Methoden der Wettervorhersage

Subjektiv

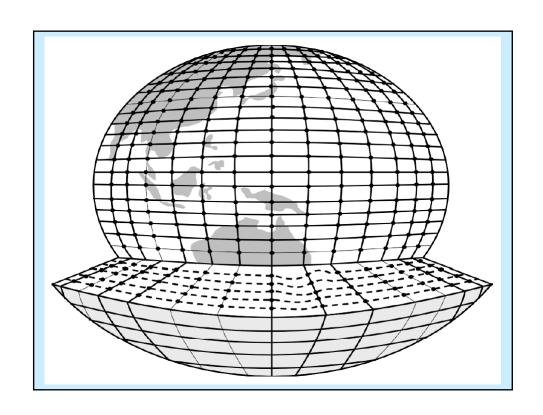
> Synoptische Analyse der Bodenkarte und extrapolieren

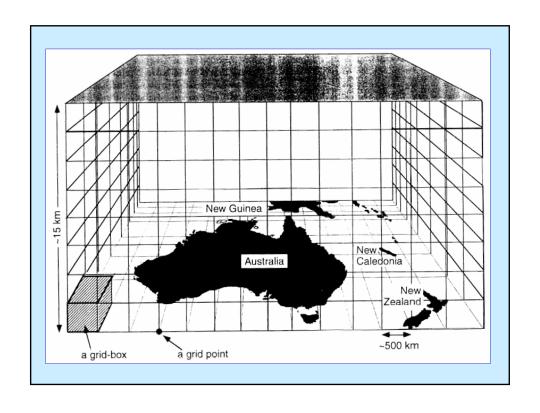
➢ Objektiv

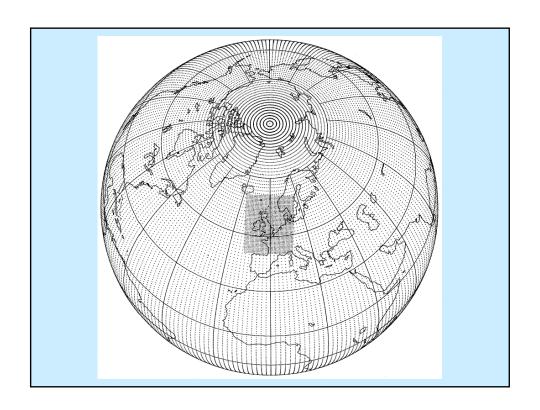
 Objektive Analyse der zur Verfügung stehenden Daten und mit Hilfe eines numerischen Wettervorhersagemodells

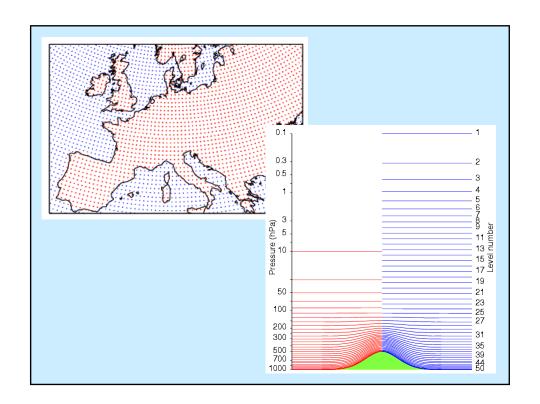
Geschichte

- **▶ 1904** Wilhelm Bjerknes
 - Der "Vater" der numerischen Wettervorhersage
- **▶ 1922** Lewis Frey Richardson
 - Erste Versuche zur numerischen Wettervorhersage
- **▶ 1950** Charney, Fjørtoft und von Neumann
 - Erster erfolgreicher Versuch der numerischen Wettervorhersage
- > 1990's Globale Vorhersagemodelle sind Realität


NWP = Numerical Weather Prediction = numerische Wettervorhersage


Numerische Wettervorhersagemodelle


- **Basieren sich auf die partielle-differentielle Strömungs**
 - und thermodynamische Gleichungen, die
 - die Newton'sche Bewegungsgleichung
 - die erste Hauptsatz von Thermodynamik
 - die Zustandesgleichung
 - die Kontinuitätsgleichung.


