
Chapter 9

Synoptic-scale instability and 
cyclogenesis – Part II



Some of the algebraic details in the Eady solution are 
complicated - especially:

- the calculation of w and b, and

- the inclusion of a beta effect (∂f/∂y ≠ 0) renders the 
eigenvalue problem analytically intractable.

A two-layer model

An even simpler model which does not suffer these 
limitations may be formulated at the sacrifice of vertical 
resolution.

The procedure is to divide the atmosphere into two layers:
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We express [∂w/∂z]n as central differences  =>

Vertical derivatives in the quasi-geostrophic equations are 
then replaced by central-difference approximations.

In each layer,
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We impose the boundary conditions w0 = 0, w4 = 0.
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Since u2 and v2 are not carried, we compute them by averaging 
u1 and u3,
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The coefficient of w2 may be written as
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where γ = 2f0/H and μ = 2/LR
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LR is the Rossby length
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Full set of nonlinear equations



n n n′ψ = ψ + ψ where
n nψ′ << ψ

Let the streamfunction of the basic zonal flow in each layer

n nyU (n 1,3)ψ = − =

and consider small perturbations to this

Perturbation method
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assuming a perturbation for which ∂/∂y ≡ 0. 

The linearized equations



The equations form a linear system with constant 
coefficients and therefore have solutions of the form
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Solution method

constants

Substitution gives a set of linear homogeneous algebraic 
equations:
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These have a non-trivial solution for φ1, φ3 and        if and 
only if the determinant of coefficients is zero.

~w

A quadratic equation for the eigenvalues c:
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Eigenvalue equation
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1.    No vertical shear, UT = 0, i.e., U1 = U3.
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Some special cases



No vertical shear, UT = 0, i.e., U1 = U3.

~w = 0φ1 = φ3 ,

ψ'1 and ψ'3 are exactly in phase  =>     
the ridges and troughs are in phase.

This solution corresponds with a barotropic Rossby wave
as the dispersion relation suggests.

~w = 0

c U ß
km= − 2

there is no interchange of fluid 
between the two layers.



No vertical shear, UT = 0, i.e., U1 = U3.

c U ß
km= −

+2 22μ

The waves in the upper and lower layers are exactly out of 
phase, i.e., ψ'1 = ψ '3 eiπ.

Thus at meridians (x-values) where the perturbation velocities 
are poleward in the upper layer, they are equatorward in the 
lower layer and vice versa.

This mode is called a baroclinic, or internal, Rossby wave.

The presence of the free mode of this type is a weakness of the 
two-layer model; see Holton, p. 220.

The mode does not correspond with any free oscillation of the 
atmosphere, but such wave modes do exist in the oceans.

φ1 = − φ3



2.    No beta effect, β = 0 , finite shear UT ≠ 0.
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The wave grows or decays exponentially with time, 
according to the sign of ci, and propagates zonally 
with phase speed Um.



In                                        ,      q = 0

No beta effect, β = 0 , finite shear UT ≠ 0.

When  k2 < 2μ2,    p2 = − (2μ2 − k2)/(2μ2 + k2) = −p2
0, say.
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where θ = tan-1 p0.

Note that | p0 | < 1 and if  p0 > 0, 0 < θ <     .π
4



No beta effect, β = 0 , finite shear UT ≠ 0.

ψ φ

ψ φ

θ
1 3

2

3 3

′ − +

′ −

=

=

e e

e e

kc t ik x U t i

kc t ik x U t

i m

i m

( )

( )

,

,

If ci > 0, the upper wave is 2θ radians in advance of the lower 
wave  =>  again the trough and ridge positions are displaced 
westwards with height, as in the growing Eady wave.

The threshold for instability occurs when k2 = 2μ2, or k = 
2.82/LR, waves of large wavenumber (shorter wavelength) 
being stable.

This should be compared with the Eady stability criterion 
which requires that s2 < 1.2 or k < 2.4/LR.



It is evident that the growth rate of a disturbance is related to 
the degree of westward displacement of the trough with
height.

