Chapter 11

More on wave motions, filtering

Inertial waves

» Consider a homogeneous layer of inviscid fluid on an f-plane
confined between rigid horizontal boundaries.

» Suppose that the entire layer is set impulsively in motion in
the y-direction with the constant velocity v=v att=0.
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Equations Ot » WHCZV =0

a—V+fu:0

The same equation is satisfied also by u.

2
‘ZT:/JerV:o » v =V cos ot

constant o = +f

The full solution is: ~ (u,Vv) = V(sin ft, cos ft)

(u,v) =V (sin ft, cos ft)
The vector velocity has magnitude V where

V2 =u?2+v?=0=9%=constant

The direction changes periodically with time with period 27/f.

called the inertial period

f is sometimes referred to as the inertial frequency.




Some notes

» The perturbation velocity is independent of spatial position.

» All fluid parcels move with the same velocity V at any
instant --- assumes that the flow domain is infinite and
unconstrained by lateral boundaries.

» => at each instant, the layer moves as would a solid block.

» Consider a fluid parcel initially at the point (X, Y,) and
suppose that it is at the point (x,y) at time t.

> Integrating the velocity =>

t A
(X—Xo, Y—VYo)= VJ.O (sin ft, cos ft) dt = %[1—cos ft, sin ft]

| Koxo- 0oy = @0 |

The parcel executes a circular path, an inertia circle, with
centreat (xo+ ¥ /f,y,) andradius V/f

v

parcel trajectory

(X5, Y5) (X, +V/1,y,)

The motion is anticyclonic in sense.

The period of motion 2n/®w = 2n/f = half a pendulum day, =>
the time for a Focault pendulum to turn through 180°.




Force balance on a fluid parcel undergoing pure
inertial oscillations (northern hemisphere).

centrifugal
force

Coriolis
force

<

There is no pressure gradient in the flow - the only forces are the
centrifugal and Coriolis forces. In circular motion these must
balance. This is possible only in anticyclonic motion.

Inertial effects

» Pure inertial oscillations do not seem to be important in the
earth's atmosphere, but

» Time spectra of ocean currents often exhibit significant
amounts of energy at the inertial frequency (see Holton, p.60).

» Nevertheless, inertial effects are observed in the atmosphere.

» Examples are:

- sea breeze circulations ( => next pictures)

- the nocturnal low level jet




The Morning Glory




Sea breeze circulations over Cape York Peninsula
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The profile of wind component in the direction of the geostrophic wind (u,)
showing a nocturnal jet, compared with the profile the previous afternoon.

Inertia-gravity waves

f
4/ undisturbed depth

p=p,+pg(HL+n)-2) | HA+n) H

z=0

Shallow water model configuration

» In pure inertial wave motion, horizontal pressure gradients
are zero.

» Consider now waves in a layer of rotating fluid with a free
surface where horizontal pressure gradients are associated
with free surface displacements.




Consider hydrostatic motions - then

p(X,y,Z,t) =p,+ pg[H{1+ "”I(X’y’t)}— Z]

1
» Evhp:gHth

independent of z

» The fluid acceleration is independent of z.

» If the velocities are initially independent of z,
then they will remain so.

Linearized equations - no basic flow

a_u_fV:_gHé_rI
ot OX
a—V+fu :—gHa—n
oy
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Consider wave motions which are independent of y.

=0 cos (kx — ot),

sin (kx —ot), if »

cos (kx — wt),

A solution exists of the form

u
V=V
n="1

0, Vand n constants




ol — U —gHkn =0,
fl—-wv=0,
—kl +on =0,

These algebraic equations for 0, ¥and 1 have solutions
only if

® —f —gHk
f ) 0 |=-0’+w(f®>+gHK?)=0
-k 0 )

» ®=0 or o?=f?+gHk?

The solution with «© = 0 corresponds with the steady solution
(olot = 0) of the equations and represents a steady current in
strict geostrophic balance in which

v=3Hom
f ox

The other two solutions correspond with so-called inertia-
gravity waves, with the dispersion relation

w? =2 + gHk?

The phase speed of these is

¢, =0/ k=+y[gH + 2/ K?]

» The waves are dispersive




2 g2 2 ® / f2

» The existence of a positive and negative root for w (or c,)
shows that these waves can propagate in either x-direction.

» Inthe limitask — 0, ® — f and the x-dependence of the
motion drops out.

» Then the motion corresponds with the pure inertial wave
discussed earlier.

» In the absence of rotation (i.e., f = 0) the theory reduces to
that for small amplitude surface gravity waves on shallow
water.

