropy per unit mass of dry air as:

s = sd + rsv + rLsL

sd , sv , and sL are the specific entropies of dry air, water 
vapour and liquid water, respectively.

The equality of the Gibbs free energy in phase equilibrium 
between water vapour and liquid water leads to the 
expression:

L T s sv v L= −( )*

the saturation specific 
entropy of water vapour

s s r s L r
T

r s sd
v

v vT L= + + + −( )*

s c T R pd pd d d= −ln ln

s c T R ev pv v= −ln ln

s c T R ev pv v
* *ln ln= −

s c TL L= ln

L T s sv v L= −( )*

Ld v Ls s rs r s= + +

Some algebra

s c r c T R p L r
T

rR RHpd L d d
v

vT= + − + −( ) ln ln ln ( )

Substitute
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s c r c T R p L r
T

rR RHpd L d d
v

vT= + − + −( ) ln ln ln ( )

s is conserved under reversible moist adiabatic 
transformations

It is not conserved when

• dq ≠ 0: radiative heating or cooling, or conduction

• dr ≠ 0: by external evaporation, precipitation loss

• by evaporation of rain into unsaturated air

Conservation of entropy

( )pd T L e d os c r c ln R ln p= + θ −Put

This defines the equivalent potential temperature, θe

R /(c r c )d pd T L
rR /(c r c )v pd T Lo v

e
d pd T L

p L rT (RH) exp
p (c r c )T

+
− + ⎡ ⎤⎛ ⎞

θ = ⎢ ⎥⎜ ⎟ +⎢ ⎥⎝ ⎠ ⎣ ⎦

Equivalent potential temperature
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Entropy s is defined by a process in which heat and water 
substance are added to air which is kept just saturated by 
reversible evaporation from a planar water surface as its 
temperature is raised from a reference temperature and partial 
pressure pd to the state (T, pd).

s is conserved under reversible moist adiabatic transformations.

(Tref, pd) (T, pd)

Entropy

Tref T

R /(c r c )d pd T L
rR /(c r c )v pd T Lo v

e
d pd T L

p L rT (RH) exp
p (c r c )T

+
− + ⎡ ⎤⎛ ⎞

θ = ⎢ ⎥⎜ ⎟ +⎢ ⎥⎝ ⎠ ⎣ ⎦

Equivalent potential temperature

For dry air (r = 0, rL = 0, rT = 0),   θe reduces to θ.

Note that θe is not a state variable → isopleths of constant 
θe cannot be plotted on an aerological diagram.

= 1 = 1= p
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*
d v

pd T pv d
d

dT dp L rds (c r c ) R d
T p T

⎛ ⎞
= + − + ⎜ ⎟

⎝ ⎠

Differential form for s

An alternative form is, using 0 = dr* + drL

ds c r c dT
T

r R de
e

R dp
p

d L r
Tpd T pv T v d

d

d

v L= + − − − FH IK( )
*

*

The differential form of s for (saturated) cloudy air
(RH = 1, rL ≥ 0) is

Betts showed that the two forms can be written more 
symmetrically as:

ds
r

c d c dT
T

L
T

dq R dp
pT

pm
e

e
pm

v
m1+

= = + −
θ

θ

*

*
*

ds
r

c d c dT
T

L
T

dq R dp
pT

pm
l

l
pm

v
l m1+

= = − −
θ

θ

(1 + rT) cpm = (cpd + r*cpv + rLcl)

(1 + rT) Rm = (Rd + Rv)

q* = r* /(1 + rT)

ql = rL /(1 + rT)

Alternative forms

where
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the saturation equivalent potential temperature, θe*

ds
r

c d c dT
T

L
T

dq R dp
pT

pm
e

e
pm

v
m1+

= = + −
θ

θ

*

*
*

ds
r

c d c dT
T

L
T

dq R dp
pT

pm
l

l
pm

v
l m1+

= = − −
θ

θ

The equations

define

the liquid-water potential temperature, θl

c d c d L
T

drpd
e

e
pd

vθ
θ

θ
θ

*

*
*= +

and

vL
pd pd L

L

Ld dc c dr
T

θ θ
= −

θ θ

ds
r

c d c dT
T

L
T

dq R dp
pT

pm
e

e
pm

v
m1+

= = + −
θ

θ

*

*
*

ds
r

c d c dT
T

L
T

dq R dp
pT

pm
l

l
pm

v
l m1+

= = − −
θ

θ

Let  cpm ≈ cpd,   Rm ≈ Rd then

Approximate forms of θe* and θl
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Assume that

(Lv/T)dr* ≈ d(Lvr*/T) and   (Lv/T)drL ≈ d(LvrL/T)

