
Chapter 10

Development 
Theory

In this section I will discuss:

- further aspects of the structure and dynamics of 
synoptic-scale disturbances, and

- derive Sutcliffe's development theory, which provides 
a number of practical forecasting rules.

Development Theory
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In quasi-geostrophic theory the ageostrophic wind satisfies 
the equation:
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In the northern (southern) hemisphere, 
the ageostrophic wind blows to the left 
(right) of the acceleration vector
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There can be no vertical motion unless there is an 
ageostrophic component of the wind, assuming that

w = 0 at some height, say at the ground.

Requirement for vertical motion
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called the 
isallobaric wind

Isopleths of ∂p/∂t are called isallobars.

Isallobaric charts, are charts on which isopleths ∂p/∂t of 
are plotted.

They are useful as forecasting aids and were particularly 
so before the advent of computer-produced prognostic 
charts.

The isallobaric wind

On isallobaric charts, values of ∂p/∂t are normally 
computed from barometric tendencies for 3 hours or 24
hours

In low latitudes 24 hours is more appropriate because
diurnal pressure variations due to the atmospheric tide 
are comparable with, or larger than, typical synoptic 
changes.

Isallobaric charts
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Physically, the isallobaric wind may be viewed as a cross-
isobaric motion in which the air accelerates or decelerates to 
take up the geostrophic wind velocity consistent with the 
new pressure field.

For example, if the isobars become closer to each other 
locally, the air must accelerate locally as the geostrophic 
wind increases.

To accelerate, work must be done on the air and it must
therefore move with a component across the isobars towards 
low pressure.

Note that the ageostrophic wind blows towards falling 
pressure.

In particular, there is ageostrophic convergence towards 
an isallobaric low and divergence from an isallobaric high.
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In regions where flow patterns are approximately stationary, 
the acceleration experienced by air parcels is represented by 
the advection term
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This tends to be the case at upper tropospheric levels where 
wind speeds are generally larger than at lower levels.
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Thus ua is perpendicular to the advective acceleration.

Confluence and diffluence

diffluence

diffluence

confluence

convergence

divergence

Isobars or geopotential height contours illustrating patterns 
of confluence and diffluence and associated regions of 

convergence and divergence (NH case).



The foregoing results have application to an understanding 
of the circulations associated with jet streams.

These are relatively narrow currents of strong winds which 
occur in the upper troposphere in association with planetary 
and synoptic scale wave disturbances.

The jet stream core, the region of strongest wind, is evident 
from the distribution of isotachs, which are often 
superimposed on upper-level charts, for example, those 
corresponding with the 500 mb and 250 mb levels.

A typical example is the 500 mb chart shown in the next 
figure: =>

Jet streams

Regional 500 mb analysis showing planetary-scale waves. Broken lines are 
isotachs in knots (2 kn = 1 ms-1). Note the two “jet-streaks”, one just 
southwest of Western Australia, the other slightly east of Tasmania.



Mean July wind field over Australia (1956-61). The isotach surfaces of 30, 40 and 50 
ms-1 westerly wind are drawn and projections on the earth’s surface of their 

latitude extremes are shown as dotted lines. The values in lines are the heights in 
1000’s of feet (300 m) of the isotach surfaces above selected stations.
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Isobaric or geopotential height contours (blue dashed lines), isotachs 
(red lines) and a typical parcel trajectory (dotted line) in a jet stream 
core.
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Meridional circulation in the entrance and exit regions of a jet stream core.  

Arrows denote flow directions in the y - z plane.

With y pointing polewards, the direction of flow along the jet is out of the 
screen for the northern hemisphere and into the screen for the southern 

hemisphere.
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Typically, the air might accelerate from 20 ms−1 to 60 ms−1

in travelling 1500 km through the jet entrance region: =>
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Assume that the air 500 km to either side of the jet is 
undisturbed and that the velocity maximum occurs 2 km
below the tropopause. Then
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The vertical displacement of a particle is then about 1.5 km, 
enough to cause condensation in air equatorwards of the 
axis and to clear any existing cloud on the poleward side.

A calculation



The cirrus cloud found ahead of the warm front of an extra-
tropical cyclone is usually such jet cloud.

