

The local slope of an isotherm in the frontal zone is $\varepsilon(x,z)$, given by $\tan \varepsilon = -\frac{\delta z}{\delta x} = \frac{\frac{\partial T}{\partial x}}{\frac{\partial T}{\partial z}}$ Note that $\delta x > 0$ implies $\delta z < 0$ if, as shown, $0 < \varepsilon < \pi/2$. Eliminate p from $-fv = -\frac{1}{\rho_*}\frac{\partial p}{\partial x}$ and $0 = -\frac{1}{\rho_*}\frac{\partial p}{\partial z} + g\frac{T-T_2}{T_*}$ $f \frac{\partial v}{\partial z} = \frac{1}{\rho_*}\frac{\partial^2 p}{\partial x\partial z} = \frac{g}{T_*}\frac{\partial T}{\partial x} = \frac{g}{T_*}\tan\varepsilon\frac{\partial T}{\partial z}$ \Rightarrow the thermal wind equation \Rightarrow the vertical shear across the front to the horizontal temperature contrast across it.

Solution of the boundary-layer equations Put U = u + iv $i = \sqrt{-1}$ Add i times $f(v_g \cdot v) = v \frac{\partial^2 u}{\partial z^2}$ to $-f(u_g \cdot u) = v \frac{\partial^2 v}{\partial z^2}$ i a single complex equation for U: $\frac{\partial^2 U}{\partial z^2} - \alpha^2 U = -\alpha^2 U_g$ where $\alpha^2 = \frac{f}{v}i$ or $\alpha = \pm \alpha_*$, $\alpha_* = (f / v)^{\frac{1}{2}}(1 + i) / \sqrt{2}$ Boundary conditions: no-slip (u = 0) at z = 0, and $u \to u_g$ as $z \to \infty$.

The asymptotic suction boundary layer

- Over the rigid leading section of the plate, the boundary layer thickens in proportion to the square root of the downstream distance.
- From the point at which suction commences, the boundary layer evolves to a uniform thickness in which state the rate at which fluid is retarded is just balanced by the rate at which it is removed.
- It can be shown that the boundary layer thickness in the asymptotic state is proportional to the fluid viscosity and inversely proportional to the suction velocity.