ausdrücken

Gleichungen des DWD-Modells

$$\frac{\partial u}{\partial t} = -\left\{\frac{1}{a\cos\varphi}\frac{\partial E_{h}}{\partial\lambda} - \nu V_{a}\right\} - \dot{\zeta}\frac{\partial u}{\partial\zeta} -$$

$$\frac{\partial u}{\partial t} = -\left\{\frac{1}{a\cos\varphi}\frac{\partial E_{\lambda}}{\partial\lambda} - \nu V_{\alpha}\right\} - \dot{\zeta}\frac{\partial u}{\partial\zeta} - \frac{\partial p'}{\partial t} = -\left\{\frac{1}{a\cos\varphi}\left(u\frac{\partial p'}{\partial\lambda} + \nu\cos\varphi\frac{\partial p'}{\partial\varphi}\right)\right\} - \dot{\zeta}\frac{\partial p'}{\partial\zeta} + \frac{\partial p'}{\partial\zeta} +$$

$$\frac{1}{\rho a \cos \varphi} \left(\frac{\partial p'}{\partial \lambda} - \frac{1}{\sqrt{\gamma}} \frac{\partial p_o}{\partial \lambda} \frac{\partial p'}{\partial \zeta} \right) + M_u$$

$$g\rho_0w-\frac{c_{pd}}{c_{vd}}pD$$

2. Bewegungsgleichung

$$\frac{\partial v}{\partial t} = - \left\{ \frac{1}{a} \frac{\partial E_k}{\partial \varphi} + u V_a \right\} - \dot{\zeta} \frac{\partial v}{\partial \zeta} -$$

Temperaturgleichung
$$\frac{\partial T}{\partial t} = -\left\{ \frac{1}{a\cos\varphi} \left(u \frac{\partial T}{\partial \lambda} + v\cos\varphi \frac{\partial T}{\partial \varphi} \right) \right\} - \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} = -\frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi} + \frac{1}{a\cos\varphi} \frac{\partial T}{\partial \varphi}$$

$$\begin{split} & \text{Gleichung für Wasserdampf} \\ & \frac{\partial q^*}{\partial t} = - \left\{ \frac{1}{a \cos \varphi} \left(u \frac{\partial q^*}{\partial \lambda} + v \cos \varphi \frac{\partial q^*}{\partial \varphi} \right) \right. \end{split}$$

$$\frac{1}{\rho a} \left(\frac{\partial p'}{\partial \varphi} - \frac{1}{\sqrt{\gamma}} \frac{\partial p_0}{\partial \varphi} \frac{\partial p'}{\partial \zeta} \right) + M_{_{\psi}}$$

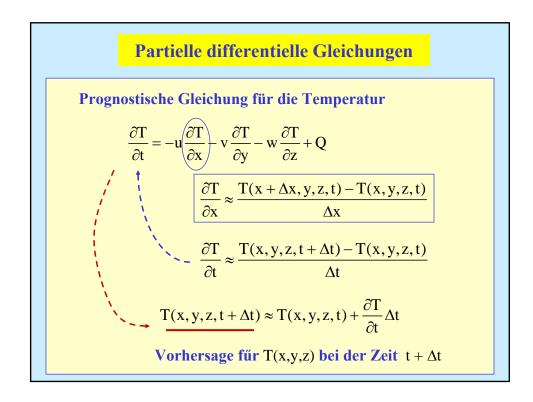
$$\dot{\zeta} \frac{\partial T}{\partial \zeta} - \frac{1}{\rho c_{sd}} \, pD + Q_\tau$$

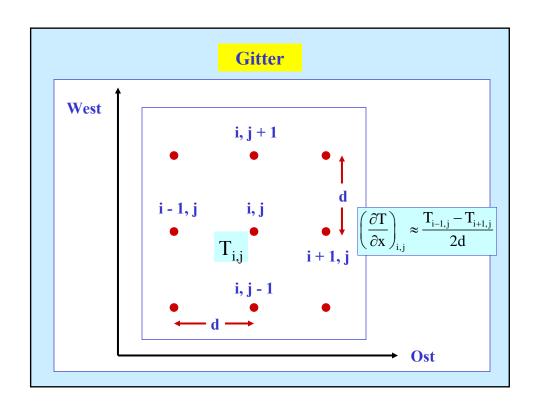
$$\zeta \frac{\partial q^+}{\partial \zeta} - (S^I + S^J) + M_q$$

