
Chapter 14 

Fronts and Frontogenesis
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Problems with simple frontal models

Chapter 13 examines some simple air mass models of fronts 
and shows these to have certain deficiencies in relation to 
observed fronts.

Sawyer (1956) - "although the Norwegian system of frontal 
analysis has been generally accepted by weather forecasters 
since the 1920's, no satisfactory explanation has been given for 
the ‘up-gliding’ motion of the warm air to which is attributed 
the characteristic frontal cloud and rain. "

"Simple dynamical theory shows that a sloping discontinuity 
between two air masses with different densities and velocities 
can exist without vertical movement of either air mass...".



Sawyer =>

"A front should be considered not so much as a stable area 
of strong temperature contrast between two air masses, but 
as an area into which active confluence of air currents of 
different temperature is taking place".
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Several processes including friction, turbulence and vertical 
motion (ascent in warm air leads to cooling, subsidence in 
cold air leads to warming) might be expected to destroy the 
sharp temperature contrast of a front within a day or two 
of formation.

Clearly defined fronts are likely to be found only where 
active frontogenesis is in progress; i.e., in an area where the 
horizontal air movements are such as to intensify the 
horizontal temperature gradients.

These ideas are supported by observations.



Two basic horizontal flow configurations which can lead to 
frontogenesis:

The intensification of a horizontal temperature gradient by     
(a) horizontal shear, and (b) a pure horizontal deformation field.
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The kinematics of frontogenesis

Q

P
O x

δx

u(x + δx, t)

u(x, t)

i 1 1
i j i, j j,i i, j j,i j2 2

j call e call
call u ij ij

i, j

uu x [ (u u ) (u u )] x
x

η

∂
δ = δ = + + − δ

∂

summation over the suffix j is implied

In tensor notation

This decomposition is standard (see e.g. Batchelor, 1970, § 2.3)

Relative motion near a point in a fluid



It can be shown that eij and ηij are second order tensors

eij is symmetric (eji = eij)

ηij antisymmetric (ηji = −ηij ).

ηij has only three non zero components and it can be shown 
that these form the components of the vorticity vector.
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Consider the case of two-dimensional motion
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Note: η11 = η22 =0

Write (x, y) = (xl, x2) and (δu, δv) = (ul, u2) and take the 
origin of coordinates at the point P =>   (δxl, δx2) = (x, y).
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ζ is the vertical component of vorticity
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In preference to the four derivatives ux, uy, vx, vy, define 
the equivalent four combinations of these derivatives:

D = ux + vy , called the divergence

E = ux − vy called the stretching deformation

F = vx + uy called the shearing deformation

ζ = vx − uy the vorticity

E is called the stretching deformation because the velocity 
components are differentiated in the direction of the 
component.

F is called the shearing deformation because each velocity 
component is differentiated at right angles to its direction.

Obviously, we can solve for ux, vy, vx, vy as functions of D, 
E, F, ζ.
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may be written in matrix form as
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Then



δu = u − uo, δv = v − vo, and (uo, vo) is the translation 
velocity at the point P itself (now the origin). 
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Choose the frame of reference so that uo = vo = 0 ⇒
δu = u, δv = v.

The relative motion near the point P can be 
decomposed into four basic components as follows:

(I) Pure divergence (only D nonzero)
(II)  Pure rotation (only ζ nonzero)
(III) Pure stretching deformation (only E nonzero)
(IV) Pure shearing deformation (only F nonzero).

Pure divergence

(I) Pure divergence (only D nonzero)
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The motion is purely radial and is from or to the point 
P according to the sign of D.
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r is the position vector from P.
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Pure rotation

(II) Pure rotation (only ζ nonzero).
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On a streamline, dy/dx = v/u = −y/x , or xdy + ydx = d(xy) = 0. 
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The streamlines are rectangular hyperbolae  xy = constant.

(III) Pure stretching deformation (only E nonzero)



u Fy v Fx= =1
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The streamlines are given now by dy/dx = x/y

y2 − x2 = constant.

The streamlines are again 
rectangular hyperbolae, but 
with their axes of dilatation 
and contraction at 45 degrees 
to the coordinate axes. 
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The flow directions are for F > 0.

(IV) Pure shearing deformation (only F nonzero)
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By rotating the axes (x, y) to (x', y') we can choose φ so that the 
two deformation fields together reduce to a single deformation 
field with the axis of dilatation at angle φ to the x axis.
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(V) Total deformation (only E and F nonzero)



Let the components of any vector (a, b) in the (x, y)
coordinates be (a', b') in the (x', y') coordinates:
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E and F, and also the total deformation matrices are not 
invariant under rotation of axes, unlike, for example, 

the matrices representing divergence and vorticity
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We can rotate the coordinate axes in such a way that F' = 0; 
then E' is the sole deformation in this set of axes.
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axis of dilatation

axis of contraction

The stretching and shearing deformation fields may be 
combined to give a total deformation field with strength E' and 
with the axis of dilatation inclined at an angle φ to the x- axis. 

