
Chapter 8

Quasi-geostrophic motion

Simplification of the basic equations can be obtained for 
synoptic scale motions.

Consider the Boussinesq system ⇒ ρ is assumed to be 
constant in as much as it affects the fluid inertia and 
continuity.

Scale analysis for synoptic-scale motions

Introduce nondimensional variables, ( ′ ), and typical scales
(in capitals) as follows:

(x, y) = L(x', y')    z = Hz'     t = (L/U)t' 

(u,v) = U(u', v')    w = Ww'   p = Pp';  b = Σb '; and f = f0 f',

f0 is a typical middle latitude value of f.



The horizontal component of the momentum equation takes 
the nondimensional form
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Definition of scales  =>  all (´)-quantities have magnitude ~ O(1).

Typical values of the scales for middle latitude synoptic systems 
are: L = l06 m,  H = l04 m, U = 10 ms−1 ,  P = 103 Pa (10 mb),        
b = gδT/T = 10*3/300 = 10 ms−2, ρ = 1 kg m−3 and f0 ~ 10−4 s.

Clearly, we can take P = ULf0.

Then, assuming that (WL/UH) ~ O(1), the key parameter is the 
Rossby number.

where 'h denotes the operator (∂/∂x', ∂/∂y', 0) and Ro is the 
nondimensional parameter  U/(f0L), the Rossby number.

For synoptic scale motions at middle latitudes, Ro ~ 0.l so that, 
to a first approximation, the D'u'h/Dt' can be neglected and the 
equation reduces to one of geostrophic balance.

In dimensional form it becomes

f ph hk u∧ = − ∇
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We solve it by taking k ^ of both sides. 
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This equation defines the geostrophic wind. Our scaling shows 
to be a good approximation to the total horizontal wind uh. 
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As noted earlier, it is a diagnostic equation from which the 
wind can be inferred at a particular time when the pressure 
gradient is known.

In other words, the limit of 
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as Ro → 0 is degenerate in the sense that time derivatives 
drop out.

We cannot use the geostrophic equation to predict the 
evolution of the wind field.

If  f is constant the geostrophic wind is horizontally 
nondivergent; i.e., h⋅ ug = 0 .

The difference between the horizontal wind and the 
geostrophic wind is called the ageostrophic wind:

u u ua h g= −
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for Ro << 1, uh ~ ug while ua is of order Ro.

A suitable scale for |ua| is URo.

Because h⋅ ug = 0 , the continuity equation reduces to the 
nondimensional form (assuming that f is constant). 
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The second term of

a typical scale for w is U(H/L)Ro = 10−2 ms−1.

the operator uh' ⋅ h' in
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is much larger than ∂w'/∂z‘ .

To a first approximation, advection by the vertical 
velocity can be neglected, both in the momentum 
and thermodynamic equations. 

To a first approximation, advection by the vertical 
velocity can be neglected, both in the momentum 
and thermodynamic equations. 

Also the dominant contribution to uh' ⋅ h' is u'g ⋅ h'

in quasi-geostrophic motion, advection 
is by the geostrophic wind.

Two important results



In nondimensional form, the vertical momentum equation is

0
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It is easy to check that  ΣH/(ULf0) = 1

Ro(WH/UL) = Ro 2(H/L)2 = 10−6. 

Synoptic scale perturbations are in a very close 
state of hydrostatic balance.

Vertical momentum equation
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where at present f is assumed to be a constant.

an approximated form of the 
thermodynamic equation

The governing equations for quasi-geostrophic 
motion in dimensional form



First derive the vorticity equation:
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where ζg = k ^ ug is the vertical component of relative 
vorticity computed using the geostrophic wind. 

If f is constant,  .∂
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A prediction equation for the flow at small Ro

Assume N2 is constant
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Assumes that f is a constant (then we can omit the single f in 
the middle bracket).

If the meridional displacement of air parcels is not too large, 
we can allow for meridional variations in f within the small 
Rossby number approximation - see exercise 8.1.
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Suppose that f = f0 + βy, then

This is an equation of fundamental importance in dynamical 
meteorology; it is the quasi-geostrophic potential vorticity 
equation

It states that the quasi-geostrophic potential vorticity q is 
conserved along geostrophically computed trajectories.

It is the prognostic equation which enables us to calculate the 
time evolution of the geostrophic wind and pressure fields.