Then

* v
e

pd

L r*  exp 
c T

⎛ ⎞
θ ≈ θ ⎜ ⎟⎜ ⎟

⎝ ⎠

c d c d L
T

drpd
e

e
pd

vθ
θ

θ
θ

*

*
*= +

R /(c r c )d pd T L
* o v
e

d pd T L

p L rT exp
p (c r c )T

+ ⎡ ⎤⎛ ⎞
θ = ⎢ ⎥⎜ ⎟ +⎢ ⎥⎝ ⎠ ⎣ ⎦

c/f

L v L pd exp (-L r /c T)θ ≈ θ

Note that when rL = 0,  θL = θ

vL
pd pd L

L

Ld dc c dr
T

θ θ
= −

θ θ

→ the liquid water potential temperature is the potential 
temperature attained by the evaporation of all liquid 
water in an air parcel through reversible moist descent.
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L v L pd exp (-L r /c T)θ ≈ θ

An unapproximated expression for θl is:

o v LL L
L

T T pd T pv

p L rr rT 1 1 exp
p r r (c r c )T

χ −γχ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ −
θ ≡ − − ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ε + +⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦

where χ ≡ + +R r R c r cd T v pd T pva f c h/

γ ≡ +r R c r cT v pd T pv/ c h

The liquid-water virtual potential temperature θlv is defined by:

1 1

o v LL L L
Lv v

T T T pd T pv

p L rr r rT 1 1 1 exp
p 1 r r r (c r c )T

χ− χ−χ ⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ −
θ ≡ − − − ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ + ε + +⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎣ ⎦

Note that θLv = θv when rL = 0

The liquid-water virtual potential temperature
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θe, θL, and θLv are conserved in reversible adiabatic 
processes involving changes in state of unsaturated or 
cloudy air.

θe, θL, and θLv are not functions of state - they depend on
p, T, r and rL

→ Curves representing reversible, adiabatic processes 
cannot be plotted in an aerological diagram

In a saturated process, r = r*(p, T) 

Some notes

θep
o

r

LCL
T p

p
r r

T
= FHG
I
KJ + −

F
HG

I
KJ

L
NM

O
QP

−0 2854 1 0 28

1 0 81 3376 2 54
. / ( . )

exp ( . ) .

Approximation: neglect the liquid water content (set rL = 0).

This makes the approximate forms of θe, θL, and θLv
functions of state which can be plotted in an aerological
diagram.

Adiabatic processes where the liquid water is ignored are 
called pseudo-adiabatic processes. They are not reversible!

The formula θe*≈ θ exp (Lvr*/cpdT) is an approximation for
the pseudo-equivalent potential temperature θep . A more 
accurate formula is:

The pseudo-equivalent potential temperature

Temperature at the LCL
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T
T

T T
LCL

d

K d=
−

+
L
NM

O
QP +

−
1

56 800
56

1
ln( / )

TK and Td in degrees K

TLCL is given accurately (within 0.1°C) by the empirical 
formula:

The Lifting Condensation Level Temperature

[Formula due to Bolton, MWR, 1980]

If an air parcel is lifted pseudo-adiabatically to the high 
atmosphere until all the water vapour has condensed out,
θep = θ. 

The pseudo-equivalent potential temperature is the 
potential temperature that an air parcel would attain if 
raised pseudo-adiabatically to a level at which all the 
water vapour were condensed out.

The isopleths of θep can be plotted on an aerological
diagram. These are sometimes labelled by their 
temperature at 1000 mb which is called the wet-bulb 
potential temperature, θw.
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Lift a parcel of unsaturated air adiabatically

it expands and cools, conserving its θv

its T decreases with height at the dry adiabatic lapse rate, Γd : 

d
dq 0 pd pv pd

dT g 1 r
dz c 1 r(c / c )=

+⎛ ⎞Γ = − =⎜ ⎟ +⎝ ⎠

Note that r is conserved, but r* decreases because e*(T) 
decreases more rapidly than p.

Saturation occurs at the lifting condensation level (LCL)
when T = TLCL and r = r*(TLCL, p).

The adiabatic lapse rate

Above the LCL, the rate of which its temperature falls, Γm, 
is less than Γd because condensation releases latent heat. 

T
m

pvs

pd

v

d
2
vL

L 2
pd pv v pd pv

pd

1 rdT g
cdz c 1 r
c

L r1
R T

L (1 r / )rc1 r
c rc R T (c rc )

+⎛ ⎞Γ ≡ − = ×⎜ ⎟
⎝ ⎠ +

⎡ ⎤
+⎢ ⎥

⎢ ⎥
⎢ ⎥+ ε

+ +⎢ ⎥+ +⎢ ⎥⎣ ⎦

For reversible ascent:

When rT is small, the ratio Γm/Γd is only slightly less than unity, 
but when the atmosphere is very moist, it may be appreciably 
less than unity.
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The moist static energy and related quantities

The first law gives

dq  =  dk  − αddp

where dq is expressed per unit mass of dry air.