This accords with synoptic experience and provides 
forecasters with a rule for judging whether or not a lower 
pressure centre will intensify during a forecast period.

This rule is based on a comparison of the positions of the 
upper-level trough (which may even have one or two closed 
isopleths) and the surface low.

The rule will be investigated further in the next chapter.

Forecasting rule



3.    The general case, β ≠ 0 , UT ≠ 0.

Algebraically more complicated.
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The relative simplicity of the two-layer model makes it 
especially suitable for studying the energy conversions 
associated with baroclinic waves.

The following discussion closely parallels that of Holton, 
§9.3.2.

The energetics of baroclinic waves
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Multiply by −ψ'1

Multiply by −ψ'3

Multiply by ψ '1 − ψ '3

omit primes, and take zonal averages denoted by

< > = z( ) ( )1
0λ
λ

dx

λ is the perturbation wavelength.

The energy equations
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the perturbation kinetic energy averaged over a wavelength 
per unit meridional direction.
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an equation for the rate-of-change of the 
average perturbation kinetic energy.
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In the continuous model, available potential energy is defined 
as

We approximate the contribution to this from the perturbation 
by defining
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Recall that

to be the average perturbation available potential energy per 
unit meridional direction. 



You may wonder why the operation            is replaced heredVz
by         rather than H. 1

2 H

It turns out to be necessary to do this for energy consistency.

Since b is defined only at one level (i.e., level 2), the system 
knows only about the available potential energy between 
levels 3 and 1.

With this definition for P', the model is formally equivalent 
to the two-layer model assuming immiscible fluids with a 
free fluid interface as studied by Pedlosky (1979; see §7.16).

Holton does not point out this subtlety in defining P´.
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This term correlates upward motion with positive buoyancy
and downward motion with negative buoyancy.

It represents a conversion of perturbation available 
potential energy into perturbation kinetic energy.

It is the only source of K' and is the sink term of P'.
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Interpretation
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This term correlates poleward motion with positive buoyancy
between levels 1 and 3, and equatorward motion with 
negative buoyancy.

It is proportional to the vertical shear of the basic flow UT, or, 
equivalently, to the basic meridional temperature gradient.

It represents the conversion of mean available potential 
energy of the basic flow into perturbation available potential 
energy and is a source term in the above equation.

Clearly, this term must exceed the second term in the 
equation if the disturbance is to grow.



Introduce the notation C(A, B) to denote a rate-of-conversion 
of energy form A to energy form B.

Then C(A, B) = −C(B, A), and
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Energy conversions in a block diagram
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The rate-of-change of total perturbation energy 
K' + P', is just                .C P P( , )′



Since the available potential energy of the basic flow per unit 
volume is finite, exponential growth of a perturbation cannot 
continue indefinitely.

The foregoing theories assume that the perturbation remains 
sufficiently small so that changes in the mean flow due to the 
presence of the wave can be ignored.

When the wave amplitude grows to a significant amplitude, 
its interaction with the mean flow cannot be ignored and the 
depletion of the mean flow available potential energy is 
reflected in a reduced growth rate.

Large amplitude waves



To study such finite amplitude effects necessarily requires a 
nonlinear analysis in which mean flow changes are determined 
as part of the solution.

Such analyses are algebraically complicated and beyond the 
scope of these lecture.

Nonlinear Theory



Differential solar heating between the equatorial and polar 
regions helps to maintain the available potential energy 
associated with the middle latitude westerly winds.

The baroclinic instability of the westerlies leads to the 
growth of extra-tropical cyclones.

These cyclones transport heat polewards and upwards, 
reducing the mean meridional temperature gradient. (i.e., 
depleting available potential energy) and increasing the 
vertical stability.

The role of baroclinic waves in the atmosphere's 
general circulation



Extra-tropical cyclones act together with planetary waves to reduce 
the meridional temperature contrasts which would occur if the 
earth's atmosphere were in radiative equilibrium.

Therefore, both types of waves are important components of the 
atmosphere's "air-conditioning" system.



The End