It is formed over the cold front and blown around the upper-
level trough to appear ahead of the warm front.

Note that implicit in the foregoing calculation is the 
assumption that u (~ ug) can be computed geostrophically 
whereas v cannot be.

This is consistent with scaling analyses which show that the 
geostrophic approximation holds in the direction across the 
jet, but not along it.

The same is true also of a front.

Some notes

Large-scale motions in the atmosphere are in close hydrostatic 
balance  =>

The pressure at the base of a fixed column of air is proportional 
to the mass of air in that column; if the total mass decreases, so 
will the surface pressure, and vice versa.

unit area

ps = surface pressure 
= weight of column

isallobaric 
convergence

upper-level 
divergence

Dines compensation



In a deepening low, the isallobaric wind, and to a lesser extent 
surface friction, will contribute to low-level convergence.

If there were no compensating upper-level divergence, the 
surface pressure would rise as mass accumulated in a column -
clearly a contradiction!

Dines showed that low-level convergence is very nearly equal to 
the divergence at upper levels.

He pointed out that upper divergence must exceed the low-level 
convergence when a low deepens.

Because the integrated divergence is a small residual of much 
larger, but opposing contributions at different levels, it is not 
practical to predict surface pressure changes by computing the 
integrated divergence.

Some notes
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using the full continuity equation:

The surface pressure is given by
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This is the surface pressure tendency equation.

In practice, it is of little use for prediction since observations are 
not accurate enough to reliably compute the right-hand-side.
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for strict geostrophic 
motion the surface 

pressure cannot change!
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strict geostrophic motion  => f k phρu = ∧ ∇

f constant => ∇ ⋅ =h ( )ρu 0

This is consistent with the fact that the geostrophic wind blows
parallel with the isobars.

=> any local change in surface pressure is associated entirely 
with ageostrophic motion.

=> important consequences for the movement of disturbances 
characterized by their surface pressure distribution, e.g. 
cyclones and anticyclones.

Sutcliffe, an English meteorologist, computed the relative 
divergence between an upper and lower level in the 
troposphere using the vorticity equation.

From this he deduced the distribution of vertical motion.

A knowledge of the vertical motion at a low level can be 
used together with the vorticity equation at the surface to 
study the development of surface pressure systems such as 
middle latitude cyclones and anticyclones.

Sutcliffe's theory has proved extremely valuable in the 
practice of weather forecasting.

Sutcliffe's development theory



If one can compute the difference between the fields of 
ageostrophic wind at a low level and at a middle or high 
tropospheric level, one can deduce the horizontal 
divergence, and hence the field of vertical motion which 
must exist between these levels.

Then one can locate the regions of falling surface pressure
(over rising air) and of rising surface pressure (over 
subsiding air).

The essence of Sutcliffe's theory

The vertical distribution of horizontal divergence and vertical motion 
(characterized by ω = Dp/Dt) for an extra-tropical cyclone, an anticyclone, 

and for example of a more complex disturbance.
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∂w/∂z > 0

∂w/∂z < 0
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It follows that for an extra-tropical cyclone, ∂2w/∂z2 < 0
throughout the depth of the troposphere, and for an 
anticyclone ∂2w/∂z2 > 0.
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I will use (x,y,z) rather than (x,y,p) coordinates and adopt a 
modern approach, using quasi-geostrophic theory.
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The plan is to obtain a diagnostic formula for ∂2w/∂z2 by 
eliminating the time derivative on the right hand side.

Mathematical derivation

For an extra-tropical cyclone, ∂2w/∂z2 < 0 throughout the 
depth of the troposphere, and for an anticyclone ∂2w/∂z2 > 0.

Now ∂2w/∂z2 may be obtained from the vorticity equation:
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The quantity Λ is related to the deformation of the flow and can 
be shown to be small, except in active frontogenetic regions.

Neglecting Λ, substitution
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Sutcliffe neglects the adiabatic buoyancy tendency
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Assume a linear vertical shear
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For a wave-like disturbance, 2ps is proportional to −ps so 
that an increase in cyclonic vorticity corresponds with a 
lowering of the surface pressure.

There are various ways of interpreting this equation.