Adiabatic process (dq = 0) → dk  − αddp = 0

αd = α(1 + rT)

For a hydrostatic pressure change, αdp = −gdz.

Under these conditions:

pd T L v Tdh (c r c )dT d(L r) (1 r )gdz 0≡ + + + + =

If rT is conserved, we can integrate

h c r c T L r r gz cons tpd T l v T= + + + + =( ) ( ) tan .1

The quantity h is called the moist static energy.

h is conserved for adiabatic, saturated or unsaturated 
transformations in which mass is conserved and in which
the pressure change is strictly hydrostatic.

h is a measure of the total energy:

(internal + latent + potential)

Some notes
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Define the dry static energy, hd.

Put rT = r    =>

d pd Lh (c rc )T (1 r)gz.= + + +

This is conserved in hydrostatic unsaturated 
transformations.

h and hd are very closely related to  θe and θ.

The dry static energy

Define two forms of static energy related to θL and θLv.

These are the liquid water static energy:

h c r c T L r r gzw pd T pv v L T= + − + +( ) ( )1

and the virtual liquid water static energy

The (virtual) liquid water static energy

v LT
Lv pd

T L T

L rrh c T gz
r r 1 rρ

⎛ ⎞ε +
= − +⎜ ⎟ε + − +⎝ ⎠

hLv is almost precisely conserved following slow adiabatic 
displacements.

If rL = 0, hLv = cpdTv + gz  (just as θL reduces to θ).
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Vertical profiles of dry conserved variables

z 
 (k

m
)

θ , θv                                                    Dry static energy

deg K                             105 J/kg

z 
 (k

m
)

Vertical profiles of moist conserved variables

z 
 (k

m
)

θ, pseudo θe                            Moist static energy

deg K                 105 J/kg

z 
 (k

m
)
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The stability of the atmosphere

Consider the vertical displacement of an air parcel from its 
equilibrium position

Calculate the buoyancy force at its new position

Consider first an infinitesimal displacement ξ; later we 
consider finite-amplitude displacements

Parcel motion is governed by the vertical momentum 
equation

2

2
d b
dt

ξ
=

is the buoyancy force 
per unit mass

p a p a

p a

b( ) g g
⎛ ⎞ρ − ρ α − α⎛ ⎞

ξ = − =⎜ ⎟ ⎜ ⎟⎜ ⎟ρ α⎝ ⎠⎝ ⎠

The motion equation for small displacements is:

d
dt

N
2

2
2 0ξ
ξ+ = where 2 bN

z
∂

= −
∂

Newton's law for an air parcel:
2

2

d buoyancy force
dt unit mass

ξ
=

z 0

buoyancy force b: b( )
unit mass z =

∂
ξ = ξ +

∂

2

2
z 0

d b 0
dt z =

ξ ∂
− ξ =

∂
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The motion equation for small displacements is:

d
dt

N
2

2
2 0ξ
ξ+ =

where 2 bN
z

∂
= −

∂

For an unsaturated displacement, θvp is conserved and we 
can write

vp va vp va

va va

T T
b( ) g g

T
− θ − θ⎛ ⎞ ⎛ ⎞

ξ = =⎜ ⎟ ⎜ ⎟θ⎝ ⎠ ⎝ ⎠

Since θvp = constant ≅ θva,

vp2 va va
2
va va

b gN g
z z z

θ∂ ∂θ ∂θ
= − = ≅

∂ θ ∂ θ ∂

Parcel displacement is:

• stable if ∂θva/∂z > 0 

• unstable if ∂θva/∂z < 0

• neutrally-stable if ∂θva/∂z = 0 

A layer of air is stable, unstable, or neutrally-stable if these 
criteria are satisfied in the layer.

Stability criteria
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In a saturated (cloudy) layer of air, the appropriate 
conserved quantity is the moist entropy s (or the 
equivalent potential temperature, θe) 

Must use the density temperature to calculate b. 

Replace αp in b by the moist entropy, s. 

In this case

( )2 T
m L m

T

r1 sN c ln T g
1 r z z

∂∂⎡ ⎤= Γ − Γ +⎢ ⎥+ ∂ ∂⎣ ⎦

A layer of cloudy air is stable to infinitesimal parcel 
displacements if s (or θe) increases upwards and the total 
water (rT) decreases upwards. It is unstable if θe decreases
upwards and rT increases upwards.

The stability criterion does not tell us anything about the 
finite-amplitude instability of an unsaturated layer of air that 
leads to clouds.

