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The vorticity equation for a layer of homogeneous 
fluid of variable depth H(x,y)
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In the special case where X = 0,

Use the identity
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The quantity (f + ζ)/H is called the potential vorticity for a 
homogeneous fluid.  It is conserved following a fluid column.



The atmosphere is a complex dynamical system which can 
support many different kinds of wave motion covering a 
wide range of time and space scales.

One of the most important wave types as far as the large-
scale circulation of the atmosphere is concerned is the 
planetary wave, or Rossby wave.

These are prominent in hemispheric synoptic charts; either 
isobaric charts at mean sea level (msl) or upper level charts 
of the geopotential height of isobaric surfaces, e.g., 500 mb. 

Planetary, or Rossby Waves

Southern hemisphere mean sea level isobaric analysis on a stereographic 
projection illustrating the wavy nature of the flow in the zonal direction.



The 500 mb analysis corresponding to the previous one. Isopleths of the 
500 mb surface are given in decametres.

Regional 500 mb analysis showing planetary-scale waves. Broken lines are 
isotachs in knots (2 kn = 1 ms−1). Note the two “jet-streaks”, one just southwest 
of Western Australia, the other slightly east of Tasmania.



A planetary wave in its pure form is a type of inertial wave
which owes its existence to the variation of the Coriolis 
parameter with latitude.

An inertial wave is one in which energy transfer is between 
the kinetic energy of relative motion and kinetic energy of 
absolute motion.

Such waves may be studied within the framework of the 
Cartesian equations described above by making the so-
called "beta-plane" or "β-plane" approximation.

Planetary Waves are Inertial Waves

This approximation regards f as a linear function of the 
north-south direction y, i.e., f = f0 + βy, where β is a 
positive constant, so that the effect of the variation of the 
Coriolis parameter with latitude is incorporated in the 
vorticity equation.

The beta-plane approximation allows us to study of the 
effects of varying f with latitude without the added 
complication of working in spherical geometry.

The beta-plane approximation



A simple description of the basic dynamics of a pure 
horizontally nondivergent planetary wave may be given by 
considering two-dimensional flow on a beta plane:

i.e., in a rectangular coordinate system with x pointing 
eastwards, y pointing northwards, and with f = f0 + βy.

Horizontal  nondivergence implies that H is a constant and 
therefore, in the absence of a body force, the vorticity 
equation reduces to
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The absolute vorticity of each fluid column remains 
constant throughout the motion.
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Diagram illustrating the dynamics of a nondivergent Rossby wave

Each particle displacement 
conserves f + ζ

Non-divergent Rossby waves



Two-dimensionality implies that there exists a streamfunction
ψ such that
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f + =ζb g 0 a PDE with ψ as the sole 
dependent variable.

For small amplitude motions, the equation can be linearized
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For motions independent of y (then u = −ψy ≡ 0), there exist 
travelling wave solutions of the form

Mathematical analysis

for a nontrivial solution                 :
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This is the dispersion relation for the waves.

k is called the wavenumber and ω the frequency

The wavelength is λ = 2π/k and the period T = 2π/ω

The phase speed of the wave in the x-direction is cp = ω/k.
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The phase speed of the wave in the x-direction is:

The perturbation northward velocity component is

v k kx t= −cos( )ψ ω

This is exactly 90 deg. out of phase with ψ.

Since cp is a function of k (or λ), the waves are called
dispersive.
In this case, the longer waves travel faster than the shorter 
waves.
Notice that β > 0 implies that cp < 0 and hence the waves 
travel towards the west, consistent with physical 
arguments.
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For a given wave amplitude        the shorter waves (larger k) 
are more energetic.

ψ

The mean kinetic energy density averaged over one wavelength 
(or period) is:



Suppose now there is a basic westerly airflow (U, 0), U being 
a constant.

Remember westerly means from the west; it is sometimes 
called a zonal flow.

