
Chapter 9

Synoptic-scale instability and 
cyclogenesis

Look at mean sea level isobaric charts => one notices 
synoptic-scale vortices or low pressure centres, also called 
extra-tropical cyclones, depressions, or simply ’lows’.

Extra-tropical cyclones



These vortices play an important role in the dynamics of the 
atmosphere's general circulation and contribute together 
with their associated fronts to much of our ‘bad weather’.

The occurrence of extra-tropical cyclones is a manifestation 
of the inherent instability of the zonal ‘westerly’ winds of 
middle latitudes.

We begin by considering the energy source for the 
instability.

Then consider a simple model for cyclogenesis (i.e. cyclone 
growth). 

Extra-tropical cyclones



On average, the tropospheric winds in middle latitudes are 
westerly and increase in strength with height.

They are also in approximate thermal wind balance with the 
poleward temperature gradient associated with differential 
solar heating.
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The middle latitude 'westerlies'

The atmosphere has an enormous potential energy 
measured in the usual way:

atmosphere

gzdVρ∫
Only a small fraction of this is available for conversion 
to kinetic energy.

The precise amount available is the actual potential 
energy minus the potential energy obtained after an 
adiabatic rearrangement of the density field so that the 
isentropes (surfaces of constant θ) are horizontal and in 
stable hydrostatic equilibrium.

Available potential energy
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Consider the adiabatic interchange of two air 
parcels A and B in the meridional plane...

ρ ρ ρ ρ ρ= + + + ′* ( ) ( , ) ( , , , )0 z y z x y z t

Let us write:

Either the volume average of 
ρ over the whole flow domain, 

or the surface density

The horizontal average of ρ − ρ*

The zonal average of
ρ − ρ∗ − ρ0(z)

* 0[ (z) (y, z)]ρ − ρ + ρ + ρ

A zonal average is an average in the x-, or eastward-direction

( )
X

0

1 ( )dx
X

= ∫

e.g. the length of a latitude circle



Note that represents the deviation of the 
density field from hydrostatic equilibrium

Also, by the definition of the averaging operator

ρ ρ( , ) ( , , , )y z x y z t+ ′

ρ′ ≡ 0

In practice, for a Boussinesq fluid

0max{ (z) , (y,z) , (x,y,z, t)}∗ρ >> ρ ρ ρ′

Buoyancy force 0 (z)b g

g g b b , say

∗

∗

∗ ∗

ρ − ρ − ρ
= −

ρ
ρ ρ′

= − − = + ′
ρ ρ

An air parcel displaced a vertical distance ξ from equilibrium 
experiences a restoring force b = −N2ξ per unit mass.

The work done in producing such a displacement is

2 2 2 21 1
2 2

0
bdz N b / N

ξ

= ξ =∫
b = −N2ξ assuming that N is a constant

The change in potential energy due to an adiabatic rearrangement
of the density field from equilibrium is

2
2 2

2 2

atmosphere atmosphere

b 1dV (b b ' ) dV
2N 2N  

= +∫ ∫

A measure of the available potential energy - APE.

When no disturbance (b´ = 0), the APE of a zonal flow is related to the 
deviation of the local density from the horizontal average at that level.



Zonal flow configuration in the Eady problem 
(northern hemisphere).
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Baroclinic instability: the Eady problem

Assumptions:

- Boussinesq liquid.

- N is a constant.

- f is a constant

Basic-state streamfunction   =>
U yz
H

ψ = −

Basic-state potential vorticity   =>
2 2

2
h 2 2

fq f f cons tan t
N z

∂ ψ
= ∇ ψ + + = =

∂

The zonal flow satisfies the potential vorticity equation exactly.

The Eady model



We consider small perturbations to the zonal flow: put

ψ ψ ψ= + ′ q q q= + ′

(u u ') v ' (q q ') 0
t x y

⎡ ⎤∂ ∂ ∂
+ + + + =⎢ ⎥∂ ∂ ∂⎣ ⎦

linearize =>

2 2 2 2

2 2 2 2

' ' f 'u 0
t x x y N z

⎡ ⎤∂ ∂ ∂ ψ ∂ ψ ∂ ψ⎡ ⎤+ + + =⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

Perturbation solution

w = 0 at the ground (z = 0) and 
at the model tropopause, z = H.