Parcel method okay, but must consider finite displacements
of parcels originating from the unsaturated layer.

Some notes
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Potential Instability

A layer of air may be stable if it remains dry, but unstable 
if lifted sufficiently to become saturated.

Such a layer is referred to as potentially unstable.

The criterion for instability is that dθe/dz < 0.

stable

unstable

unsaturated

saturated/cloudylift

Conditional Instability

The typical situation is that in which a displacement is
stable provided the parcel remains unsaturated, but which
ultimately becomes unstable if saturation occurs.

This situation is referred to as conditional instability.

To check for conditional instability, we examine the 
buoyancy of an initially-unsaturated parcel as a function of 
height as the parcel is lifted through the troposphere,
assuming some thermodynamic process (e.g. reversible 
moist adiabatic ascent, or pseudo-adiabatic ascent).

If there is some height at which the buoyancy is positive,
we say that the displacement is conditionally-unstable.
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If some parcels in an unsaturated atmosphere are
conditionally-unstable, we say that the atmosphere is 
conditionally-unstable.

Conditional instability is the mechanism responsible
for the formation of deep cumulus clouds.

Whether or not the instability is released depends on 
whether or not the parcel is lifted high enough.

Put another way, the release of conditional instability 
requires a finite-amplitude trigger.

The conventional way to investigate the presence of 
conditional instability is through the use of an
aerological diagram. 

pr
es

su
re

 (m
b)

200

300

500

700

850

1000

10 g/kg

LFC
LCL

20 oC    30 oC

LNB

dry 
adiabat

pseudo-
adiabat
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The positive area (PA)

PA u u T T R d pLNB LFC vp va dpLNB

pLFC
= − = −z1

2
2 1

2
2 c h ln

The negative area (NA) or convective inhibition (CIN)

( )parcel

pLFC

p

vp va dNA CIN T T R d ln p= = −∫

Positive and Negative Area
Convective Inhibition (CIN)

We can define also the downdraught convective available 
potential energy (DCAPE)

DCAPE R T T d pi dp
p

a pi

o= z −( ) lnρ ρ

The integrated CAPE (ICAPE) is the vertical mass-weighted 
integral of CAPE for all parcels with CAPE in a column.

The convective available potential energy or CAPE is the net 
amount of energy that can be released by lifting the parcel from
its original level to its LNB.

CAPE  =  PA  − NA

Convective Available Potential Energy - CAPE



30

z 
 (k

m
)

z 
 (k

m
)

ms−1

Pseudo θe Reversible θe

ms−1

z 
 (k

m
)

z 
 (k

m
)
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Buoyancy and θe

z Lifted parcel Environment

To(z), ro(z), p(z), ρo(z)Tvp ρp

p o

o

( )
b g

ρ − ρ
= −

ρ

vp vo

o

(T T )
b g

T
−

=or

Lifted parcel Environment

To(z), ro(z), p(z), ρo(z)Tρp ρp

p vo

o

(T T )
b g

T
ρ −

=

sgn (b) = sgn { Tp(1 + εrp) − To(1 + εro) = Tp − To + ε[Tprp − Toro]}

ε = 0.61

Below the LCL (Tρp= Tvp)

sgn (b) = sgn [Tp(1 + εr*(p,Tp)) − To(1 + εro)]

= sgn [Tp(1 + εr*(p,Tp) − To(1 + εr*(p,To)) + εTo(r*(p,To) − ro)]

At the LCL (Tρp= Tvp)
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sgn (b) = sgn [Tp(1 + εr*(p,Tp) − To(1 + εr*(p,To)) + εTo(r*(p,To) − ro)]

Since Tv is a monotonic function of θe, * *
ep eob ( )∝ θ − θ + Δ

smallz

*
eo eoθ θ

LFC
LCL

parcel saturated

dry adiabat

moist adiabat

A
(T  θ r)

C
(Tw θε rw)

B
(Td r)

D
(TLCL , pLCL)LCL or saturation level

(TL θL rL)
E

(TL θe*  r*)
F

(Td rT)  (rT = r* + rL)
G

r* - isopleth

P = pLCL – p2 > 0

P = pLCL – p2 < 0

p1

p2

After Betts
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The saturation point

The point (TLCL , pLCL) is referred to as the saturation point.

The saturation point of an air parcel is a conserved quantity
in the absence of diabatic or mixing processes.

One can plot the saturation points of parcels from a 
radiosonde sounding on an aerological diagram.

The state of a parcel of air is characterized by its saturation 
point and the departure of the actual pressure from the 
saturation pressure, i.e. P = pLCL – p.

If P > 0, the parcel is cloudy, if P < 0 it is unsaturated.

The End