Then u ⋅ linearizes to U∂/∂x and D
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Travelling wave solutions of the type 
exist as before:

ψ ψ ω= −sin ( )kx t

The dispersion relation is:   ω = Uk − β/k

A basic westerly airflow

Thus the waves are simply advected with the basic zonal 
flow.

The above equation is known as Rossby's formula.

It shows that waves propagate westwards relative to the air
at a speed proportional to the square of the wavelength.

In particular, waves are stationary when ks = √(β/U)

They move westwards for λ > λs = 2π/ks and eastwards for
λ < λs
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If a planetary wave extends around the earth at latitude 
Φ, its wavelength cannot exceed the length of that 
latitude circle, 2πa cos Φ , a being the earth's radius.

λ π= 2 a n/

ω βλ π= = −/ /2 1Ω n s

with corresponding period  T = 2π/|ω| = 2πn/Ω.

Since Ω = 2π/(1 day), the period is simply n days.

Planetary waves around the earth

For n waves around the latitude circle at 45° on which 
β = f/a, then:

13.520.536.782.2329cp m s-1

54321T days

5.77.19.514.228.4λ 103 km

54321n

Values of λ, T and cp in the case U = 0 are listed in the 
table for values of n from 1 to 5.

For n equal to 1 or 2, cp is unrealistically large. => This 
results from the assumption of nondivergence, which is 
poor for the ultra-long waves. 



The stationary wavelengths λs for various flow speeds U, 
calculated from the formula

are listed below for β as 1.6 x 10-11 m -1s -1, appropriate to
45 deg. latitude.

λ π βs U= 2 /a f

14.012.09.07.0λ 103 km

80604020U m s-1

Hemispheric upper air charts such as those at 500 mb
show patterns with between about 2 and 6 waves.

These waves are considered to be essentially planetary 
waves forced by three principal mechanisms:

orographic forcing resulting from a basic westerly 
airstream impinging on mountain ranges such as the 
Rockies and Andes;

thermal forcing due to longitudinal heating 
differences associated with the distribution of oceans 
and continents: and

nonlinear interaction with smaller scale disturbances 
such as extra-tropical cyclones. 

Planetary waves in the atmosphere



Planetary waves have been identified in the oceans also.

They are thought to be driven, inter alia, by fluctuating 
wind stresses at the ocean surface.

Planetary waves in the oceans

One layer model for uniform westerly flow over topography (NH- case).

the lee troughplan view

U

side view

U

tropopause

uniform upstream flow with ζ = 0

Large scale flow over a mountain barrier



For relatively narrow mountain ranges, such as the 
Southern Alps of New Zealand, the pattern of flow 
deflection is recognizable mainly in the vicinity of the 
mountains.

For continental scale orography, such as the Rocky 
mountains and Tibetan Plateau, the influence is almost 
certainly felt over the entire hemisphere.

Thus orography is believed to be an important factor in 
generating stationary planetary waves of low 
wavenumber.

The surface isobar pattern around New Zealand during northwesterly flow ahead of an 
approaching cold front. Note the strong deflection of the isobars produced by the 
orography. Remember f < 0 in the southern hemisphere - hence the sense of the deflection!



Owing to the relatively small horizontal scale of the 
mountain barrier in New Zealand, the beta effect is likely
to be small compared, say, with deflections produced by
the Rocky mountains.

In the latter case, the lee trough may be a significant 
synoptic scale feature at upper levels and therefore, 
according to Sutcliffe's theory (see Chapter 9), we expect 
there to exist a favourable region for cyclogenesis just 
ahead of the trough.

This is borne out by observations, and depressions which 
form or intensify there are called 'lee cyclones'.

Lee cyclogenesis is a common occurrence in the Gulf of 
Genoa region when a northwesterly airstream impinges
on the European Alps. 

The situation concerning easterly flow across a mountain 
barrier is tricky because of upstream influence effects; 
see Holton 4.3, especially page 90 and Holton (1993).

The latter reference contains an excellent review of the 
dynamics of stationary planetary waves.

