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In two dimensions , the Euler equations of motion are
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Taking                                     and using the continuity equation
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Two dimensional flow of a homogeneous, 
incompressible, inviscid fluid

The vorticity ω has only one non-zero component, the 
y-component, i.e., ω = (0, η, 0).

The equation

In some problems, η = 0 for all particles. Such flows are 
called irrotational.

D
Dt

η
= 0 states that fluid particles conserve 

their vorticity as they move around.

This is a powerful and useful constraint.

Example



2

Consider, for example, the problem of a steady, uniform flow U
past a cylinder of radius a.  All fluid particles originate from far 
upstream (x → −∞)  where u = U, w = 0, and therefore η = 0. 

It follows that fluid particles have zero vorticity for all time.

The inviscid flow problem can be solved as follows:
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Define a streamfunction ψ by the equations
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In the case of irrotational flow, η = 0 and ψ satisfies
Laplace´s equation:
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Boundary conditions:
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x1 3 0∂ψ
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− = or n ∧ ∇ψ = 0

On a solid boundary, the normal velocity must be zero.

on the boundary.

Let n = (n1, 0, n3)

u n⋅ = 0
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ψ is a constant on the boundary itself.

n ∧ ∇ψ = 0 is in the direction of n∇ψ

U

n

u

Uniform flow past a cylinder of radius a

U
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z
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θ

n = (cos θ, 0, sin θ)

the cylinder (r > a) subject to the boundary conditions that

u = −F
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KJ → → ∞
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U, as r, , ,0 0 0a fand
u n⋅ = =0 on r a

where r x y= +2 2 1 2d i / .
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It is easy to check that the solution of

satisfying  the appropriate boundary conditions is
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F
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I
KJU r a

r
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sin θ

Note that for large r, ψ ~ Ur sin θ = Uz

u z U= ∂ψ ∂/ ~

For this problem it turns out to be easier to work in cylindrical 
polar coordinates centred on the cylinder.
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The boundary condition                                 requires that
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substitute

ψ is a constant on the cylinder; i.e., the surface of the 
cylinder must be a streamline.

Substitution of ψ = −
F
HG
I
KJU r a

r
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that ψ = 0 on the cylinder.

into
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to transform Laplace’s equation to cylindrical polar coordinates:
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To do this one can use
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Laplace’s equation and it is therefore the solution for steady 
irrotational flow past a cylinder. 

It is now easy to verify that ψ = −
F
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KJU r a
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sin θ satisfies
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Note that the solution for ψ is unique only to within a 
constant value.

If we add any constant to it, it will satisfy equation

but the velocity field would be unchanged.
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It is important to note that we have obtained a solution 
without reference to the pressure field, but the pressure 
distribution determines the force field that drives the 
flow!

We seem to have by-passed Newton´s second law, and 
have obviously avoided dealing with the nonlinear nature 
of the momentum equations.

Looking back we will see that the trick was to use the 
vorticity equation, a derivative of the momentum 
equations.

For a homogeneous fluid, the vorticity equation does not 
involve the pressure since  ∇ ∧ ∇p ≡ 0 .
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We use this, together with the continuity constraint 
(which is automatically satisfied when we introduce the 
streamfunction) to infer the flow field.

If desired, the pressure field can be determined, for 
example, by integrating the momentum equations, or by 
using Bernoulli´s equation along streamlines.

We infer from the vorticity constraint
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that the flow must be irrotational everywhere

What does the solution look like?

Apply Bernoulli´s equation to the streamline around the cylinder. 

ψ = −
F
HG
I
KJU r a

r

2
sin θThe streamline corresponding with

The total pressure force on the upstream side of the cylinder 
is exactly equal to the pressure on the downwind side. 

The pressure distribution is symmetric

Note that the streamlines are symmetrical around the cylinder. 
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In other words, the net pressure force on the cylinder is 
zero!

This result, which is a general one for irrotational inviscid 
flow past a body of any shape, is known as d´Alembert´s 
Paradox.

It is not in accord with our experience as you know when 
you try to cycle against a strong wind!

What then is wrong with the theory?

What does the flow round a cylinder look like in reality?

The reasons for the breakdown of the theory help us to 
understand the limitations of inviscid flow theory in general 
and help us to see the circumstances under which it may be 
applied with confidence.

d´Alembert´s Paradox

The Navier-Stokes´ equation is the statement of Newton´s 
second law of motion for a viscous fluid

To answer these questions we must return to viscous theory.

D
Dt

pu u= − ∇ +
1 2

ρ
ν∇

The quantity of ν is called the kinematic viscosity.

ν = × −1 5 105 2 1. m s
For water

ν = × − −1 0 10 6 2 1. m s
For air
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where U and L are typical velocity and length scales. 

The relative importance of viscous effect is characterized by 
the Reynolds’ number Re, a nondimensional number defined 
by

Re =
UL
ν

The Reynolds’ number is a measure of the ratio of the 
acceleration term to the viscous term in the Navier-Stokes’ 
equation. 

