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Convectively-
unstable layer
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The classical fluid dynamical problem of convective
instability between two horizontal plates
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Convectively instability occurs if the Rayleigh number, Ra,
exceeds a threshold value, Ra,.




The Rayleigh number criterion
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o is the cubical coefficient of expansion of the fluid

k is the thermal conductivity

v is the kinematic viscosity
0

The Rayleigh number is ratio of the gross buoyancy force that
drives the overturning motion to the two diffusive processes
that retard or prevent it.

The nature of the instability

> For Ra < Ra, =657, the equilibrium temperature gradient is
stable (Lord Rayleigh, 1916).

» For Ra > Ra_, small perturbations to the equilibrium are
unstable and overturning motions occur.

> If Rais only slightly larger than Ra,, the motion is organized
in regular cells, typically in horizontal rolls.

> As Ra - Ra, increases, the cells first take on a hexagonal
planform and later become more and more irregular and
finally turbulent (Krishnamurti, 1970).

» The turbulent convective regime is normally the case in the
atmosphere.




Circular buoyancy-driven convection cells

Ra =2.9Ra, Base plate is hotter at the rim
Uniformly-heated base plate than at the centre

Buoyancy-driven convection rolls

Rayleigh-Bénard

X Rotatlon about a vertlcal axis

Differential interferograms show side views of convective instability of silicone
oil in a rectangular box of relative dimensions 10:4:1 heated from below.




Bénard convection — hexagonal cells

Imperfections in a hexagonal Bénard convection pattern
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Contours of constant w in a hexagonal cell




Streamlines in a horizontal plane for a rectangular cell
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Regime diagram for experiments on Rayleigh convection
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Circles => steady flows, circular dots => time-dependet convection, stars => transition points,
open squares => independent laboratory observations of time-dependent flow by Rossby (1966),
squares with a dot in the center => observations of turbulent flow by Willis and Deardorff (1967).
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Temperature profiles as a function of Ra
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As the Rayleigh number increases above Ra,, the vertical profile of
the horizontally-averaged temperature departs significantly from
the linear equilibrium profile resulting from conduction only.

Penetrative convection
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The formation of plumes or thermals rising
from a heated surface

Higher heating rate

In the turbulent convection regime, the flux of heat from heated
boundary is intermittent rather than steady and is accomplished
by the formation of thermals
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Vertical profiles of temperature in a laboratory tank, set up
initially with a linear stable temperature gradient and heated
from below. the profile labels give the time in minutes. (From

Deardorff, Willis and Lilly, 1969).
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Typical profiles of quantities in a convective
boundary layer
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From Emanuel et al., 1994
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