I will discuss the mathematical way.

The equation has the form
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If the thermal vorticity advection −u' ⋅ ζ' and the planetary 
vorticity tendency −uH/2 ⋅ f are both zero, ζs will be 
conserved for points moving with velocity us + 2u'.

=> The lines defined by dx/dt = us + 2u' are characteristics of 
the equation.

In the general case, ζs changes at the rate −u' ⋅ ζ' −uH/2 ⋅
f following a characteristic.



The implications of                                             are:
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(i) At the centre of a surface low, us << 2u' =>  the low 
pressure centre will propagate in the direction of the 
thermal wind, or equivalently the 500 mb wind, with 
speed proportional to the thermal wind; 

This is the thermal steering principle.

It turns out that the constant of proportionality (i.e., 2) is 
too large and that a value of unity is more appropriate: 

see later =>

(ii) −uH/2 ⋅ f is positive, leading to cyclonic development
for an equatorward wind and anticyclonic 
development for a poleward wind; this term is 
relatively small.

(iii) The thermal vorticity advection −u' ⋅ ζ' is the principal 
contribution to the intensification or decay of systems.

Consider a wave pattern in the thickness isopleths
shown in the next figure:
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It follows from (i) and (iii) that the propagation and change 
in intensity of surface depressions can be judged from a 
thickness chart with a superimposed surface chart.

It is often the case that in most locations, |u´| >> |us|, => 
u500mb ≈ u´ =>

The thermal wind contribution to the flow at 500 mb mostly 
dominates that due to the surface wind.

This is why the thickness isopleths and the isopleths of 
geopotential at 500 mb have broadly similar features.

It means also that the 500 mb isopleths can be used instead 
of the thickness charts to give an indication as to how 
systems will be steered and whether or not they will grow or 
decay.

Some notes



Sutcliffe's theory highlights the fact that a surface 
depression, or trough, and an anticyclone, or ridge, will 
tend to be displaced in the direction of shear by a process 
of development as distinct from translation: =>

There is associated divergence and convergence.

Used with care, it can be a useful guide in weather 
forecasting, but it suffers the following limitations:

(i) it neglects the effects of adiabatic heating and cooling, 
represented by the term Ν2

h
2w , and diabatic effects.

These effects may make important contributions to the 
overall flow evolution.

Limitations:

The omission of Ν2
h

2w overestimates the propagation speed 
by a factor of two.
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For a wavelike disturbance with total horizontal wavenumber 
κ, h

2w is proportional to −κ2w.

Since



(ii) the theory is a diagnostic one; it gives an indication 
of the tendencies at a given instant or, in practical 
terms, for a few hours or so. 

The thermal field, and hence the thermal vorticity advection 
−u' ⋅ ζ' will evolve as the surface flow develops and a more 
complete solution, such as that provided by numerical 
integration, must allow this interaction to occur.

We can understand this interaction from the next figure:

Sutcliffe’s theory is a diagnostic one!
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Some notes

These considerations show also a further role of the N2w
term in the thermodynamic equation which Sutcliffe ignored.

As we have seen from baroclinic instability theory, the 
structure of the growing Eady wave is such that, poleward 
motion is associated with ascent and cooling; equatorwards 
motion with subsidence and warming.

In a growing baroclinic wave, the pairs of quantities v and w
and v and σ are negatively correlated in the southern 
hemisphere while w and s are positively correlated.

Accordingly, the N2w term in the thermal tendency equation 
opposes the horizontal temperature advection and hence the 
rate of increase of  −u' ⋅ ζ' .

Other points

On account of the coupling between the surface and upper-
level flow, we would not expect Sutcliffe's theory to be a 
substitute for a good numerical weather prediction model.

(iii) The theory does not work well when |u´| is small; i.e., in 
the case of "cut-off" lows. These are low pressure 
systems which develop in or migrate to a region where 
the upper-level steering winds are relatively light.

(iv)     The theory neglects the effects of moist processes.
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A diagnostic equation for the w which does not rely on 
computing the horizontal divergence from wind observations. 
Called the quasi-geostrophic form of the 'ω-equation' after its 
counterpart in pressure coordinates.

The omega equation

The End


