
Chapter 12

Gravity currents, bores and flow over 
obstacles

Now we examine some simple techniques from the theory 
of hydraulics to study a range of small scale atmospheric 
flows, including gravity currents, bores (hydraulic jumps) 
and flow over orography.

Hydraulic theory



A gravity current is produced when a relatively dense fluid 
moves quasi-horizontally into a lighter fluid. Examples: =>

Sea breezes, produced when air over the land is heated 
during the daytime relative to that over the sea;

Katabatic (or drainage) winds, produced on slopes or in 
mountain valleys when air adjacent to the slope cools relative 
to that at the same height, but further from the slope;

Thunderstorm outflows, produced beneath large storms as 
air below cloud base is cooled by the evaporation of 
precipitation into it and spreads horizontally, sometimes with 
a strong gust front at its leading edge.

A concise review is given by Simpson (1987).

Gravity currents
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The more familiar examples of bores occur on water surfaces.

Examples are:

- bores on tidal rivers,

- quasi-stationary bores produced downstream of a weir, and

- the bore produced in a wash basin when the tap is turned 
on and a laminar stream of water impinges on the bottom of 
the basin. 

Perhaps the best known of atmospheric bores is the so-called 
'morning glory' of northern Australia. 

Bores

Bores on rivers



Mascaret bore, France



The morning glory is produced by the collision of two sea 
breezes over Cape York Peninsula and is formed on a low-
level stable layer, typically 500 m deep.

The bore is regularly accompanied by spectacular roll 
clouds.

Similar phenomena occur elsewhere, but not with such 
regularity in any one place.

Another atmospheric example is when a stratified 
airstream flows over a mountain ridge.

Under certain conditions a phenomenon akin to a bore, or 
hydraulic jump, may occur in the lee of the ridge.

The “Morning Glory”
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Euler's equation for an inviscid rotating flow on an f-plane is

∂ ρt Tf pu u u k u g+ ⋅∇ + ∧ = − ∇ −( / )1

Use the vector identity

u u u u⋅∇ = ∇ + ∧( )1
2

2 ω

∂ ρ ωt Tgz p fu u k u+ ∇ + + ∇ + + ∧ =( ) ( / ) ( )1
2

2 1 0

ω = curl u

Assume steady flow (∂tu = 0) and a homogeneous fluid 
(ρ = constant): then

u u⋅ ∇ + + =( / )1
2

2 0p gzT ρ

Bernoulli's theorem

For the steady flow of homogeneous, inviscid fluid, the quantity 
H given by

u u⋅ ∇ + + =( / )1
2

2 0p gzT ρ

H p gzT= + +1
2

2u / ρ

This is Bernoulli's theorem.

The quantity H is called the total head along the streamline 
and is a measure of the total energy per unit volume on that 
streamline.

Note: it may be that a flow in which we are interested is 
unsteady, but can be made steady by a Galilean coordinate 
transformation.

Then Bernoulli's theorem can be applied in the transformed 
frame.

is a constant along a streamline.



Consider steady motion of an inviscid rotating fluid in two 
dimensions.

In flux form the x-momentum equation is

∂ ρ ∂ ρ ρ ∂x z x Tu uw fv p( ) ( )2 + − = −

Consider the motion of a layer of fluid of variable depth h(x); 
see next figure: =>

Flow force

h(x)u(x)

ph

Integrating                                                     with respect to z

h h2 h
x T 00 0
[ u p ]dz [ uw] f v dz∂ ρ + = − ρ + ρ∫ ∫

∂ ρ ∂ ρ ρ ∂x z x Tu uw fv p( ) ( )2 + − = −

h 2 2
T T h0

h2
h 0

h[ u p ]dz [ u p ]
x x

h( u ) f v dz .
x

∂ ∂
ρ + − ρ +

∂ ∂
∂

= − ρ + ρ
∂

∫

∫



h 2 2
T T h0

h2
h 0

h[ u p ]dz [ u p ]
x x

h( u ) f v dz .
x

∂ ∂
ρ + − ρ +

∂ ∂
∂

= − ρ + ρ
∂

∫

∫
In particular, if f = 0, then

h 2
T h0

h[ u p ]dz p
x x
∂ ∂

ρ + =
∂ ∂∫

h 2
T0

S [ u p ]dz= ρ +∫Define then

h
S hp
x x
∂ ∂

=
∂ ∂

hS S + dS

dh

pdh

Considering the control volume =>

dS = phdh
∂
∂

∂
∂

S
x

p h
xh=



h 2
T h0

h[ u p ]dz p
x x
∂ ∂

ρ + =
∂ ∂∫

h 2
T0

S [ u p ]dz= ρ +∫

Include a frictional force, −ρD, per unit volume

h h2
T h0 0

h[ u p ]dz p D dz
x x
∂ ∂

ρ + = − ρ
∂ ∂∫ ∫then

dS p dh D dxh= − *

Two useful deductions of                                        are:

1. If h = constant,

2. If ph = constant,

h 2
T0

[ u p ]dz cons tan tρ + =∫
h 2

T h0
[ u p ]dz p h cons tan tρ + − =∫

and

call D*

h 2
T h0

h[ u p ]dz p
x x
∂ ∂

ρ + =
∂ ∂∫

Summary of important results

For the steady flow of homogeneous, inviscid fluid

H p gzT= + +1
2

2u / ρ

is a constant along a streamline.

Bernoulli's theorem

1. If h = constant,

2. If ph = constant,

h 2
T0

[ u p ]dz cons tan tρ + =∫
h 2

T h0
[ u p ]dz p h cons tan tρ + − =∫

h 2
T0

S [ u p ]dz= ρ +∫Flow force



Schematic diagram of a hydraulic jump, or bore
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We idealize a jump by an abrupt transition in fluid depth.

Express mathematically in terms of the Heaviside step 
function h x h h h H x( ) ( ) ( )= + −1 2 1

Theory of hydraulic jumps, or bores

h 2
T a 2 10

[ u p ]dz p (h h ) (x)
x
∂

ρ + = − δ
∂ ∫

h 2
T h0

h[ u p ]dz p
x x
∂ ∂

ρ + =
∂ ∂∫

Integrate with respect to x between (1) and (2) =>
1h h2 2

T 2 T 1 a 2 10 0

2 [ u p ] dz [ u p ] dz p (h h )ρ + = ρ + + −∫ ∫

atmospheric pressure

Dirac delta function

(1) (2)

h1
h2

c
U



We have used the fact that the flow at positions (1) and (2) is 
horizontal and therefore the pressure is hydrostatic. 

U h gh c h gh2
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Use Bernoulli's theorem =>

The change in total head along the surface streamline is

Energy is lost at the jump



The energy lost supplies the source for the turbulent motion 
at the jump that occurs in many cases.

For weaker bores, the jump may be accomplished by a series 
of smooth waves.

Such bores are termed undular.

In these cases the energy loss is radiated away by the waves. 
See Lighthill, 1978, §2.12.

Energy loss

It follows from

c gh> 1 U gh< 2

δ ρH g h h
h h

if h h= − ⋅ < <1
4 1 2

3

1 2
1 2

1 0( ) .

that the depth of fluid must increase, since a decrease would 
require an energy supply.

Then c g h h h h= +[ ( ) / ] /1
2 1 2 2 1

1 2

U g h h h h= +[ ( ) / ] /1
2 1 2 1 2

1 2

and

and



Recall that           is the phase speed of long gravity waves 
on a layer of fluid of depth h. 

gh

On the upstream side of the bore, gravity waves cannot 
propagate against the stream whereas, on the downstream 
side they can.

Accordingly we refer to the flow upstream as supercritical
and that downstream as subcritical.

These terms are analogous to supersonic and subsonic in 
the theory of gas dynamics.

c gh> 1 U gh< 2and

Schematic diagram of a steady gravity current
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Theory of gravity currents
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Show movies

There is a certain symmetry between a gravity current of 
dense fluid that moves along the lower boundary in a lighter 
fluid, and a gravity current of light fluid that moves along 
the upper boundary of a denser fluid.

The latter type occurs, for example, in a cold room when 
the door to a warmer room is opened.

Then, a warm gravity current runs along the ceiling of the 
cold room and a cold gravity current runs along the floor 
of the warm room.

warm
cold



H − d

pc      cavity d

The simplest flow configuration of these types is the flow of 
an air cavity into a long closed channel of fluid.

H

Cavity flow

In this case we can neglect the motion of the air in the cavity 
to a good first approximation.

In practice the cavity will move steadily along the tube with 
speed c, say.