In summary, the general two-dimensional motion in the 
neighbourhood of a point can be broken up into a field 
of divergence, a field of solid body rotation, and a single 
field of total deformation, characterized by its 
magnitude E' (> 0) and the orientation of the axis of 
dilatation, φ.

We consider now how these flow field components act to 
change horizontal temperature gradients.

General two-dimensional motion near a point



One measure of the frontogenetic or frontolytic tendency in 
a flow is the frontogenesis function:
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There are four separate effects contributing to frontogenesis 
(or frontolysis):

h 1 2 3 4
D T T T T
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T1 : represents the rate of frontogenesis due to a gradient 
of diabatic heating in the direction of the existing 
temperature gradient

.

T q q qx x y y h h1 = + ∇ = ⋅ ∇( ) /θ θ θ n

HeatCool ∇ hq

∇ hθ

Interpretation



T2 : represents the conversion of vertical temperature 
gradient to horizontal gradient by a component of 
differential vertical motion in the direction of the 
existing temperature gradient

T w w wx x y y z h z h2 = − + ∇ = − ⋅ ∇( ) /θ θ θ θ θ n

∇ hθ ∇ hw

T3 : represents the rate of increase of horizontal 
temperature gradient due to horizontal 
convergence (i.e., negative divergence) in the 
presence of an existing gradient

T D h3
1
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T4 : represents the frontogenetic effect of a (total) 
horizontal deformation field.

Further insight into this term may be obtained by 
a rotation of axes to those of the deformation field.
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Schematic frontogenetic effect of a horizontal deformation 
field on a horizontal temperature field.



Set ′∇ = ∇h hθ θ γ γ(cos , sin )

a few lines of algebra
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The frontogenetic effect of deformation is a maximum when the 
isentropes are parallel with the dilatation axis (β = 0), reducing 
to zero as the angle β between the isentropes and the dilatation 
axis increases to 45 deg. 

When the angle β is between 45 and 90 deg., deformation has a 
frontolytic effect, i.e., T4 < 0.

angle between the axis of dilatation and the 
potential-temperature isotherms (isentropes)
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A number of observational studies have tried to determine 
the relative importance of the contributions Tn to the 
frontogenesis function.

Unfortunately, observational estimates of T2 are "noisy", 
since estimates for w tend to be noisy, let alone for hw.

T4 is also extremely difficult to estimate from observational 
data currently available.

A case study by Ogura and Portis (1982, see their Fig. 25)
shows that T2, T3 and T4 are all important in the immediate 
vicinity of the front, whereas this and other investigations 
suggest that horizontal deformation (including horizontal 
shear) plays a primary role on the synoptic scale. 

Observational studies



This importance is illustrated in Fig. 14.7, which is taken 
from a case study by Ogura and Portis (1982), and in Figs. 
4.2 and 4.12, which show a typical summertime synoptic 
situation in the Australian region.

The direction of the dilatation axis and the resultant deformation on the 800 
mb surface at 0200 GMT, 26 April 1979 with the contours of the 800 mb

potential temperature field at the same time superimposed. 

surface front

From a case study by Ogura and Portis (1982)
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In a study of many fronts over the British Isles, Sawyer 
(1956) found that ‘active’ fronts are associated with a 
deformation field which leads to an intensification of the 
horizontal temperature gradient.

He found also that the effect is most clearly defined at the 
700 mb level at which the rate of contraction of fluid 
elements in the direction of the temperature gradient 
usually has a well-defined maximum near the front.

Flow deformation acting on 
a passive tracer to produce 
locally large tracer gradients
from Welander 1955



The foregoing theory is concerned solely with the 
kinematics of frontogenesis and shows how particular flow 
patterns can lead to the intensification of horizontal 
temperature gradients.

We consider now the dynamical consequences of increased 
horizontal temperature gradients

We know that if the flow is quasi-geostrophic, these 
increased gradients must be associated with increased 
vertical shear through the thermal wind equation.

We show now by scale analysis that the quasi-geostrophic 
approximation is not wholly valid when frontal gradients 
become large, but the equations can still be simplified. 

Dynamics of frontogenesis

The following theory is based on the review article by 
Hoskins (1982).

It is observed, inter alia, that atmospheric fronts are marked 
by large cross-front gradients of velocity and temperature.

Assume that the curvature of the front is locally unimportant
and choose axes with x in the cross-front direction, y in the 
along-front direction and z upwards:
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Frontal scales and coordinates

Observations show that typically,

U ~ 2 ms -1

V ~ 20 ms -1

L  1000 km
~ 200 km

=> V >> U and L >> .

The Rossby number for the front, defined as

The relative vorticity (~V/ ) is comparable with f and the 
motion is not quasi-geostrophic. 

Ro V f= ÷ × ×−/ ~ ( )20 10 2 104 5

is typically of order unity.
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A more detailed scale analysis is presented by Hoskins and 
Bretherton (1972, p15), starting with the equations in 
orthogonal curvilinear coordinates orientated along and 
normal to the surface front.

The motion is quasi -geostrophic across the front, 
but not along it.