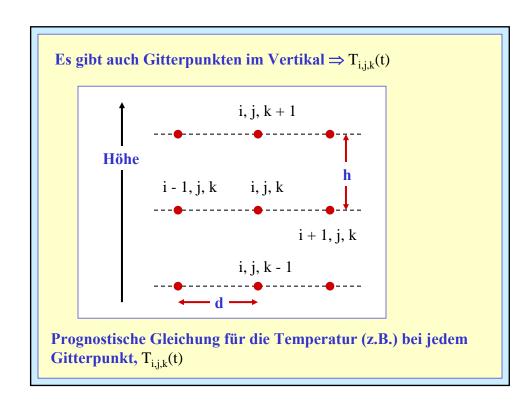
3. Bewegungsgleichung

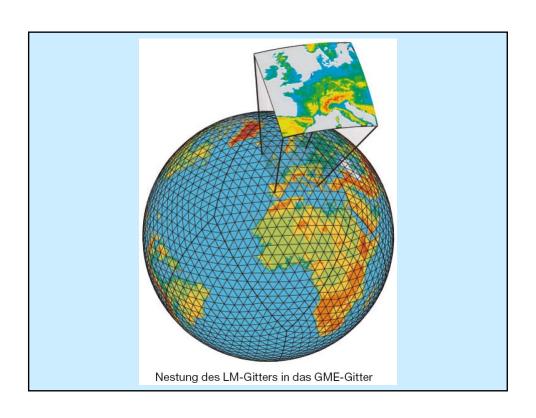
$$\frac{\partial w}{\partial t} = - \left\{ \frac{1}{a \cos \varphi} \left(u \frac{\partial w}{\partial \lambda} + v \cos \varphi \frac{\partial w}{\partial \varphi} \right) \right. \right\} -$$

$$\begin{split} &\frac{\partial q^{i,f}}{\partial t} = - \left\{ \frac{1}{a \cos \varphi} \left(u \frac{\partial q^{i,f}}{\partial \lambda} + v \cos \varphi \frac{\partial q^{i,f}}{\partial \varphi} \right) \right\} - \\ &\dot{\varsigma} \frac{\partial q^{i,f}}{\partial z^{i,f}} - \frac{g}{2} \frac{\rho_c}{\rho_c} \frac{\partial P_{i,f}}{\partial z^{i,f}} + S^{i,f} + M_{i,f} \end{split}$$

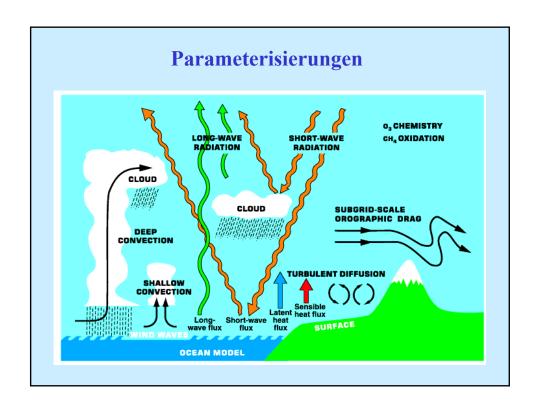

$$\zeta^{\frac{1}{2}}\frac{\partial w}{\partial \zeta} + \frac{g}{\sqrt{\gamma}}\frac{\rho_{o}}{\rho}\frac{\partial p'}{\partial \zeta} + M_{w}$$


$$\dot{\zeta} \, \frac{\partial q^{l,f}}{\partial \zeta} - \frac{g}{\sqrt{\gamma}} \, \frac{\rho_o}{\rho} \, \frac{\partial P_{l,f}}{\partial \zeta} + S^{l,f} + M_{q^{l,f}}$$

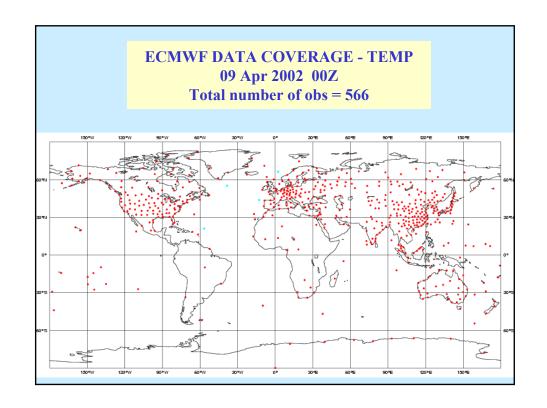

$$+g\frac{\rho_o}{\rho}\left\{\frac{T-T_o}{T}-\frac{T_op'}{Tp_o}+\left(\frac{R_v}{R_d}-1\right)q^v-q'-q'\right\}$$

