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Convection from isolated sources

The arrows show the direction of mean motion. [From Turner, 1973].

a plume a thermal a starting plume

Plumes are steady flows in which the buoyancy is supplied 
steadily so that the buoyant region is continuous.

A pure jet is a steady flow from maintained source of 
momentum.

Forced plumes have a source of momentum and 
buoyancy.

Thermals are discrete buoyant elements in which the 
buoyancy is confined to a limited volume of fluid.

Starting plumes are plumes with a well-defined, advancing 
upper edge.

Puffs are analogous to thermals, but originate from pure 
momentum sources.
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Pure jets, or momentum plumes

The entrainment process and the evolution of the near vertical velocity profile 
as a function of radius in a jet.
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Volume flux F(z) 
proportional to

WR2

Momentum flux
M(z) proportional to

W2R2
12o

R

W

W

The mean properties of the jet such as the average vertical 
velocity and mean radius can depend only on M and z, there 
being no other parameters in the problem.

Dimensional analysis

W c M z
R c z

=

=
1

2

1/2 /

The rate at which fluid is entrained is
dF
dz

F c WR c c c M z= =3
2

1 3 2
2 1 2/

Define an entrainment velocity uE such that 2πRu dF
dzE =
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uE is inversely proportional to R 
and directly proportional to W.

u
R

dF
dz R

c c c M c c WE = = =
1

2
1

2
22 3 2

2 1 2
2 3π π

π/ ( / )

We have tacitly assumed that the orifice of the jet is small 
compared with the distance from it that we are considering.

Close to the orifice the motion is determined by how the fluid 
is ejected, but it soon takes up the configuration described.

Of course, the orifice will always have a finite size, but one 
can think of the motion as being due to a virtual point source
situated some distance below the orifice.

Pure buoyant plumes

In this case, the momentum flux is no longer conserved
because momentum is generated by the buoyancy force in 
the plume.

Then the buoyancy flux, Σ, is a constant (see later)

Σ =
∞z2

0
π σ( , ) ( , )r z w r z rdr

The buoyancy flux has dimensions:

(force/unit mass) × velocity × area = L4T−3.
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The mean properties of the plume, which include the average 
vertical velocity w, the average buoyancy b, and mean radius
R, can depend only on Σ and z:

zcR
zcb

zcw

3

5/3-2/3
2

-1/31/3
1

=
Σ=

Σ=

Dimensional analysis

We can say something also about the dependence of the time-
averaged quantities on radius within the plume:

These quantities must depend on r/R, where r is the distance 
from the plume axis and R is a radial scale for the plume width 
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F1 and F2 are functions of scaled radius.

The mass flux F, which is proportional to WR2, 
increases with height as z5/3.

R = αz, α is a constant

Again, this implies a turbulent entrainment of mass in which 
the mean inflow velocity is proportional to w.

Entrainment velocity: 2πRu dF
dzE =

dF
dz

z∝ 2 3/ u z w∝ ∝1 3/
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Yih (1951) determined the functions F1 and F2 experimentally 
for turbulent plumes in air contained in a large closed room. 
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The mean plume has a conical cross-section 
with about a 7° angle of spread.

He found that

The streamlines and isotherms corresponding to 
these expressions are shown in the next figure =>
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Volume flux F(z) 
proportional to

WX2

Momentum flux
M(z) proportional to

W2X2

X

W

W

Plumes originating from line sources

Suppose that plume originates 
from a maintained line source

of buoyancy. 

x

z

Σ =
−∞

∞z w dxσ

The mean flow structure would be expected to have the form 
of a wedge and the buoyancy flux will be defined per unit with 
length along the source:

Again, the turbulent flow can depend only on Σ and on the 
variables x and z.

In this case the similarity 
solution is:

w G z x
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b H z x
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R z
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Maintained plumes originating from two parallel line sources

After 
Rouse, et 
al. (1952)

Thermals

Thermals are a result of turbulent convection from an 
instantaneous isolated (or point) source.

When buoyancy is created instantaneously in an isolated 
region of fluid, the buoyant fluid will rise through its 
environment as a turbulent thermal, entraining ambient air 
as it does so. 
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If we regard time rather than height as the key independent 
variable, many assumptions concerning the behaviour of 
plumes may be applied also to thermals, i.e.,

1. The radial profiles of velocity and buoyancy are 
geometrically similar at all times,

2. The mean entrainment velocity is proportional to the 
mean vertical velocity, and

3. The density perturbation in the thermal is small 
compared to the mean density (the Boussinesq
approximation).

For thermals in a neutrally-stratified fluid, the only external 
parameter is the amount of buoyancy released by the source:

Q b dV
V

o

o

= zzz
the initial volume of the source the initial buoyancy distribution

Let z(t) = the height of some centre in the rising thermal at time t. 
Then using dimensional analysis (Batchelor, 1954):

vertical velocity

buoyancy

characteristic radiusw Q
z

G r
R

= F
HG
I
KJ

1 2/

b Q
z

H r
R

= F
HG
I
KJ3

R = γz

a constant
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Note that z(dz/dt) is independent of t so that z α t1/2, while w 
and b vary as t-1/2 and t-3/2, respectively.

w Q
z

G r
R

= F
HG
I
KJ

1 2/

b Q
z

H r
R

= F
HG
I
KJ3 R = γz

Evolution of thermals

z2 proportional to t

z2

t

z2

t

z2

t

z2

t

From Scorer, 1957
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One can obtain solutions for a 
turbulent starting plume in a 
neutrally-stratified fluid.