For many flows of interest, Re >> 1 and viscous effects are 
relatively unimportant.

But - viscous effects are always important near boundaries, 
even if only in a thin "boundary-layer" adjacent to the 
boundary. 

The dynamics of this boundary layer may be crucial to the 
flow in the main body of fluid under certain circumstances.

For example, in flow past a circular cylinder it has 
important consequences for the flow downstream.

The observed streamline pattern in this case at large 
Reynolds numbers is sketched in the figure in the next 
figure.

Importance of the boundary layer
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turbulent wake

Flow past a cylinder

U

Flow is similar to that predicted 
by the inviscid theory, except in 
a thin viscous boundary-layer 
adjacent to the cylinder.

Flow separates and there is an 
unsteady turbulent wake behind it.

The wake destroys the symmetry 
predicted by the inviscid theory. 

Flow past a cylinder
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Consider steady two-dimensional boundary layer on a flat 
plate at normal incidence to a uniform stream U.

z

x

U boundary layer

Boundary layers in nonrotating fluids

The Navier Stokes’ equations for flow with typical scales 
written below each component are:
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Continuity equation ∂
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For a thin boundary layer, H/L << 1 so that the derivatives

∂ ∂2 2/ x can be neglected compared with                 .∂ ∂2 2/ z

Assuming that the pressure gradient term is not larger than 
both inertial or friction terms
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Alternatively, the expression  H  ~  L Re-1/2 implies that the 
boundary thickness increases downstream like x1/2

[i.e., H ~  L1/2 (ν/U)1/2].
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If both the inertia terms and friction terms in the w-equation 
are much less than the pressure gradient term, the equation 
must be accurately approximated by

∂
∂
p
z

= 0

The perturbation pressure is constant across 
the boundary layer. 

The horizontal pressure gradient in the boundary 
layer is equal to that in free stream.



14

An approximate form of the Navier-Stokes’ equations for the 
boundary layer is
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U = U(x) is the (possible variable) free stream velocity above 
the boundary layer.

The boundary-layer equations

The boundary-layer momentum equation becomes
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We look for a solution satisfying the boundary conditions:
• u = 0, w = 0 at z = 0
• u = U at x = 0
• u → U as z → ∞

Introduce a streamfunction ψ such that u
z

w
x

= = −
∂ψ
∂

∂ψ
∂

,

ψ must satisfy the conditions:

ψ = constant,  ∂ψ/∂z = 0 at z = 0,
ψ ~ Uz  as z → ∞ and ψ = Uz at x = 0. 

Blasius´ solution  (U = constant)
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ψ ν χ= 2 1 2Ux fb g / ( )

where    satisfies the ODE

It is easy to verify that a solution satisfying these conditions is

χ ν= U x z/ /2 1 2b g
f´ + ff´´ = 0 

subject to the boundary conditions: f f f( ) ( ) , ( )0 0 0 1= ′ = ∞ =

A prime denotes differentiation with respect to χ

It is easy to solve this equation numerically:
(see e.g. Rosenhead, 1966,
Laminar Boundary Layers, p. 222-224).

The profile of f´ which characterizes the variation of u across 
the boundary layer is proportional to χ and we might take χ = 4 
as the edge of the boundary layer.

4

2

χ

0
0 f ’(x) 1.0

Blasius velocity profile
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The dimensional boundary thickness δ(x) is

χ ν= U x z/ /2 1 2b g

δ ν( ) / /x x U= 4 2 1 2a f

Note that δ(x) increases like the square root of the distance 
from the leading edge of the plate.

We can understand the thickening of the boundary layers as 
due to the progressive retardation of more and more fluid as 
the fictional force acts over a progressively longer distance 
downstream.

4 2 15 10 3 200 2 7 105 1 2 3× × × = ×− −. / .
/d i m

using the value ν = × − −15 10 5 2 1. m s

Often the boundary layer is relatively thin. Consider for 
example the boundary layer in an aeroplane wing.

Assume that the wing has a span of 3 m and that the 
aeroplane flies at 200 ms-1.

The boundary layer at the trailing edge of the wing (assuming 
the wing to be a flat plate) would have thickness of

for the viscosity of air.

The calculation assumes that the boundary layer remains 
laminar; if it becomes turbulent, the random eddies in the 
turbulence have a much larger effect on the lateral momentum 
transfer than do random molecular motions, increasing the 
effective value of ν, possibly by an order of magnitude or 
more, and hence the boundary layer thickness.
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Note that the boundary layer is rotational since ω = (0, η, 0), 
where

η
∂
∂

∂
∂

= −
u
z

w
x or approximately just                 .−∂ ∂u z/

Acheson, D. J., 1990,  Elementary Fluid Dynamics, Oxford 

University Press, pp406.

Morton, B. R., 1984:  The generation and decay of vorticity.

Geophys. Astrophys. Fluid Dynamics, 28, 277-308.

Further reading
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The End