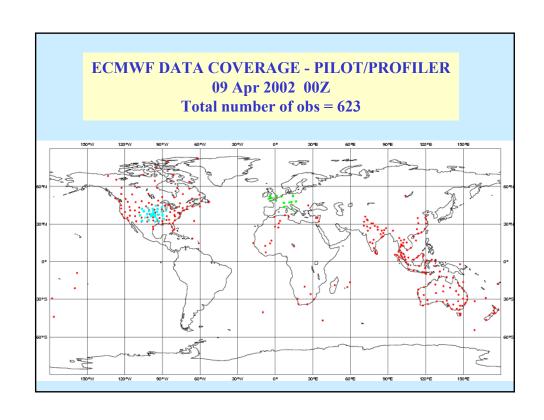

Gleichung für die Dichte (Zustandsgleichung)
$$\rho = p \left\{ R_s \left(1 + \left[\frac{k_s}{k_s} - 1 \right] q^v - q^I - q^J \right) T \right\}^{1/2}$$

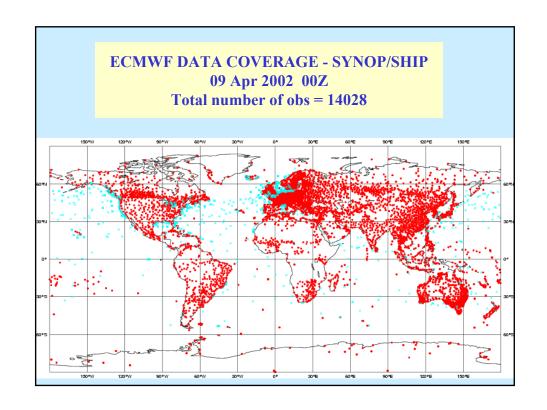
Gleichung für flüssige und feste Phase des Wassers

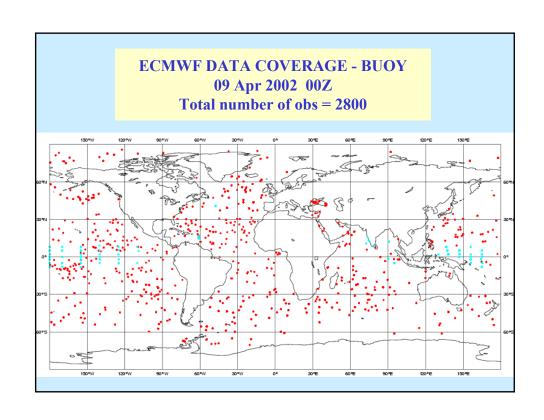







	GME	LM
Vorhersagfrist	174 h	48 h
24-h-Vorhersage dauert	etwa 5 min Realzeit	etwa 30 min Realzeit
Art des Modells	Gitterpunktmodell	Gitterpunktmodell
	Isokaeder-Gitter	rotiertes geographisches Gitter
	Arakawa-A-Gitter	Arakawa-C-Gitter
Modellgebiet	Global	Regional (z.B. Mitteleuropa): 2000 · 2000 km²
Modellgleichungen	Hydrostatisch	Nicht-hydrostatisch
Integrationsverfahren	semi-implizit	split-explizit
Zeitschritt	200 s	40 s
Bestimmung der	Indirekt über	Prognostische Gleichung für w
Vertikalbewegung	Massenkontinuitätsgleichung	
Horizontale Auflösung	etwa 60 km	etwa 7 km
Ein Gitterpunkt repräsentiert eine Fläche von	etwa 3100 km²	etwa 50 km²
Maximale Höhe der Alpen	ctwa 2.300 m	3.426 m
Vertikales Koordinatensystem	Hybride geländefolgende	Hybride geländefolgende
	Druck-Koordinate	Höhen-Koordinate
	unten: σ _p -System	unten: σ _z -System
	oben: p-System	oben: z-System
Vertikale Auflösung	31 Schichten	35 Schichten
Unterste Modellebene liegt in	etwa 34 m über Grund	34 m über Grund
Unterhalb von 1.000 m	5 Modell-Flächen	8 Modell-Flächen
1.000 m bis 2.000 m	2 Modell-Flächen	4 Modell-Flächen
2.000 m bis 250 hPa	13 Modell-Flächen	15 Modell-Flächen




Verfügbare Daten > Radiosonden: TEMP > Rawinsoundings, Pilotballons, Wind Profiler > Bodendaten: SYNOP/SHIP > Drifting Buoys > Aircraft: ASDARS > Satellitendaten: SATOBS/TOVS, SMM/I, QSAT > Synthetischedaten: PAOBs