The ratio of inertial to Coriolis accelerations in the x and y
directions =>

The scale analysis, the result of Exercise (14.3), and making 
the Boussinesq approximation, the equations of motion for a 
front are
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buoyancy force 
per unit mass

I assume that f and N0 are constants.



While the scale analysis shows that frontal motions are not 
quasi-geostrophic overall, much insight into frontal 
dynamics may be acquired from a study of frontogenesis 
within quasi-geostrophic theory.

Such a study provides also a framework in which later 
modifications, relaxing the quasi-geostrophic assumption, 
may be better appreciated. 

Quasi-geostrophic frontogenesis
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The quasi-geostrophic approximation involves replacing D/Dt by
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Let us consider the maintenance of cross-front thermal 
wind balance expressed by   fvz = bx .
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Note that   ugx + vy = 0

These equations describe how the geostrophic velocity field 
acting through Ql attempts to destroy thermal wind balance by 
changing fvz and bx by equal and opposite amounts and how 
ageostrophic motions (ua, w) come to the rescue! 
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N w f u Qx az0
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Also from uax + wz = 0, there exists a streamfunction ψ for the 
cross-frontal circulation satisfying

( , ) ( , )u wa z x= −ψ ψ

N f Qxx zz0
2 2

12ψ ψ+ = −

This is a Poisson-type elliptic partial differential equation for 
the cross-frontal circulation, a circulation which is forced by Ql.

1 gx x x yQ u b v b= −

Membrane analogy for solving a Poisson Equation
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This is an Elliptic PDE
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This is called a 
Dirichlet condition
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Here ζ = 0 on parts of 
the domain boundary 
and ∂ζ/∂n = 0 on other 
parts of the boundary
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Slippery 
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Frontogenesis in a deformation field
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adiabatic warming adiabatic cooling

(northern hemisphere case)

x = 0

Frontogenesis in a field of geostrophic confluence

⊗y

If w = 0,  Ql is simply the rate at which the buoyancy (or 
temperature) gradient increases in the cross-front direction 
following a fluid parcel, due to advective rearrangement of 
the buoyancy field by the horizontal motion.

1 gx x x y
(v,b)Q u b v b
(x, y)

∂
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bx increases due to confluence (ux < 0) acting on this 
component of buoyancy gradient and due to along-front 
horizontal shear vx acting on any along-front buoyancy 
gradient by.

Dbx/Dt is an alternative measure of frontogenesis to the 
Boussinesq form of the frontogenesis function D| hb|/Dt
analogous to the left hand side of this, i.e., T1 + T2 + T3 + T4.

g 2
x 1 0 x

D
b Q N w

Dt
= −

1 gx x x yQ u b v b= −

The quasi-geostrophic theory of frontogenesis in a field of 
pure geostrophic deformation was developred by Stone
(1966), Williams and Plotkin (1968), and Williams (1968).

The solutions obtained demonstrate the formation of large 
horizontal gradients near boundaries, but away from 
boundaries, the induced ageostrophic circulation prevents 
the contraction of the horizontal length scale of the 
temperature field below the Rossby length, LR = NoH/f; 
where H is the depth of the fluid.

Because the ageostrophic circulation does not contribute to 
advection in quasi-geostrophic theory, the largest 
horizontal temperature gradient at each height remains 
coincident with the line of horizontal convergence (x = 0).



Limitations of quasi-geostrophic theory

Many unrealistic features of the quasi-geostrophic theory 
result from the omission of certain feedback mechanisms.

The qualitative effect of some of these feedbacks can be 
deduced from the quasi-geostrophic results.
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x = 0

The ageostrophic velocity ua is clearly convergent (uax < 0) in 
the vicinity of A on the warm side of the maximum Tx (bx).

If included in the advection of b it would lead to a larger 
gradient bx.
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x = 0

At A, the generation of cyclonic relative vorticity ζ is 
underestimated because of the exclusion of the stretching 
term ζwz in the vertical vorticity equation,

D
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f wz
ζ

ζ= +( )

Similar arguments apply to the neighbourhood of C on the 
cold side of the maximum temperature gradient at upper 
levels.

In the vicinity of B and D, the ageostrophic divergence 
would imply weaker gradients in ζ and the neglect of ζwz
would imply smaller negative vorticity.
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In summary, QG-theory points to the formation of sharp 
surface fronts with cyclonic vorticity on the warm side of the 
temperature contrast, and with the maximum horizontal 
temperature gradient sloping in the vertical from A to C, even 
though these effects are excluded in the QG-solutions.

The theory highlights the role of horizontal boundaries in 
frontogenesis and shows that the ageostrophic circulation acts 
to inhibit the formation of large gradients in the free 
atmosphere.

Hoskins (1982) pointed out that unless the ageostrophic 
convergence at A and C increase as the local gradients 
increase, the vorticity and the gradients in b can only increase 
exponentially with time.

Quasi-geostrophic theory does not even suggest the formation 
of frontal discontinuities in a finite time.

Semi-geostrophic frontogenesis
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