
Chapter 5

Fronts, Ekman Boundary Layers and
Vortex Flows

A front refers to the sloping interfacial region of air 
separating two air masses, each of more or less uniform 
properties.

An example is the polar front, a zone of relatively large 
horizontal temperature gradient in the mid-latitudes that 
separates air masses of more uniform temperatures that lie 
poleward and equatorward of the zone.

Other examples are the cold and warm fronts associated 
with extra-tropical cyclones.

Fronts



Cold Front over Munich

Latitude
Composite meridional cross-section at 80°W of mean temperature and the 
zonal component of geostrophic wind computed from 12 individual cross-
sections in December, 1946.
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Often, quite sharp temperature differences occur across a 
frontal surface - a few degrees over a few kilometres.

Melbourne's famous summertime "cool change", Sydney's 
"southerly buster" and New Zealand’s "southerly change" 
are examples par excellence.

The first two are fronts which cross southeastern Australia 
and make the sharp transition region between a very warm 
air mass originating from deep over the continent and much 
cooler air from the Southern Ocean.

Intense atmospheric fronts

Southerly Buster over Sydney
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Margules' model

The simplest model representing a frontal "discontinuity". The front is 
idealized as a sharp, plane, temperature discontinuity separating two 
inviscid, homogeneous, geostrophic flows.

(i) the Boussinesq approximation; in particular that the 
temperature difference between the air masses is small in 
the sense that (T1 − T2 )/T* << 1

T* = (T1 + T2)/2 is the mean temperature of the two air 
masses and T2 the temperature of the cold air;

(ii) that the flow is everywhere parallel with the front and 
that there are no along-front variations in it; i.e., ∂ /∂y ≡ 0; 
and

(iii) that diffusion effects are absent so that the frontal 
discontinuity remains sharp.

Assumptions of Margules’ model
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We consider Margules' solution to be the limiting case of the 
situation where the temperature gradients are finite, but very 
small, except across the frontal zone where they are very large.
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The local slope of an isotherm in the frontal zone is ε(x,z), 
given by
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Note that δx > 0 implies δz < 0 if, as shown, 0 < ε < π/2.
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⇒ the thermal wind equation ⇒ the vertical shear across the 
front to the horizontal temperature contrast across it.

Integrate
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vertically across the front from z2 to z
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ε* is the angle of some intermediate isotherm between z2 and z1



v v g
fT

T T1 2 1 2= + −
∗

∗( ) tan ε

δ
δ

εv g T
fT

=
∗

tan

Margules' formula relates the change in geostrophic wind 
speed across the front to the temperature difference across 
the front and to the frontal slope.

Margules' formula

Note, with 0 < ε < π/2
(i)   δT = T1 - T2 > 0, otherwise the flow is gravitationally             
unstable, and,

(ii)  δv < 0 (> 0) if f < 0 (> 0) i.e., there is always a cyclonic 
change in v across the frontal surface.

(iii)  it is not necessary that v1 < 0 (> 0) and v2 >0 (< 0) 
separately; only the change in v is important.
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Margules' solution i.e. v1 and v2 related as shown and u and 
w everywhere zero, is an exact solution of the Euler 
equations of motion in a rotating frame.

Margules' formula is a diagnostic one for a stationary, or 
quasi-stationary front; it tells us nothing about the 
formation (frontogenesis) or decay (frontolysis) of fronts.

It is of little practical use in forecasting, since active fronts, 
which are responsible for a good deal of the 'significant 
weather' in middle latitudes, are always associated with 
rising vertical motion and are, therefore, normally 
accompanied by precipitation.

There are difficulties even in constructing an extension of 
Margules' model to a front that translates with a uniform 
geostrophic flow (Sutcliffe, 1938; Smith, 1989). 

Fronts occur also in the ocean.
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Schematic representation of a translating cold front and a translating warm 
front as they might be drawn on a mean sea level synoptic chart for the 
northern hemisphere. Note the sharp cyclonic change in wind direction 
reflected in the discontinuous slope of the isobars.