Summary of important results

For the steady flow of a homogeneous, inviscid fluid

H p gzT= + +1
2

2u / ρ

is a constant along a streamline.

Bernoulli's theorem

1. If h = constant,

2. If ph = constant,

h 2
T0

[ u p ]dz cons tan tρ + =∫
h 2

T h0
[ u p ]dz p h cons tan tρ + − =∫

h 2
T0

S [ u p ]dz= ρ +∫Flow force



(1) (2)

h − d
c

U

Choose a frame of reference in which the cavity is stationary
=>  the fluid upstream of the cavity moves towards the cavity 
with speed c.

Apply Bernoulli's theorem along the streamline from A to O, 
=>  since z = h = constant,

p c pA c+ =1
2

2ρ

pc      cavity

A O B

h

d

Note: O is a stagnation point => the pressure there is equal to the cavity pressure.

h − d
c

U

Along the section between A and O

h h2 2
T A T o0 0

[ u p ] dz [ u p ] dzρ + = ρ +∫ ∫

pc      cavity

A O B

h

d

Along the section between O and B
h dh 2 2

T o c T B c0 0
[ u p ] dz p h [ u p ] dz p (h d)

−

ρ + − = ρ + − −∫ ∫



h − d
c

U

2 2
T A T B c0 0

h h d

[ u p ] dz [ u p ] dz p d
−

ρ + = ρ + +∫ ∫
At A and B where the flow is parallel (i.e. w = 0), the pressure is 
hydrostatic

pc      cavity

A O B

h

d

h 21
T h 20

p dz p h gh= + ρ∫
u independent of z
and ρ = constant, ρ ρu dz u h

h 2
0

2z =

Using

( ) ( )22 2 21 1
A c2 2pc h gh h U h d g h d p h+ ρ + ρ = ρ − + ρ − +

Continuity of mass (volume) implies that:   ch = U(h − d)

h 21
T h 20

p dz p h gh= + ρ∫
h 2 2

0
u dz u hρ = ρ∫and

h 2 2
T A T B c0 0

h d

[ u p ] dz [ u p ] dz p d
−

ρ + = ρ + +∫ ∫

Recall that p c pA c+ =1
2

2ρ

Then

2 2h d h dc gd
h h d
− −⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

and 2
2 2

2h dU gd h
h d

−⎡ ⎤= ⎢ ⎥−⎣ ⎦



c

For a channel depth h, a cavity of depth d advances with 
speed c given by 

2 2h d h dc gd
h h d
− −⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

Note that, as d/h → 0, c2/(gd) → 2, appropriate to the case 
of a shallow cavity. 

cavity

h

d

h − d
c

U

Suppose that the flow behind the cavity is energy conserving.

Then we can apply Bernoulli's theorem along the free 
streamline from O to C, whereupon

pc      cavity

A O B

h

d

21
c c 2p gh p U g (h d)+ ρ = + ρ + ρ −

U gd2 2=

C



2
2 2

2h dU gd h
h d

−⎡ ⎤= ⎢ ⎥−⎣ ⎦
U gd2 2= and

d H= 1
2

Then 2 2h d h dc gd
h h d
− −⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

c gd2 1
2=

In an energy conserving flow, the cavity has a depth far 
downstream equal to one half the channel depth.

Cavity flow with hydraulic jump

If the flow is not energy conserving, there must be a jump 
in the stream depth behind the cavity.

O

C



According to the hydraulic jump theory, energy loss occurs 
at the jump and there must be a loss of total head, say, along 
the streamline O to C. 

O

C

Then

21
c c 2p gh p U g(h d) ,+ ρ = + ρ + ρ − + ρχ

or − + =U gd2 χ .

supercritical subcritical

21
O c C c 2H p gh H p U g(h d)= + ρ = + ρ + ρ −

1 2H H− = ρχ

2
2 2

2h dU gd h
h d

−⎡ ⎤= ⎢ ⎥−⎣ ⎦

2 2

d(h 2d) 2 0
h d gd

− χ
= >

−

1
2d h< as expected

When the cavity flow is turned upside down, it begins to 
look like the gravity-current configuration - the jump and 
corresponding energy loss is analogous to the turbulent 
mixing region behind the gravity-current head.



