
Chapter 11

More on wave motions, filtering
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Consider a homogeneous layer of inviscid fluid on an f-plane 
confined between rigid horizontal boundaries.
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Inertial waves

Suppose that the entire layer is set impulsively in motion in 
the y-direction with the constant velocity v = at t = 0.v
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The same equation is satisfied also by u.
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constant ω = ±f

The full solution is: ( , ) (sin , cos )u v v ft ft=

( , ) (sin , cos )u v v ft ft=

The vector velocity has magnitude V where
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The direction changes periodically with time with period 2π/f.

called the inertial period

f is sometimes referred to as the inertial frequency.



The perturbation velocity is independent of spatial position.

All fluid parcels move with the same velocity V at any 
instant --- assumes that the flow domain is infinite and 
unconstrained by lateral boundaries.

=>  at each instant, the layer moves as would a solid block.
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Some notes

Consider a fluid parcel initially at the point (x0, y0) and 
suppose that it is at the point (x,y) at time t.

Integrating the velocity =>

The parcel executes a circular path, an inertia circle, with 
centre at and radius            .( / , )x v f y0 0+ /v f

v

v

ft

parcel trajectory
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The motion is anticyclonic in sense.

The period of motion 2π/ω = 2π/f   = half a pendulum day, => 
the time for a Focault pendulum to turn through 180°.
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There is no pressure gradient in the flow - the only forces are the 
centrifugal and Coriolis forces. In circular motion these must 
balance. This is possible only in anticyclonic motion.

Force balance on a fluid parcel undergoing pure 
inertial oscillations (northern hemisphere).

Pure inertial oscillations do not seem to be important in the 
earth's atmosphere, but

Time spectra of ocean currents often exhibit significant 
amounts of energy at the inertial frequency (see Holton, p.60).

Nevertheless, inertial effects are observed in the atmosphere.

Examples are:

- sea breeze circulations ( => next pictures)

- the nocturnal low level jet

Inertial effects
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The profile of wind component in the direction of the geostrophic wind (ug) 
showing a nocturnal jet, compared with the profile the previous afternoon. 
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Shallow water model configuration

In pure inertial wave motion, horizontal pressure gradients 
are zero.

Consider now waves in a layer of rotating fluid with a free 
surface where horizontal pressure gradients are associated 
with free surface displacements.
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z = 0

p = pa + ρg(H(1 + η) – z)

undisturbed depth

Inertia-gravity waves



Consider hydrostatic motions - then

ap(x , y, z, t ) p g[H{1 (x , y, t )} z ]= + ρ + η −

1
ρ

η∇ = ∇h hp gH

independent of z

The fluid acceleration is independent of z.

If the velocities are initially independent of z, 
then they will remain so.

Linearized equations - no basic flow
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Consider wave motions which are independent of y. 

A solution exists of the form u u kx t
v v kx t
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These algebraic equations for have solutions 
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The solution with ω = 0 corresponds with the steady solution 
(∂/∂t = 0) of the equations and represents a steady current in 
strict geostrophic balance in which

The other two solutions correspond with so-called inertia-
gravity waves, with the dispersion relation
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The phase speed of these is

ω2 2 2= +f gHk

c k gH f kp = = ± +ω / [ / ]2 2

The waves are dispersive



The existence of a positive and negative root for  ω (or cp) 
shows that these waves can propagate in either x-direction.

In the limit as k → 0,  ω → f and the x-dependence of the 
motion drops out.

Then the motion corresponds with the pure inertial wave 
discussed earlier.

In the absence of rotation (i.e., f = 0) the theory reduces to 
that for small amplitude surface gravity waves on shallow 
water.

Such waves are non-dispersive:
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Note that the hydrostatic assumption restricts the validity of 
the whole analysis to long waves on shallow water; strictly for 
waves with wavelength  λ >> H.