Viscous boundary layers play an important role in the 
dynamics of rotating fluids because of their ability to induce 
motion normal to a boundary that is perpendicular to the 
axis of rotation.

Consider laminar viscous flow adjacent to a rigid boundary
at z = 0, the axis of rotation being as usual in the z direction.

Assume that far from the boundary viscous effects can be 
neglected and the flow is geostrophic with velocity ug
parallel to the x-y plane.

Viscous boundary layers: Ekman's solution
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The vertical momentum equation with the boundary-layer 
approximation is
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The geostrophic pressure gradient is transmitted 
through to the boundary.
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Put U = u + iv

Add i times
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a single complex equation for U:
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Boundary conditions:  no-slip (u = 0) at z = 0, and
u → ug as z →∞ .

Solution of the boundary-layer equations
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These velocity profiles are shown in the next slide, together 
with the hodograph of u(z), and the surface stress vector τ.

⇒ the boundary layer depth scale.
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Ekman velocity profiles
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The surface stress is defined as

In complex notation

τ μ
∂
∂

μα
δ

μ π= O
QP = =

=
∗

U
z

U e U
z

g
i

g
0

42 /

The surface stress acts at 45 deg. to the left (NH), right (SH), 
of the geostrophic velocity ug.

The surface stress
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If ug is spatially and temporally constant, the Ekman 
solution given is an exact solution of the full Navier-
Stokes' equation.

At 45 deg. latitude, f ~ 10−4 s−1 and for air and water at 
room temperature, ν takes the respective values:
1.5 x 10−5 m2s-1 and 1.0 x 10−6 m2s-1.

Thus, calculated values of δ at latitude 45 deg (Munich 
is 48 deg) are for air 0.55 m; for water 0.14 m.

For larger rotation rates, e.g., a laboratory tank 
rotating at 1 radian/sec. (approx. 10 revs. per min.),     
δair = 0.0033 m and δwater = 0.0008 m.

Notes

Calculations apply to laminar flow only.

The δ's do not relate to the atmosphere or oceans where the 
flows are generally turbulent and the effective viscosities are 
much greater.

Observations show that frictional effects in the atmospheric 
boundary layer extend through a depth of about 1 km. 

Assume (crude!) that turbulent momentum transport can be 
characterized by a constant "eddy" viscosity KM, analogous 
to laminar viscosity:

⇒ an effective value of KM at 45° lat. of order 10 m2s-1

(compare with ν for air which is ~ 10-5 m2s−1).

More notes



One particularly interesting feature of the Ekman 
boundary layer is its constant thickness, measured by δ.

In most aerodynamic flows at high Reynolds' numbers, 
the boundary layers thicken downstream as fluid 
retarded by friction accumulates near the boundary.

One type of boundary layer that does have a uniform 
thickness is the asymptotic suction boundary layer over 
a porous flat plate.

The Ekman boundary layer has constant 
thickness

U

boundary layer thickness

rigid plate porous plate vs

The establishment of the asymptotic suction boundary layer 
over a porous plate.

The scale normal to the plate is greatly exaggerated.

The asymptotic suction boundary layer



Over the rigid leading section of the plate, the boundary 
layer thickens in proportion to the square root of the 
downstream distance.

From the point at which suction commences, the 
boundary layer evolves to a uniform thickness in which 
state the rate at which fluid is retarded is just balanced  
by the rate at which it is removed.

It can be shown that the boundary layer thickness in the 
asymptotic state is proportional to the fluid viscosity and 
inversely proportional to the suction velocity.

The asymptotic suction boundary layer

Aircraft wing design



In the case of the Ekman layer, the disruption of geostrophic 
balance by friction leaves a net pressure gradient force 
towards low pressure.

Thus, fluid which is retarded in the downstream direction is 
"re-energized" and flows across the isobars towards low 
pressure.

This induced cross-isobaric mass flux in the Ekman layer has 
important consequences:

If  ug varies spatially, there exists a mass flux convergence 
leading to a vertical velocity component at the outer edge of 
the boundary layer.

This induced velocity can have a profound effect on the 
interior flow outside the boundary layer.

The constant thickness Ekman layer
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