» Such waves are non-dispersive: ¢, = +,/gH

Note that the hydrostatic assumption restricts the validity of
the whole analysis to long waves on shallow water; strictly for
waves with wavelength A >> H.

o’ =f +gHk’ P>

Rotation is important if 2 /k*~gH =>

A =2n(gH)Y? /1 f=2nLq

/

the Rossby radius of deformation
for a homogeneous fluid




In the deep ocean,

H~4km=4x10°m

At 45° latitude, f = 104s! »

L=2mx(10x4x10%"?/10* =1.3x10"m ~ 10" km

=

and +JgH +200 ms™* .

Rotation effects are important only on the planetary scale.

Inclusion of the beta effect

» Replace the v-momentum equation by the vorticity equation

=>

where

a—u—f0v=—gHa—n

ot OX

Assume that f can be approximated by its value f, at a particular latitude,
except when differentiated with respect to y in the vorticity equation. This
is justified provided that meridional particle displacements are small.




» Again assume that 6/dy = 0 and consider travelling-wave
solutions of the form:

u =10 cos (kx — wt),
v =V sin (kx — ot),
n =1 cos (kx — mt),

o0 — o0 — gHkR =0,

» (ko +B)I—fooR =0,

~kii+on=0,

These are consistent only if the determinant is zero »

expanding by the second row

o —f —gHk

0 +(kko+B) -ofy|=(0>-gHk?)(ok+B)-fZ ok =0
-k 0 ®

A cubic equation for o with three real roots.

When o >> B/k, the two non-zero roots are given approximately
by the formula

®? = gHk? + fZ

This is precisely the dispersion relation for inertia-gravity waves.

When o? << gHK?, there is one root given approximately by

©=—BK /(K> +F2/gH)




» For wavelengths small compared with 2z times the Rossby
length 257 JoH / £,

reduces to the dispersion relation for nondivergent Rossby
waves.

For longer wavelengths,

k < 0(fogH)

the effects of divergence due to variations in the free surface
elevation become important, or even dominant.

For extremely long waves

These are nondispersive.

» The importance of divergence effects on the ultra-long waves
explains why the calculated phase speeds for planetary waves
of global wave-numbers-1 and -2 were unrealistically large.

» The latter were obtained from the phase speed formula for
nondivergent waves.

» In the atmosphere, divergence effects are not associated with
the displacement of a free surface!




» To understand the effect of divergence on planetary waves,
we introduce the meridional displacement & of a fluid parcel.

» This is related to the meridional velocity component by
v = DE /Dt, or to a first approximation by

ot

> Substituting for vin 0,6 + Bv = f,0,n and integrating with
respect to time, assuming that all perturbation quantities
vanish att =0, gives

C=-BE+Tfm

This formula is equivalent (within a linear analysis) to the
conservation of potential vorticity (see exercise 11.2).

In the absence of divergence,
f+C="Tf+BE+C ="

holds for a fluid parcel which has g and £ initially zero
so that { =—BE&.

The term fon represents the increase in relative vorticity
due to the stretching of planetary vorticity associated with
horizontal convergence (positive n).

=




Phase diagram for Rossby waves
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The relative phases of the quantities v, &, n and ¢
over one wavelength

The relative vorticity tendency due to stretching opposes that due to meridional
motion and thereby reduces the restoring tendency of the induced velocity field.

Filtering
Equations: 0 on
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If o/oy =0 as before, the vorticity equation reduces to an
equation for n, and since § = ov/ox =>

2
ofgHd™m ¢ ) poHon_g
ot\ f, ox f, ox

This has the solution 1 =7 cos (kx — ot) , where




Dispersion relation for a divergent planetary wave

o = —Bk / (k? + f / gH)

> There is no other solution for o as there was before.

» In other words, making the geostrophic approximation
when calculating v has filtered out in the inertia-gravity
wave modes from the equation set, leaving only the low
frequency planetary wave mode.

» This is not too surprising since the inertia-gravity waves,
by their very essence, are not geostrophically-balanced
motions.

Filtered equations

» The idea of filtering sets of equations is an important one in
geophysical applications.

» The quasi-geostrophic equations are often referred to as
'filtered equations’ since, as in the above analysis, the
consequence of computing the horizontal velocity
geostrophically from the pressure or stream-function
suppresses the high frequency inertia-gravity waves which
would otherwise be supported by the Boussinesq equations.

» Furthermore, the Boussinesq equations themselves form a
filtered system in the sense that the approximations which
lead to them filter out compressible, or acoustic waves.




