

Emagramm: B = T

Das Emagramm ermöglicht die Bestimmung des Energiebetrages pro Masseneinheit und somit quantitative Vorstellungen von der Stabilität bzw. Labilität der Atmosphäre.

Emagramm: $A = -R \ln p$, B = T **Die Gleichung der Trockenadiabaten** θ in diesem Diagramm **läßt sich folgendermaßen ableiten:** $T = \theta \left(\frac{p}{p_*}\right)^{\kappa}$ $in T - \ln \theta = \kappa \ln p - \kappa \ln p_*$ $in T - \ln p = -\frac{c_p}{R} \ln T + const$ $in P = -c_p \ln B + const$ **Die Trockenadiabaten sind im Emagramm logarithmische** Kurven; für die in der Atmosphäre vorkommenden Werte A und B verlaufen die Trockenadiabaten (genauso wie die Sättigungsmischungsverhältnislinien) jedoch fast gerade.

Tephigramm: B = TDas Emagramm ist zwar eine flächentreue Transformation des
p α -Diagramms, hat aber den Nachteil, daß der Winkel zwischen
den Isothermen und (Trocken-) Adiabaten nur 45° beträgt, d. h..
es ergeben sich kleine Flächen bei Energieberechnungen. Dieses
Problem löst das von Sir Napier Shaw entwickelte Tephigramm.Wie vorherB = T, A = R ln α + F(T)
ln α = ln R + ln T - ln p
ln T - ln θ = $\kappa \ln p - \kappa \ln p_*$ Wähle F(T) so, daß A = c_p ln θ A = c_p ln θ , B = T

Feuchtadiabaten 7

$$\frac{dT}{dp} = \frac{RT}{p} \left(L \frac{dr_s}{dT} + c_p \right)^{-1}$$
> Die Kurven, die die Abhängigkeit der Temperatur vom
Druck bei der feuchtadiabatischen Vertikalbewegung
eines Luftpakets wiedergeben, nennt man
Feuchtadiabaten.

Feuchtadiabaten 8

- Jedes thermodynamische Diagramm enthält neben den Isobaren, Isothermen, Sättigungsmischungsverhältnislinien und Trockenadiabaten auch die Feuchtadiabaten.
- Die Feuchtadiabaten n\u00e4hern sich in gro\u00dfer H\u00föhe (geringer Druck, tiefe Temperaturen) asymptotisch den Trockenadiabaten, denn bei der Hebung von kalter, wasserdampfarmer Luft mit niedrigem r_s(p,T) ist auch Lr_s klein, d. h. dem Luftpaket wird nur wenig latente W\u00e4rme zugef\u00fchrt.
- Die feuchtadiabatische Temperaturabnahme beträgt in sehr warmer Luft 0,4 K pro 100 m, in mittleren Breiten in der unteren Troposphäre 0,6 K pro 100 m und nähert sich bei sehr tiefen Temperaturen 1 K pro 100 m.

Feuchtadiabaten 10

- Die Feuchtadiabaten werden in thermodynamischen Diagrammen meist mit der pseudopotentiellen Temperatur gekennzeichnet.
- > Manchmal gibt man zu den Feuchtadiabaten auch die zugehörige feuchtpotentielle Temperatur (auf Englisch, wetbulb potential temperature) θ_w an.
- Diese Temperatur herrscht in gesättigter Luft, wenn sie feuchtadiabatisch auf das Druckniveau von 1000 mb gebracht wird. Es muβ flüssiges Wasser vorhanden sein.

Feuchtadiabaten 12

- > Auf einer θ_e -Karte kann man Gebiete mit einheitlichen pseudopotentiellen Temperaturen (Luftmassen) und Gebiete mit großem θ_e -Gradienten (Luftmassengrenzen) unterschieiden.
- Zur Bestimmung der pseudopotentiellen Temperatur von ungesättigter Luft werden T und T_d z. B. in ein Tephigramm eingetragen.
- Die zum Taupunkt gehörende Sättigungsmischungsverhältnislinie (= Wasserdampfgehalt des Luftpakets) verfolgt man dann bis zum Schnittpunkt mit der durch T verlaufenden Trockenadiabaten.
- > In der Höhe des Schnittpunktes ist das Lufpaket gesättigt. θ_e läßt sich dann an der Feuchtadiabaten ablesen.