One assumes that the advancing 
cap of the plume behaves like a 
thermal, while the body of the 
plume is similar to a full plume
(Turner, 1962).

Starting plumes

a starting plume

The solutions for a pure thermal and a pure plume are 
matched across the interface between them, taking into 
account the fact that the rate of ascent of the cap is slower 
than the vertical motion within the centre of the cap. 

Turner’s results, supported by laboratory experiments, show 
that the rate of ascent of the cap is intermediate between the 
ascent rate of a pure thermal and vertical velocity in a pure 
plume.

He found also that approximately half of the total 
entrainment of ambient fluid is through the advancing cap.
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Laminar plumes originating from a maintained 
point source

Laminar flow

Unstable

Turbulent flow

Behaviour of a rising smoke plume over a cigarette

Transition to turbulence

Laminar flows become unstable when the Reynolds number 
exceeds a critical value, and usually they become turbulent.

The local Reynolds number, Re, for a laminar plume is 
defined by

Re
/

/≡ ≈
wR z
ν ν

1/2Σ1 4

3 4

Σ =
∞z2π

o
wbrdr

kinematic viscosity

This increases as the square root of the height so that we 
would expect the plume to become turbulent beyond a certain 
height (witness again the cigarette!)
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Turbulent convection in a stably-stratified fluid

If the environment of a plume is stably-stratified, the ambient 
density variation will affect the buoyancy of the plume and one 
would expect the plume to become negatively buoyant beyond a 
certain height.

If the environment is unstably-stratified, it is likely to be 
convecting and the ambient turbulence will be a factor in the 
plume dynamics. Neglecting this effect, one would expect the 
plume to ascend more rapidly than if the environment were 
neutral.

Stably-stratified case: an additional parameter characterizing 
the stratification is required to describe the system and 
dimensional analysis is more limited. Therefore we make more 
explicit use of the governing equations.

Following Morton et al. (1956), we assume a particular radial 
dependence of the velocity and buoyancy, and integrate the 
Boussinesq equations over a horizontal plane.

We end up with a set of ordinary differential equations for 
the evolution of quantities along plume.

The basic assumptions are borrowed from the self-similar 
solutions in unstratified flow:

o The flow is steady,

o The radial profiles of mean vertical velocity and mean 
buoyancy are similar at all heights,

o The mean turbulent entrainment velocity u is 
proportional to w, i.e., u = − αw, and

o The Boussinesq approximation is valid.
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Note that u = − αw is exactly true when N = 0. 

Two simple choices for the radial dependence are: ‘top-hat’
or Gaussian profile.

o The particular form we choose will affect only the 
numerical value of the coefficients in the resulting 
equations for w and σ, but not their dependence on z or 
the buoyancy flux at the source level.

‘top-hat’ Gaussian

Choose a ‘top-hat’ profile.

Integrate the mass continuity equation expressed in 
cylindrical coordinates over the horizontal area of the plume 

0wrdrd
z

rdr)ru(
rr

1d
R

o

2

o

R

o

2

o
=θ

∂
∂

+
∂
∂

θ ∫∫∫∫
ππ

1 w(ru) 0
r r z
∂ ∂

+ =
∂ ∂

Mathematics => 

22 u(R) ( R w) 0
z
∂

π + π =
∂

2d ( R w) 2 Rw
dz

π = πα

entrainment relation =>

The increase of volume flux with height is proportional to the 
volume entrainment through the boundary of the plume (and 
similarly for the mass flux).
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In flux from, the vertical momentum equation is:

21 1( w) (ruw) (w ) b
r r z r r
∂ ∂ ∂τ

∇ ⋅ = + = +
∂ ∂ ∂

u

The perturbation pressure gradient is neglected in comparison with the 
buoyancy force, but a term representing the effect of the turbulent 
frictional stress, τ is included.

The trick now is to integrate this equation over the conical-
shaped volume: 

2 R z z 2 R z z

o o z o o z
d rdr ( w)dz d rdr bdz

π +Δ π +Δ
θ ∇ ⋅ = θ∫ ∫ ∫ ∫ ∫ ∫u

w = 0

Apply the divergence theorem 

2 R z z 2 R z z

o o z o o z
d rdr ( w)dz d rdr bdz

π +Δ π +Δ
θ ∇ ⋅ = θ∫ ∫ ∫ ∫ ∫ ∫u

by the divergence theorem, this term
can be written as a surface integral:

2 R z z

o o z
S

ˆw dS d rdr bdz
π +Δ

⋅ = θ∫ ∫ ∫ ∫ ∫u n

the unit normal vector outwards from 
the surface S enclosing the volume

w = 0 at the lateral boundaries of the plume the only 
contributions to the surface integral are from the 
horizontal disks at z and z + dz where wu ⋅n = w2.