Easterly flow over a mountain barrier



The potential vorticity equation for a homogeneous 
fluid is helpful in understanding the pattern of wind 
driven surface currents in the ocean.

The next figure shows the major surface currents of 
the world oceans (After Somerville and Woodhouse, 
1950; see article by Longuet-Higgins, 1965). 

Wind driven ocean currents

Surface currents of the world oceans



To some extent the currents follow the mean winds; 
those flowing westwards in sub- tropical latitudes follow 
the easterly trade winds while those flowing eastwards 
follow the westerly winds in middle latitudes.

Most of the strongest currents occur in the 
neighbourhood of western boundaries, for example:

The Gulf Stream in the North Atlantic

The Kuroshio in the North Pacific

The Somali Current (which is seasonal) in the Indian 
Ocean

The Brazil Current, and

The East Australian Current.

Summary of the main features

Streamlines of mean winds in the North Atlantic (broken lines), and 
of mean surface currents, as represented by the isotherms (full lines) 
(after Stommel, 1958).

North Atlantic currents



It is observed that most of the wind-driven circulation 
takes place in a shallow surface layer above the main 
thermocline.

We shall ignore the details of

the slow internal circulation in the deep ocean

the variations in density

the variations in bathymetry (sea depth below 
mean sea level)

We shall consider only mean horizontal velocities, 
averaged vertically between the free surface down to 
some uniform reference depth H, below which steady 
transports are assumed negligible.

Assumptions

In the absence of any body forces and with H constant, the 
absolute vorticity f + ζ is conserved following a fluid 
parcel.

If a parcel moves equatorwards, the planetary vorticity 
decreases and hence its relative vorticity increases.

In other words, the parcel finds the earth "spinning 
more slowly" beneath it and so appears to spin faster (in 
a cyclonic sense) relative to the earth.

Suppose a wind-stress τ(x,y) per unit area acts on the 
ocean surface.

We may regard this as equivalent to a body force τ(x,y)/ρH
per unit mass, distributed uniformly over depth. 
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In the ocean interior, i.e., away from the boundaries of the 
continents, ζ  ~ 10−1 ms−1/1000 km = 10−7 s << f = 10−4 s−1. 

Assume that internal friction is small compared with wind 
stresses, then for steady currents
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there is an approximate balance between the wind 
stress curl and the increase in planetary vorticity 
due to meridional motion.

The new vorticity injected by the wind stress is compensated 
by a meridional motion v to a latitude where its planetary 
vorticity just "fits in" with the change in f.

Since β = df/dy v
H
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This result is due to the well-known Swedish oceanographer 
H. U. Sverdrup (1888-1957).

In the North Atlantic between 20°N and 50°N, β > 0 and k
curl τ < 0 so that the motion over nearly all the ocean will be 
towards the south, a result which accords with the figure.

Sverdrup flow



Mass conservation requires that there be a return flow.

This must occur near a boundary where the assumptions 
(principally the neglect of friction) under which Sverdrup’s
equation was derived are no longer valid.

Moreover, in the return flow, the planetary vorticity 
tendency is positive so there must be an input of vorticity, 
presumably frictional at the boundary, to satisfy

Thus, we expect an intense northward current somewhere 
along the margin of the ocean into which cyclonic vorticity is 
diffused from the boundary.

The question is: which side of the ocean?

The return flow
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Cyclonic vorticity is diffused from a western boundary. 

We surmised that the principal vorticity balance in the 
boundary current is between the planetary vorticity 
tendency and the frictional rate of generation.

Wrong sign!

Eastern boundary Western boundary

Correct sign!

Which side of the ocean?



A further question is: at what latitude should the boundary 
current leave the coast?

To explore this question, let us suppose that the wind stress 
τ = (τ(y), 0).

Then v
H
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At what latitude does the return flow occur?
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At an eastern boundary u = 0 and hence sgn (u) depends
on sgn (∂u/∂x).

