
More on Geostrophic Flows

Chapter 4 (continued)

So far we have assumed a homogeneous, incompressible 
fluid:

no buoyancy forces

continuity equation ⋅ u = 0

Consider now the additional effects of having an 
inhomogeneous fluid; i.e., variable ρ.

Unless the density is a function of height only, buoyancy 
forces must be included in the analysis.

The momentum equation becomes, assuming geostrophy,
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The effects of stratification



For an incompressible fluid we can still use the simple form 
of the continuity equation 

∇ ⋅ =u 0

under certain circumstances.

We make the Boussinesq approximation which assumes that 
density variations are important only:

- inasmuch as they give rise to buoyancy forces and

- that variations in density as they affect the fluid inertia
or continuity can be ignored.

ρ∗ may be regarded as an average density over the whole 
flow domain, or the density at some particular height.

The Boussinesq approximation

The neglect of density variations with height requires strictly 
that  D/Hs << 1.
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D is the flow depth
HS the density height scale

The assumption is that δρ0 /ρ0 << 1

ρ0 (z) is the average density at height z

δρ0 is the maximum difference in ρ0 (z)

The full continuity equation for an inhomogeneous compressible
fluid is

in the Boussinesq approximation



The Boussinesq approximation is an excellent one in the 
oceans where relative density differences nowhere exceed 
more than one or two percent.

It is not very accurate in the atmosphere, except for 
motions in shallow layers.

The reason is that air is compressible under its own weight 
to a degree that the density at the height of tropopause, say 
10 km, is only about one quarter the density at sea level.

For motions which occupy the whole depth of the 
troposphere, D ~ Hs.

Validity of the Boussinesq approximation

At any height in the atmosphere departures of ρ from ρ(z)
are small and an accurate  form of the full continuity 
equation appropriate to deep atmospheric motions is
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The inclusion of ρ0(z) - the so-called anelastic
approximation - complicates the mathematics without 
leading to new insights.

We shall use the Boussinesq approximation in our 
study of atmospheric motions.

The assumption is quite adequate for acquiring an 
understanding of the dynamics of these motions.

The anelastic approximation
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Now the Taylor-Proudman theorem no longer holds. 

In component form with z vertical and in the direction 
of  Ω as before, the thermal wind equation becomes
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To explore the effects of stratification we take again 
the curl of the momentum equation to obtain the 
thermal wind equation

The thermal wind equation
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Again, w = 0 at z = 0 ⇒ w = 0 in the entire flow.

Later we shall show that for finite, but small Ro, w is 
not exactly zero, but is formally of order Ro.

Here we are considering the limit Ro → 0.
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With the Boussinesq approximation, the buoyancy 
force can be approximated, either in terms of density 
or temperature as follows:

T* is a constant temperature analogous to ρ*
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Thermal wind equation

A simple zonal flow in thermal wind balance
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The vertical wind gradient is parallel with the isotherms at 
any height and has low temperature on the left in the 
northern hemisphere and on the right in the southern 
hemisphere.

The vertical wind gradient is proportional to the magnitude 
of the temperature gradient.

So far we assumed that the geostrophic wind and thermal 
wind are in the same direction.

This happens if the isotherms have the same direction at 
all heights.

In general this is not the case and we consider now the 
situation in which the geostrophic wind blows at an angle 
to the isotherms.

General case



Suppose that the geostrophic wind at height z blows 
towards high temperature.

The geostrophic wind at height z + δz, (δz small), can be 
written
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The thermal wind

Turning of the geostrophic wind with height as a result of 
thermal wind effects (northern hemisphere case).

T

T + ΔT

u(z)
u(z + Δz)

Δu

T

T + ΔT

u(z) u(z + Δz)

Δu

Warm air advection Cold air advection



When the wind direction turns clockwise, or anticyclonic, 
with height in the northern hemisphere we say that the 
wind veers with height.

If the wind turns cyclonically with height we say it backs 
with height.

In the southern hemisphere 'cyclonic' and 'anticyclonic' 
have reversed senses, but what is confusing is that the 
terms "veering" and "backing" still mean turning to the 
right or left respectively.

Thus cyclonic means in the direction of the earth's 
rotation in the particular hemisphere (counterclockwise
in the northern hemisphere, clockwise in the southern 
hemisphere).

Veering and backing

In general, any air mass will have horizontal temperature 
gradients within it and the isotherms will be oriented 
differently at different heights.

Therefore, unless the wind blows in a direction parallel 
with the isotherms, there will be local temperature 
changes at any point simply due to advection.

If the temperature of fluid parcels is conserved during 
horizontal displacement, we may express this 
mathematically by the equation DT/Dt = 0.

Then the local rate of change of temperature at any point, 
∂T/∂t, is given by
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Thermal advection
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called the thermal advection

If warmer air flows towards a point u ⋅ T <  0, and 
∂T/∂t > 0.

We call this warm air advection.