( )2 2 2 2 2 2 2 2dR w R w z R w R b z
dz

⎡ ⎤π + π Δ − π = Δ⎢ ⎥⎣ ⎦
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We have to include a term N2w to represent the effect of the 
environmental stability and a turbulent heat flux gradient.

2 b1 F( b) N w
r r
∂

∇ ⋅ + =
∂

u

Integrating over the incremental volume and using the 
divergence theorem gives =>

where 2 o

o

1 dN
dz
θ

=
θ

( )2 2 2d R wb N R w
dz

π = −π

In flux from, the steady form of the buoyancy equation is:

( )2 2 2d R w R b
dz

π =

as Δz → 0

( )2 2 2d R w R b
dz

π =

( )2 2 2d R wb N R w
dz

π = −π

2d ( R w) 2 Rw
dz

π = πα

Governing equations 

Unknowns are:  plume radius, R(z) vertical velocity, w(z)
buoyancy, b(z)
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Note that the special case of neutral stratification is 
recovered by setting θa = constant, whereupon N = 0.

Then 
( )2 2 2d R wb N R w

dz
π = −π

Some notes 

The above equation shows that when the fluid is stably-
stratified (N2 > 0), the buoyancy flux Σ = πR2wb decreases 
with height and must eventually change sign.

In such a situation we cannot expect similarity solutions to 
apply and one must solve the governing equations.

implies that the buoyancy flux πR2wb is independent of z.

( )2 2 2d R w R b
dz

π =

( )2 2 2d R wb N R w
dz

π = −π

2d ( R w) 2 Rw
dz

π = πα Put V = Rw,  Y = R2w,  B = R2wb

dY
dz

V= 2α

dV
dz

BY
4

4=

dB
dz

YN= −2 2

Initial conditions:

R = w = 0, B = Bo at z = 0 Y = V = 0, B = (2/π)Bo at z = 0

Transformed equations 
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There are only two external parameters in the problem Bo
and N2 (for the present we assume that N2 is a constant).

These two parameters must determine the character of the 
plume and they can be removed by suitably nondimensional-
izing the dependent and independent variables (for details see 
Emanuel (1994, p. 30).

Analytic solutions may be obtained when N2 = 0, or for 
special vertical variations of N2 > 0 (for details see Emanuel 
(1994, pp28-29).

For general variation of N2 the equations may be solved 
numerically using, for example, a Runge-Kutta method.

Solutions

Solutions were obtained by Morton et al. (1956), although 
they assumed Gaussian profiles for the radial distribution of 
buoyancy and vertical velocity.

This is a superior approximation to the ‘top-hat’ profiles 
assumed here and leads to equations with slightly different 
numerical coefficients:

Profiles are shown in the next slide =>

Morton et al. solutions
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From
Morton et al. (1956)
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Δ = buoyancy

U = vertical 
velocity

R = plume 
radius

Theory for thermals 

A similar theory can be worked out for the motion of a 
turbulent thermal in a stably-stratified fluid.

Under certain conditions, analytic solutions may be obtained.

For further details, see Morton et al. (1956) and the summary 
in Emanuel (1994, pp. 31-34).
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Laboratory experiments 

A range of laboratory experiments have been carried out 
with the aim of verifying theoretical predictions of the 
behaviour of plumes and thermals.

In most of these, positively (negatively) buoyant fluid is 
released from the bottom (top) of a task containing a large 
amount of fluid that is either homogenous or stably-
stratified.

A stable stratification can be produced in water by 
successively adding layers of salt solution of increasing 
density to the bottom of the tank.

As the salt diffuses it eventually establishes a smooth density 
gradient.

Plumes 

Photographs of plumes in neutrally and stably stratified fluids. At left is a 
plume in a neutrally-stratified ambient fluid; at right time exposures of a 
plume in a stably-stratified fluid at early and late stages in its development. 
(from Morton et al., 1956).
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Thermals 

Sequence of photographs showing the decent a cloud of dense fluid in a tank 
of lighter fluid.  The photographs are shown upside down (from Scorer, 
1957).  Note that the shape of the thermal may persist while the volume 
increases several times 

From Scorer, 1958
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From Scorer, 1957

Motion in a thermal

radial motion vertical motion

From Scorer, 1958
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From Scorer, 1957

Sinking thermal from above

Sketch of streamlines relative to a spheroidal vortex [From Morton, 1997]



27

From Goler, 2005

Sinking plume – MIM GFD Laboratory

From Goler, 2005

Sinking plume
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The End