If τyy > 0, u < 0 and streamlines run into the western 
boundary layer

On the other hand, if τyy < 0, u > 0 and streamlines leave 
the western boundary layer.

Hence the critical latitude is where τyy = 0, which for the 
North Atlantic is at about 30°N, just about where the Gulf 
Stream leaves the coast.

Of course, bottom topography may also play a role in 
determining the critical latitude and this has not been 
taken into account in the foregoing simple analysis.



In the analysis presented above, the currents are assumed to 
be depth independent, but observations show that this is not 
always a good approximation; often there are counter 
currents at larger depths and this is certainly true of the 
Gulf Stream.

Thus the theory really applies to the net mass transports. 
Also, transient effects may be important.

For example, the Somali Current in the Indian Ocean 
undergoes a pronounced annual variation due to monsoonal 
wind changes.

More important, transient currents may be an order of 
magnitude larger than steady mean currents and may have 
a significant overall effect on the dynamics through 
nonlinear processes.

Other effects

We have seen that the dynamics of Rossby waves can be 
understood in terms of the conservation of absolute 
vorticity f + ζ , as fluid parcels are displaced meridionally.

More generally, for a fluid of variable depth h, it is the 
potential vorticity (f + ζ)/h which is conserved.

Thus if the depth of the fluid column varies during the 
motion, changes in ζ are induced, even if f is a constant (i.e., 
if there is no β-effect), and wave motions analogous to 
planetary waves may occur.

These are called topographic waves, or if β ≠ 0, Rossby-
topographic waves. 

Topographic waves



We consider here the case  β = 0.

The potential vorticity equation may be written 
Dζ/Dt = {(f + ζ)/h} Dh/Dt which gives, on 

linearization about a state of zero motion,
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where h0 is some reference depth.

This equation has the interpretation that the local rate 
of change of vorticity is equal to the rate of vorticity 
production by vortex line stretching caused by the 
advection of fluid across the depth contours.
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A simple example is that of topography h = h0e-μy with μ > 0. 



We consider motions which are independent of y.
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when ∂ /∂y ≡ 0, remembering that v = ∂ψ/ ∂x.

It follows that the dynamics is similar to that of planetary 
waves with f playing the role of β, and there exists a 
travelling wave solution of the form

ˆv v cos (kx t) with f / k= − ω ω = − μ

ˆv v cos (kx t) with f / k= − ω ω = − μ

Hence decreasing depth (in the ocean, for example) plays a 
role analogous to that of increasing Coriolis parameter.

There is one essential difference between this and the 
earlier problem.
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This cross motion is necessary to offset the divergence which 
occurs as fluid columns move across the depth contours.

Recall that, at middle latitudes, β ~ f/a. Thus the effect of 
bottom topography and β will be comparable, leading to a 
so-called mixed Rossby-topographic wave, if fμ ~ β, i.e., if  
μ ~ 1/a.

There are many areas in the ocean where bathymetric 
slopes far exceed the critical slope given by fh−1dh/dy ~ β, 
and in such regions, the beta effect is completely swamped 
by that of bottom topography, assuming of course that the 
motions are barotropic; that is they are uniform all the 
way to the ocean floor.

A particular example of topographic waves is that of shelf 
waves.

These are a type of "edge wave" which owe their existence to 
the sloping continental shelf linking the coast with the deep 
ocean floor, sometimes referred to as the abyssal plain.

See next figure =>

Continental shelf waves



land

shelf

abyssal plain

typically 4 km

column motions are mainly normal to the 
coast, but the wave propagates along the coast

typically 100 km

sea

Flow configuration for a model for continental shelf  waves.

Continental shelf waves

Continental shelf waves are observed off the east coast of 
Australia, for example. They have a period (2π/ω) of a few 
days.

At Sydney, shelf waves propagate with a speed of about 
2.8 ms-1 (240 km/day).

They are believed to be generated by the passage of 
synoptic scale meteorological disturbances across the coast.