Rotation is important if                            =>          f k gH2 2/ ~

λ π π= =2 21 2( ) //gH f LR

the Rossby radius of deformation 
for a homogeneous fluid

ω2 2 2= +f gHk



In the deep ocean, 3H ~ 4 km 4 10 m= ×

At 45° latitude, f = 10−4 s−1

3 1/ 2 4 7 42 (10 4 10 ) /10 1.3 10 m ~ 10 km−λ = π × × × = ×

Rotation effects are important only on the planetary scale.

gH ms÷ −200 1and                                   .

Replace the v-momentum equation by the vorticity equation 
=>
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Assume that f can be approximated by its value f0 at a particular latitude, 
except when differentiated with respect to y in the vorticity equation. This 
is justified provided that meridional particle displacements are small.

Inclusion of the beta effect



Again assume that ∂/∂y ≡ 0 and consider travelling-wave 
solutions of the form:
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These are consistent only if the determinant is zero
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Now expanding by the second row

A cubic equation for ω with three real roots.

When  ω >> β/k, the two non-zero roots are given approximately 
by the formula

ω2 2
0
2= +gHk f

This is precisely the dispersion relation for inertia-gravity waves. 

When ω2 << gHk2, there is one root given approximately by
2 2
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For wavelengths small compared with 2π times the Rossby 
length 2 0π gH / f

reduces to the dispersion relation for nondivergent Rossby 
waves. 

k f≤ 0 0( )gH

the effects of divergence due to variations in the free surface 
elevation become important, or even dominant.
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For longer wavelengths,
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For extremely long waves

These are nondispersive.

The importance of divergence effects on the ultra-long waves 
explains why the calculated phase speeds for planetary waves 
of global wave-numbers-1 and -2 were unrealistically large.

The latter were obtained from the phase speed formula for 
nondivergent waves.

In the atmosphere, divergence effects are not associated with 
the displacement of a free surface!



To understand the effect of divergence on planetary waves, 
we introduce the meridional displacement  ξ of a fluid parcel.

This is related to the meridional velocity component by         
v = Dξ /Dt, or to a first approximation by

v
t
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Substituting for v in                                and integrating with 
respect to time, assuming that all perturbation quantities 
vanish at t = 0, gives

∂ ζ β ∂ ηt tv f+ = 0

ζ βξ η= − + f0

This formula is equivalent (within a linear analysis) to the 
conservation of potential vorticity (see exercise 11.2). 

f f f+ = + + =ζ βξ ζ0 0

holds for a fluid parcel which has ξ and ζ initially zero 
so that ζ = −βξ. 

In the absence of divergence,

The term f0η represents the increase in relative vorticity 
due to the stretching of planetary vorticity associated with 
horizontal convergence (positive η). 
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northern hemisphere case

The relative vorticity tendency due to stretching opposes that due to meridional 
motion and thereby reduces the restoring tendency of the induced velocity field.

Phase diagram for Rossby waves

This has the solution ,  where

Equations:
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If  ∂/∂y ≡ 0 as before, the vorticity equation reduces to an 
equation for η, and since ζ = ∂v/∂x =>
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Filtering
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There is no other solution for ω as there was before.

In other words, making the geostrophic approximation 
when calculating v has filtered out in the inertia-gravity 
wave modes from the equation set, leaving only the low 
frequency planetary wave mode.

This is not too surprising since the inertia-gravity waves, 
by their very essence, are not geostrophically-balanced 
motions.

Dispersion relation for a divergent planetary wave

The idea of filtering sets of equations is an important one in 
geophysical applications.

The quasi-geostrophic equations are often referred to as 
'filtered equations' since, as in the above analysis, the 
consequence of computing the horizontal velocity 
geostrophically from the pressure or stream-function 
suppresses the high frequency inertia-gravity waves which 
would otherwise be supported by the Boussinesq equations.

Furthermore, the Boussinesq equations themselves form a 
filtered system in the sense that the approximations which 
lead to them filter out compressible, or acoustic waves.

Filtered equations


