

Aim

- To provide a survey of basic concepts in fluid dynamics as a preliminary to the study of dynamical meteorology.
- Based on a more extensive course of lectures prepared by Professor B. R. Morton of Monash University, Australia.
- > A useful reference is: D. J. Acheson

Description of fluid flow

The description of a fluid flow requires a specification or determination of the velocity field, i.e. a specification of the fluid velocity at every point in the region.

$$\mathbf{u} = \mathbf{u}(\mathbf{x}, \mathbf{t})$$

> In general, this will define a vector field of position and time.

> Steady flow occurs when **u** is independent of time - i.e.

$$\partial \mathbf{u} / \partial \mathbf{t} \equiv 0$$

> Otherwise the flow is unsteady.

Compressibility

> Real fluids generally show some compressibility defined as

$$\kappa = \frac{1}{\rho} \frac{d\rho}{dp} = \frac{\text{changes in density per unit change in pressure}}{\text{density}}$$

At normal atmospheric flow speeds, the compressibility of air is a relative small effect and for liquids it is generally negligible.

- > The exception is rarefied gases.
- Note that sound waves owe their existence to compressibility effects as do "supersonic bangs", produced by aircraft flying faster than sound.

Friction in solids

- When one solid body slides over another, frictional forces act between them to reduce the relative motion.
- Friction acts also when layers of fluid flow over one another.
- When two solid bodies are in contact (more precisely when there is a normal force acting between them) at rest, there is a threshold tangential force below which relative motion will not occur. It is called the limiting friction.
- **Example:** a solid body resting on a flat surface under the action of gravity.

Fluids compared with solids

- A distinguishing characteristic of most fluids in their inability to support tangential stresses between layers without motion occurring; i.e. there is no analogue of limiting friction.
- Exception: certain types of so-called visco-elastic fluids e.g. paint.

Friction in fluids

- Fluid friction is characterized by viscosity which is a measure of the magnitude of tangential frictional forces in flows with velocity gradients.
- Viscous forces are important in many flows, but least important in flow past "streamlined" bodies.
- We shall be concerned mainly with inviscid flows where friction is not important.
- It is essential to acquire some idea of the sort of flow in which friction may be neglected without completely misrepresenting the behaviour. Its neglect is risky!

Forces acting on the fluid element

The forces acting on the elements δx , δy , δz consist of:

- (i) **body forces**, which are forces per unit mass acting throughout the fluid because of external causes, such as the gravitational weight, and
- (ii) **contact forces acting across the surface of the element** from adjacent elements.

These are discussed further below.

The total derivative

notation D/Dt for it.

the total derivative and often use the

We call
$$\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla$$

Thus the x-component of acceleration of the fluid parcel is

$$\frac{\mathrm{D}\mathbf{u}}{\mathrm{D}\mathbf{t}} = \frac{\partial \mathbf{u}}{\partial \mathbf{t}} + \mathbf{u} \cdot \nabla \mathbf{u}$$

while the rate at which its potential temperature changes is expressed by

$$\frac{\mathrm{D}\boldsymbol{\theta}}{\mathrm{D}\mathbf{t}} = \frac{\partial\boldsymbol{\theta}}{\partial\,\mathbf{t}} + \mathbf{u}\cdot\nabla\boldsymbol{\theta}$$

Example

Show that $\frac{\mathrm{DF}}{\mathrm{Dt}} = \frac{\partial \mathbf{F}}{\partial \mathrm{T}} + (\mathbf{u} \cdot \nabla) \mathbf{F}$

represents the total rate-of-change of any vector field F moving with the fluid velocity (velocity field u), and in particular that the acceleration (or total change in u moving with the fluid) is

$$\frac{\mathrm{D}\mathbf{u}}{\mathrm{D}t} = \frac{\partial \mathbf{u}}{\partial t} + \left(\mathbf{u} \cdot \nabla\right)\mathbf{u}$$

Solution

The previous result for the rate-of-change of a scalar field can be applied to each of the component of **F**, or to each of the velocity components (u,v,w) and these results follow at once.

Question

Are the two x-components in rectangular Cartesian coordinates,

$$(\mathbf{u} \cdot \nabla \mathbf{u})_{\mathbf{x}}$$
 and $(\nabla \frac{1}{2} \mathbf{u}^2)_{\mathbf{x}}$

the same or different?

Note that $(\mathbf{u} \cdot \nabla)\mathbf{u} = \nabla(\frac{1}{2}\mathbf{u}^2) - \mathbf{u} \wedge \boldsymbol{\omega}$