

$$da_{\lambda} = -\frac{dE_{\lambda}}{E_{\lambda}} = -k_{\lambda} \rho \sec \Phi dz$$

- Der Absorptionskoeffizient ist ein Maß dafür, wieviele der Gasmoleküle Strahlung der Wellenlänge λ absorbieren.
- k_λ hängt von der Zusammensetzung, von der Temperatur und vom Druck im Gas innerhalb der Schicht ab.
- > Das Produkt $k_{\lambda}\rho dz$ ist dimensionslos.

Nun soll
$$da_{\lambda} = -\frac{dE_{\lambda}}{E_{\lambda}} = -k_{\lambda} \rho \sec \Phi dz$$

von der Höhe z bis zur Obergrenze der Atmosphäre integriert
 $in E_{\lambda \infty} - \ln E_{\lambda} = \sec \Phi \int_{z}^{\infty} k_{\lambda} \rho dz$
 $in E_{\lambda \infty} - \ln E_{\lambda} = \sec \Phi \int_{z}^{\infty} k_{\lambda} \rho dz$
 $in E_{\lambda} = E_{\lambda \infty} \exp(-\sigma_{\lambda})$
 $\sigma_{\lambda} = \sec \Phi \int_{z}^{\infty} k_{\lambda} \rho dz$
Diese Beziehung wird häufig als Bouguer-Lambert-Gesetz
oder Beer'sches Gesetz bezeichnet.
Sie sagt aus, daß die Strahlungsflußdichte monoton mit der
Weglänge durch die Schicht abnimmt.

- Sie ist ein Maß für die Abschwächung, die das Strahlenbündel beim Durchqueren der Schicht erfährt.
- > Durchquert der Strahl eine Schicht mit der optischen Dicke $\sigma_{\lambda} = 1$, wird er um den Faktor e abgeschwächt.
- Der Transmissionsgrad der Gasschicht, die über der Höhe z liegt, ergibt sich zu

der Absorptionsgrad sich (bei vernachlässigbarer Streuung) mit zunehmender optischer Dicke 1 annähert.

$$a_{\lambda} = 1 - \tau_{\lambda} = 1 - e^{-\sigma_{\lambda}}$$

Die Gleichung $\ln E_{\lambda\infty} - \ln E_{\lambda} = \sec \Phi \int_{z}^{\infty} k_{\lambda} \rho \, dz$

läßt sich auch in folgender Form schreiben

$$\ln E_{\lambda} = \ln E_{\lambda \infty} - \sec \Phi \int_{z}^{\infty} k_{\lambda} \rho \, dz$$

- Die Sonnenstrahlung wird durch die atmosphärischen Bestandteile nicht nur absorbiert, sondern auch gestreut.
- \succ Der Koeffizient k_λ schließt deshalb in diesem Ausdruck beide Effekte ein.
- > Man bezeichnet k dann als Extinktionskoeffizien.
- Wie wird diese Gleichung verwendet?

- Für kleine Werte von k_λ kann die Strahlung die gesamte Atmosphäre durchqueren, ohne daß die optische Dicke eins erreicht.
- Die Annahme einer isothermen Atmosphäre mit einem konstanten Absorptionskoeffizienten wurde gemacht, um die obige Herleitung mathematisch zu vereinfachen.
- Es stellt sich jedoch heraus, daß auch für realistische Vertikalprofile von T und k_λ das Ergebnis zumindest qualitativ richtig bleibt => d. h. der größte Teil der Absorption findet auf dem Teil des Strahlungsweges statt, wo die optische Dicke in der Größenordnung von eins liegt.

$$\begin{split} \textbf{Durch Integration von} \\ & ds_{\lambda} = \frac{dE_{\lambda}}{E_{\lambda}} = KA \ \text{sec} \ \Phi dz \\ \textbf{erhält man analog zu} \\ & \ln E_{\lambda} = \ln E_{\lambda \infty} - \sec \Phi \int_{z}^{\infty} k_{\lambda} \ \rho \ dz \\ & E_{\lambda} = E_{\lambda \infty} \ \exp(-\sigma_{\lambda}) \\ & \tau_{\lambda} = \frac{E_{\lambda}}{E_{\lambda \infty}} = e^{-\sigma_{\lambda}} \quad \textbf{und} \qquad a_{\lambda} = 1 - \tau_{\lambda} = 1 - e^{-\sigma_{\lambda}} \\ \textbf{die Beziehungen für } \tau_{\lambda} \ \textbf{und} \ s_{\lambda}. \end{split}$$

	$\frac{K(blau)}{K(rot)} = \left(\frac{0,64}{0,47}\right)^4 = 3,45$	
 => der Anteil von kurzwelligem Licht in der Strahlung, die durch die Luftmoleküle gestreut ist, ist wesentlich größer als der langwellige Anteil. 		
Dadurch erklärt sich die blaue Farbe des Himmels, von Schatten und entfernten Gegenständen.		
Auf gleiche Weise wirkt sich der hohe langwellige Anteil in der nicht gestreuten solaren Strahlung aus:		
Gegenstände in direkt von der Sonne kommendem Licht erscheinen rötlich oder orange, besonders bei tiefstehender Sonne (Sonnenaufgang bzw. Sonnenuntergang), wenn die Strahlung einen langen Weg durch die Atmosphäre zurücklegt.		

- Die Streuung der sichtbaren Strahlung durch Wolkentropfen, Regentropfen und Eispartikel fällt in diesen Bereich.
- Dabei entstehen optische Phänomene wie Regenbogen, Halos usw. (vgl. nächster Abschnitt).
- Für Werte von α zwischen 0,1 und 50 muß die Streuung mit Hilfe einer allgemeineren Theorie erklärt werden.
- Charakteristisch f
 ür diese sogenannte Mie-Streuung ist, da
 ß K mit zunehmenden α stark schwankt.