The foregoing theory can be applied to a gravity current 
of heavy fluid of density ρ2 moving into lighter fluid of 
density ρ1 if we neglect the motion within the heavier 
fluid.

Then, g must be replaced by the reduced gravity

2 1

1

( )g g ρ − ρ′ =
ρ

The case of a shallow gravity current moving in a deep layer 
of lighter fluid cannot be obtained simply by taking the limit 
as d/h → 0.

This would imply an infinite energy loss according to the 
foregoing theory.

Von-Kàrmàn considered this case and obtained the same 
speed c that would have been obtained by taking the limit 
d/h → 0; 

c g d/ ′ = 2

Although this result is correct, von-Kàrmàn's derivation 
was incorrect as pointed out by Benjamin (1968).

I will consider von-Kàrmàn's method before Benjamin's.

The deep fluid case



d

B

CA O

c
ρ1 ρ2

Assumptions:
- there is no flow in the dense fluid
- the pressure is hydrostatic and horizontally uniform

p p p g dO C B= = + ρ 2

Von-Kàrmàn applied Bernoulli's theorem between O and B
(equivalent to the assumption of energy conservation) =>

p p c g dO B= + +1
2 1

2
1ρ ρ

Deep fluid gravity current

Eliminate the pressure difference  pO - pB using

2 2 1

1

( )c 2gd ρ − ρ
=

ρ

Benjamin (1968) pointed out that the assumption of energy 
conservation is inconsistent with that of steady flow in this 
problem, because there is a net force on any control volume 
enclosing the point O and extending vertically to infinity.

The net force is associated with the horizontal pressure 
gradient that results from the higher density on the right of 
the control volume.

p p p g dO C B= = + ρ 2

p p c g dO B= + +1
2 1

2
1ρ ρ

The idea …



d

B

CA O

c

ρ1 ρ2

p(z) = p(h*) + ρ1g(h* _ z)

p(z) = p(h*) + ρ1g (h* − z)   for z > d

*h*h

p(z) = p(h*) + ρ1g (h* − d)  + ρ2g(d − z )  for d < z

h 2
T0

S [ u p ]dz= ρ +∫Flow force

SASA SC c

u = 0

d

B

CA O

c

ρ1 ρ2

(1) (2)

c

*h *h

pA = ph* + ρ1gh* pC = ph* + ρ1g (h* − d) + ρ2gd

pc

pC = pc

Bernoulli pc = pA + ρc2

Benjamin’s argument



Consider the steady flow of a layer of non-rotating, 
homogeneous liquid over an obstacle 

Assume that the streamline slopes are small enough to 
neglect the vertical velocity component in comparison with 
the horizontal component =>

Bernoulli's theorem gives for the free surface streamline

p u g h b cons ta + + + =1
2

2ρ ρ ( ) tan

Flow over orography

h(x)
b(x)

u(x)
pa

x

21
a 2p u g [h b(x)] cons tan t+ ρ + ρ + =

e x u
g

h b x cons t( ) ( ) tan= + = − +
2

2

Defines the specific energy

Continuity => uh = Q = constant

the volume flux 
per unit span

e e h Q
gh

h= = +( )
2

22

A graph of this function is shown in the next picture

Can express e as a function of h



Differentiating de
dh

Q
gh

= −1
2

3

Given the flow speed U and fluid depth H far upstream 
where b(x) = 0, Q = UH and

e Q
gh

h= +
2

22

de
dh

= 0 when Q ghc
2 3= u ghc

2 =

For a given energy e(h) > e(hc), there are two possible values 
for h, one > hc and one < hc.

e Q
gh

h= +
2

22
Q

g h H
h H b x

2

2 22
1 1
−LNM
O
QP + − = − ( )

Regime diagram for flow over an obstacle

e(h)

a possible energy 
transition, or jump

subcriticalsupercritical

hc h

u gh> u gh<



Q
g h H

h H b x
2

2 22
1 1
−LNM
O
QP + − = − ( )

This may be solved for h(x) given b(x) as long as there are 
no jumps in the flow =>

e.g. if h(x) > hc for all values of x, in other words if the flow 
remains subcritical.

If the flow is anywhere supercritical, there arises the 
possibility that hydraulic jumps will occur, leading to an 
abrupt transition to a subcritical state.

The possibilities were considered in a series of laboratory 
experiments by Long (1953). See also Baines (1987).

The End