It follows that there is a connection between thermal 
advection and the turning of the geostrophic wind vector 
with height.

In the northern (southern) hemisphere, the wind veers
(backs) with height in conditions of warm air advection.

It backs (veers) with height when there is cold air 
advection.

It is a diagnostic equation and as such is useful, in 
checking analyses of the observed wind and temperature 
fields for consistency.

Secondly, the z component of the thermal wind equation 
is 0 = −ρ*

-1 ∂ p/ ∂ z + b, which shows that the density-, or 
buoyancy field is in hydrostatic equilibrium.

Finally, the thermal wind constraint is important also in 
ocean current systems wherever there are horizontal 
density contrasts.

Some notes concerning the thermal wind equation



When vertical motions are present, the equation

DT/Dt = 0

may be inaccurate since ascent or subsidence is associated 
also with a thermal tendency.

D
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However, when diabatic processes such as radiative 
heating and cooling can be neglected, and provided that 
condensation or evaporation does not occur, the potential 
temperature θ, of an air parcel is conserved, even when 
the parcel ascends or subsides.

This is expressed mathematically by the formula               .

The thermodynamic equation

This formula encapsulates the first law of 
thermodynamics.

This is consistent with ⋅ u = 0 and                          .

For a Boussinesq fluid, i. e. one for which the Boussinesq 
approximation is satisfied, density is conserved following a 
fluid parcel, i.e., D
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In terms of the buoyancy force σ,               may be written 
in the form
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where                                    is the square of the Brunt-
Väisälä frequency or the buoyancy frequency of the motion. 
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The thermodynamic equation for a Boussinesq liquid
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θ0(z) is the basic state potential temperature distribution. 

In a shallow atmosphere, the thermodynamic equation

reduces to the same form as

D
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with σ given by g(θ - θ0)/θ∗ and with N2 replaced by
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This equation represents the change in buoyancy force 
experienced by a fluid parcel as it moves around and 
ascends or descends.
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Some authors, including Holton, use a coordinate system in 
which pressure is used instead of the vertical coordinate z.

This has certain advantages:

(i)  pressure is a quantity measured directly in the global 
meteorological data network and upper air data is 
normally presented on isobaric surfaces: i.e. on surfaces p 
= constant rather than z = constant;

(ii) the continuity equation has a much simpler form in 
pressure coordinates. 

A major disadvantage of pressure coordinates is that the 
surface boundary condition analogous to, say, w = 0 at z = 0
over flat ground, is much harder to apply.

The use of pressure coordinates

The simplifications of the pressure coordinate systems 
disappear in the case of nonhydrostatic motion.

The following comparison is for the hydrostatic system of 
equations only.

Comparison of the equations in height and 
pressure coordinates



horizontal momentum equations
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φ is essentially gz

φ is called the geopotential.

z the height of an isobaric surface

ω plays the role of w in p-coordinates
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In the pressure coordinate system, p is the total pressure pT.

In most situations, |DhpT/Dt| << |ρgw| so that sgn(ω) = − sgn(w).

Thus ω negative (positive) signifies ascending (descending) 
motion.

In the pressure coordinate system, the subscripts p on the 
operators Dp/Dt and p signify that derivatives are computed 
with p held fixed.

Because the isobaric surfaces are very close to horizontal, 
there is no practical difference between Dh uh/Dt and Dpuh/Dt.

Certainly such a difference could not be measured.

Some notes

In pressure coordinates, the geostrophic equation is

f hk u∧ = −∇φ with solution u kh f= − ∧∇φ

The thermal wind equation is frequently used in the form
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geopotential thickness between 500 mb and 1000 mb

is proportional to the mean temperature 
between the two pressure surfaces.

′ =h R T ln 2



Thickness charts are charts showing contours of equal 
thickness.

They are used by weather forecasters, inter alia, to locate 
regions of cold and warm air in the lower troposphere.

In Australia, the thickness isopleths are given in metres; 
that is, contours of h'/g are plotted.

They are similar to 500 mb charts, because often

Thickness charts

u500 mb >>  u1000 mb in magnitude.

Because of the relationship between                  in pressure
coordinates we may obtain a thickness tendency equation

′h and T
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The thermal tendency equation is
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where       is a measure, in some sense, of the mean wind 
between 1000 mb and 500 mb.

u h

Thickness advection



is approximately the surface wind plus a weighted 
measure of the thermal wind, or wind difference between 
1000 mb and 500 mb. 

Write                               where us is the surface geostrophic 
wind, ua is a measure of the horizontal ageostrophic wind 
and λ is constant.

u u u uh s a= + +λ '

In many circumstances, |ua| is small compared with |us| 
and |u’| ,
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Since

Under circumstances where the temperature field is 
merely advected (this is not always the case), the 
thickness tendency is due entirely to advection by the 
surface wind field.

Accordingly the surface isobars are usually displayed 
on thickness charts so that us can be deduced readily in 
relation to h'.

A typical thickness chart is shown in the next figure.
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