2
g h b N w 0

t
∂⎡ ⎤+ ⋅∇ + =⎢ ⎥∂⎣ ⎦

u

u u ' v ' (b b ') 0
t x x y

⎡ ⎤∂ ∂ ∂ ∂
+ + + + =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

b fU
y H

∂
= −

∂

b f
z
′∂ψ′ =

∂

' U 'u 0
t x z H x

∂ ∂ ∂ψ ∂ψ⎡ ⎤+ − =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
at z = 0, H

z = H

z = 0

Boundary conditions



For maximum simplicity consider 2-D disturbances with ∂ /∂y ≡ 0.

Assume that an arbitrary disturbance can be expressed as a sum 
of Fourier modes.

Consider a single Fourier component with

ψ ψ( , , ) $ ( ) ( )x z t z eik x ct= −

k and c are constants and 'the real part' is implied.

The objective is to determine c as a function of wavenumber k, 
and the corresponding eigenfunction          .$ ( )ψ z

Substitution => d
dz

N k
f

2

2

2 2

2 0
$

$
ψ

ψ− =

d
dz

N k
f

2

2

2 2

2 0
$

$
ψ

ψ− =

Put z' = z/H =>
d
dz

2

2
24s 0

$
$

ψ
ψ

′
− =

4s2
2 2

2
2 2 2= =

N H
f

k L kR

LR = NH/f  is called the Rossby radius of deformation.
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24s 0
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ψ
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A gain in symmetry is obtained if we put
′ = + = +z Z c U UC1

2
1
2

z = H

z = 0

z' = 1

z' = 0

Z = 1
2

Z

Z = − 1
2

Z = 0

nondimensional phase 
speed of the wave

( ) $ $ ,C Z at ZZ− + = = −ψ ψ 0 1
2

1
2

Mathematical niceties

$ ( ) sinh coshψ Z A sZ B sZ= +2 2
Solution is:

Boundary conditions give

[ ( )cosh sinh ] [cosh ( )sinh ]2 2 01
2

1
2s C s s A s C s B+ + − + =

[ ( )cosh sinh ] [cosh ( )sinh ]2 2 01
2

1
2s C s s A s C s B− + + − − =

A pair of homogeneous algebraic equations for A and B. 

Solution exists only if the determinant of the coefficients is 
zero

4s 1 2 22 2 2C s s s= + − coth



c U U s s s s s= ± − −1
2

1 22( / ) ( coth )( tanh ) /

s

s

The expression (s − coth s)(s − tanh s) inside brackets is 
negative if  s < s0 and positive if s > s0, where s0 = coth s0.
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For s < s0, c has the form c U ic si= ±1
2 ( )

where i = −1

coth(s)

wave-type disturbances exist and for s < s0
they propagate with phase speed

′ = ± −ψ ψ$ ( ) ( )z e ekc t ik x Uti
1
2Then

Re(c) =  U,  1
2

= the zonal wind speed at z H= 1
2

This height, at which                  is called the steering level
for the disturbance.

c u(z)=

Such disturbances also grow or decay exponentially with 
time, the growth rate (or decay rate) being kci, or 2sci (s)/LR.



c U U s s s s s= ± − −1
2

1 22( / ) ( coth )( tanh ) /

s s
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The growth rate (or decay rate) is kci, or 2sci (s)/LR.

For the unstable wave with kci > 0, the maximum 
growth rate occurs when s = sm = 0.8.

Our interest is primarily in the amplifying mode.

For s > s0, both solutions are neutrally stable; i.e., Im(c) = 0.

For the unstable wave with kci > 0, the maximum growth 
rate occurs when s = sm = 0.8, and

( ) ( ) / . /maxkc s c s L U Li m i m R R= =2 0 31

The half-wavelength of the fastest growing wave is

1
2 2λ π πmax / /= =k L sm R m

this being the distance between the ridge (maximum p' or ψ') 
and trough (minimum p' or ψ').

The unstable wave mode



Typical atmospheric values are f ~ 10-4 s-1 (45 deg. latitude),
N ~ 10-2 s-1, H ~ 104 m (10 km) and U ~ 40 ms-1, giving ,

and

6 3
R

NHL ~ 10 m (10 km)
f

= , ( ) ~ .maxkc si
− ×1 50 8 10

These values for                   and               are broadly typical 
of the observed e-folding times and horizontal length scales 
of extra-tropical cyclones in the atmosphere.

1
2

62 10 2000λ max ~ ( )× m km

( )maxkci
−1 1

2 λmax

(about 1 day)

Typical scales

Adding

B sCA s s iDc s Ai= − =2 1/ ( tanh ) ( ) , say.