The quasi-geostrophic potential vorticity equation
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Expression of q in terms of pressure

Write                                       in the form
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Solution procedure



Suppose that we make an initial measurement of the 
pressure field p(x,y,z,0) at time t = 0.

Calculate q(x,y,z,0) using

Predict the distribution of q(x,y,z, Δt) using
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Calculated ug(x,y,z,0) using
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Diagnose p(x,y,z,Δt) by solving the elliptic partial differential 
equation for p:

Diagnose ug(x,y,z,Δt) using
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Repeat the process ...
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In order to carry out the integrations, appropriate 
boundary conditions must be prescribed.

For example, for flow over level terrain, w = 0 at z = 0. 
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When N is a constant, the nondimensional form of this 
equation is
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An important feature of quasi-geostrophic motion is 
the assumption that L ~ LR, or equivalently that B ~ 1.

More on the approximated thermodynamic 
equation



The rate-of-change of buoyancy (and temperature) 
experienced by fluid parcels is associated with vertical 
motion in the presence of a stable stratification. 

When B ~ 1, D b 1 w 0
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Since in quasi-geostrophic theory the total derivative D/Dt is 
approximated by ∂ /∂t + ug ⋅ h , the rate-of-change of 
buoyancy is computed following the (horizontal) geostrophic 
velocity ug.

The vertical advection of buoyancy w∂ /∂z is negligible.

Thus quasi-geostrophic flows "see" only the stratification of 
the basic state characterized by  N2 = (g/θ)dθ0/dz ---- this is 
independent of time; such flows cannot change the ‘effective 
static stability’ characterized locally by  N2 + ∂b/∂z . 

The derivation of the potential vorticity equation for a 
compressible atmosphere is similar to that for a Boussinesq 
fluid. 

The equation for the conservation of entropy, or equivalently, 
for potential temperature θ, replaces the equation for the 
conservation of density:

s cp= ln θ
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The quasi-geostrophic equation for a 
compressible atmosphere



For a deep atmospheric layer, the continuity equation must 
include the vertical density variation ρ0(z):
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The theory applies to small departures from an adiabatic 
atmosphere in which θ0(z) is approximately constant, equal to θ*.

The potential vorticity equation is
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For steady flow (∂ /∂t ≡ 0) the quasi-geostrophic potential 
vorticity equation takes the form ug ⋅ hq = 0.

Assume that f is a constant,

ug ⋅ hq = 0 is satisfied (e.g.) by solutions of the form q = f.

For these solutions, p satisfies
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ψ is the geostrophic streamfunction (= p/ρf).

These solutions have zero perturbation potential vorticity

Quasi-geostrophic flow over a bell-shaped 
mountain



Omit the zero subscript on f, and assume that N is a constant.
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Put z N f z= ( / ) Laplace’s equation
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Two particular solutions are:

ψ = −Uy

ψ π= −S r/ 4

u Uy= − =ψ

a uniform flow
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ψ π= − −U y S r/ 4

Streamfunction equation is linear

is a solution.
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The vertical displacement of a fluid parcel, η is related to σ by
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Since b is a constant on isentropic surfaces, the displacement 
of the isentropic surface from z = constant for the flow defined 
by ψ = −Uy − S/4πr is given (in dimensional form) by
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The displacement of fluid parcels which, in the absence of 
motion would occupy the plane at z = 0 is
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is an isentropic surface of the quasi-geostrophic flow defined 
by ψ = −Uy − S/4πr.
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When S = 4πNR*
2hm and  z = f R*/N, ψ = −Uy − S/4πr

represents the flow in the semi-infinite region z >= h of a 
uniform current U past the bell-shaped mountain with 
circular contours given by h(x,y).

The mountain height is hm and its characteristic width is R*. 

In terms of hm etc., the displacement of an isentropic surface 
in this flow is
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The vorticity changes in stratified quasi-
geostrophic flow over an isolated mountain

The incident flow is distorted by the mountain anticyclone, but 
the perturbation velocity and pressure field decay away from 
the mountain (after R. B. Smith, 1979).

NH case

The streamline pattern in quasi-geostrophic 
stratified flow over an isolated mountain



Height of the lowest isentrope above the topography in as a 
function of x.

Unit scale equals the length of the four vertical lines in Fig. 8.1.

η2 - η1

A B 0 R*
x 5−5

End of
Chapter 8