[ ( )cosh sinh ] [cosh ( )sinh ]2 2 01
2

1
2s C s s A s C s B+ + − + =

[ ( )cosh sinh ] [cosh ( )sinh ]2 2 01
2

1
2s C s s A s C s B− + + − − =and

Then ′ = ± −ψ ψ$ ( ) ( )z e ekc t ik x Uti
1
2

The vertical structure of the disturbance is given by

i ( Z )
iˆ (Z) A[sinh 2sZ iDc (s) cosh 2sZ] A(Z)e γψ = + = %

where
~ ( ) [sinh ( ) cosh ] /A Z A sZ D c s sZi= +2 2 2 2 1 22 2

and γ ( ) arg[sinh ( ) cosh ]Z sZ iDc s sZi= +2 2



The perturbation streamfunction takes the form

′ = − +ψ γ( , , , ) ~ ( ) cos[ ( ) ( )]x y Z t A Z e k x Ut Zkc ti 1
2

Hence the streamfunction (or pressure-) perturbation and other 
quantities have a phase variation with height.

Note: all the flow quantities are determined in terms of ψ';  e.g.,

[ ]1
x y2

Z2

v sin k(x Ut) (Z) , u 0,

fHw UZ U , and b f ... .
N t x Z x

′ = ψ′ ∝ − − γ ′ = −ψ′ =

⎡ ∂ ∂ ∂ψ′ ∂ψ′⎛ ⎞ ⎤= − + − = ψ′ =⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎦⎣

To evaluate the expressions for w and σ involves considerable algebra.

The detailed structure of an unstable two-dimensional Eady
wave is shown in the next figure including:

Geostrophic quantities

- the streamfunction (pressure) perturbation

- the meridional velocity isotachs v(x, z);

- the buoyancy perturbation b(x, z), proportional to the 
potential temperature deviation θ´(x,z) = (θ − θ0(z));

- the vertical component of relative vorticity ζ(x, z);

And

Ageostrophic quantities:

Structure of an unstable Eady wave



Ageostrophic quantities:

- the vertical velocity w(x, z);

- the streamfunction of the ageostrophic motion in a 
vertical plane, denoted here by Φ(x, z) defined by ua = Φz ,
w = − Φx satisfies the two-dimensional continuity equation,
∂ua/∂x + ∂w/∂z = 0;

- the ageostrophic wind ua(x, z).

Structure of an unstable Eady wave
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The minimum pressure perturbation (the pressure trough 
axis) and the maximum pressure perturbation (the ridge 
axis) tilt westwards with height.

This is a characteristic feature of developing cyclones and 
anticyclones in the atmosphere. 

The warmest air (b > 0) is rising (w > 0) and the coldest air
(b < 0) is subsiding (w < 0), an indication that available 
potential energy is being reduced.

It is clear also that the warm air moves polewards (v' > 0 in 
NH) and the cold air moves equatorwards (v' < 0 in NH) so 
that the wave effects a poleward heat transport.

Note that cyclonic ζ corresponds with negative values in the 
southern hemisphere.
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So far we have assumed that the wave structure is 
independent of the meridional direction y.

A slightly more realistic calculation vis-á-vis extra-tropical 
cyclones is to relax this assumption and to investigate wave 
disturbances confined to a zonal channel with rigid 
(frictionless) walls at y = 0 and y = Y, say.

Then,  ∂/∂y ≠ 0 and u' ≠ 0, but v' = 0 at y = 0 and Y.

In this case, the solution procedure is essentially the same 
as before, but we now take

′ = −ψ ψ π( , , , ) $ ( ) sin ( / )( )x y z t z e m y Yik x ct

m is an integer to satisfy the condition v' = ψ'x = 0 at y = 0, Y. 

Three-dimensional waves



4s2 2 2 2 2 2= +L k m YR( / )π

The next figure shows the pressure patterns corresponding to 
the total streamfunction

ψ ψ ψ= + ′

The only change to the foregoing analysis is to replace 4s2 = LR
2

with

at the surface, in the middle troposphere and in the upper 
troposphere, for the wave with m = l.

Isobar patterns: a) at the surface (z´ = 0) in the middle troposphere (z´= 0.5) 
and c) in the upper troposphere (z´= 1.0) in the Eady solution for a growing 
baroclinic wave with m = 1.  Shown in d), is the isotach pattern of vertical 
velocity in the middle troposphere.
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The End


