
Chapter 4

Geostrophic Flows

Let Ro → 0
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For frictionless motion (D = 0) the momentum equation is
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This is called the geostrophic equation

We expect this equation to hold approximately in synoptic 
scale motions in the atmosphere and oceans, except possibly 
near the equator.

The geostrophic approximation

perturbation pressure
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In geostrophic motion, the perturbation pressure 
gradient is perpendicular to Ω.
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Take the scalar product with Ω

Choose rectangular 
coordinates:
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velocity components u = (u,v,w),       u = uh + wk

Ω = Ωkk = (0,0,1)

uh =  (u,v,0) is the horizontal flow velocity
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(k ⋅ u)k = (0, 0 w)

h p = (∂p/∂x, ∂p/∂y, 0)
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This is the solution for geostrophic flow.
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The geostrophic wind blows parallel to the lines (or more 
strictly surfaces) of constant pressure - the isobars, with 
low pressure to the left.

Well known to the layman who tries to interpret the 
newspaper "weather map", which is a chart showing 
isobaric lines at mean sea level.

In the southern hemisphere, low pressure is to the right.

The geostrophic wind



For simplicity, let us orientate the coordinates so that x
points in the direction of the geostrophic wind.

Then v = 0,  implying that  ∂p/∂x = 0 .
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Note that for fixed Ω , the winds are stronger when the 
isobars are closer together and, for a given isobar 
separation, they are stronger for smaller |Ω|.

Choice of coordinates

low p

high p

isobar

isobar

Coriolis force

pressure gradient force

u

(Northern hemisphere case:  > 0)

Geostrophic flow
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A mean sea level isobaric chart over Australia

there exists streamfunction ψ such that
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Note that in geostrophic flow  h ⋅ uh = 0
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Compare with

ψ = p / 2Ωρ

The streamlines are coincident with the isobars ⇒ just 
another way of saying the flow is parallel with the isobars.

Streamlines and Isobars



For an incompressible fluid,  ⋅ u = 0 .

Also, for geostrophic flow, h ⋅ uh = 0 .

then ∂w/∂z = 0 implying that w is independent of z.
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Note also that the solution

tells us nothing about the vertical velocity w.

If  w = 0 at some particular z, say z = 0, which might be the 
ground, then w ≡ 0.

The geostrophic equation is degenerate, i.e. time 
derivatives have been eliminated in the approximation.

We cannot use the equation to predict how the flow will 
evolve.

Such equations are called diagnostic equations.

In the case of the geostrophic equation, for example, a 
knowledge of the isobar spacing at a given time allows 
us to calculate, or 'diagnose', the geostrophic wind.

We cannot use the equation to forecast how the wind 
velocity will change with time.

The geostrophic equation is degenerate!



The curl of the geostrophic equation gives
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In our rectangular coordinate frame,
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This is the Taylor-Proudman theorem which asserts 
that geostrophic flows are strictly two-dimensional.

u = u(x, y, t) only; it is independent of z.

The Taylor-Proudman Theorem

Note that is the vorticity equation for 
geostrophic flow of a homogeneous fluid.
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The implications of the Taylor-Proudman theorem are 
highlighted by a series of laboratory experiments 
performed by G. I. Taylor after whom the theorem is 
named.
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An obstacle with linear dimension a is towed with speed 
U along the bottom of a tank of fluid of depth greater 
than a in solid body rotation with angular velocity Ω.

Taylor’s experiment

Taylor performed also a second experiment in which a 
sphere was towed slowly along the axis of a rotating 
fluid. 
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no column observed 
downstream

It is worth reiterating the conditions of the Taylor-
Proudman theorem:

The theorem applies to slow, steady, inviscid flow in a 
homogeneous (ρ = constant) rotating fluid.

If the flow becomes ageostrophic in any locality, the 
theorem breaks down and three-dimensional flow will 
occur in that locality, i.e., time dependent, nonlinear, or 
viscous terms may become important.



Taylor columns are not observed in the atmosphere in 
any recognizable form, presumably because one or 
more of the conditions required for their existence are 
violated.

It has been suggested by R. Hide that the Giant Red 
Spot on the planet Jupiter may be a Taylor column 
which is locked to some topographical feature below 
the visible surface.

Although it is not easy to test this idea, it should be 
remarked that Jupiter has a mean diameter 101/2 times 
that of the earth and rotates once every ten hours.

Jupiter

Jupiter



Jupiter’s Red Spot

The phenomenon of blocking in a stably stratified fluid is 
analogous to that of Taylor column formation in a rotating 
fluid.

If an obstacle with substantial lateral extent such as a long 
cylinder is moved horizontally with a small velocity parallel 
to the isopycnals (lines of constant ρ) in a stably stratified 
fluid, the obstacle will push ahead of it and pull behind it 
fluid in a layer of order the diameter of the body.

Blocking
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Blocking

The restoring force on a parcel of fluid displaced 
vertically in a stratified fluid is approximately minus N2

times the displacement.

Blocking occurs when parcels of fluid have insufficient 
kinetic energy to overcome the buoyancy forces which 
would be experienced in surmounting the obstacle.

We can do a rough calculation to illustrate this.

Physical interpretation of blocking



2a

Consider a stationary obstacle symmetrical about the 
height  z = h.

Suppose a fluid parcel of mass m is at a height 

z = h

z h a= + 1
2

To surmount the obstacle, the parcel will need to rise a 
distance of at least        .1

2 a

The work it will have to do against the buoyancy forces is
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If the fluid parcel moves with speed U, its kinetic energy is
1
2

2mU

Neglecting friction effects, this will have to be greater than

for the parcel to be able to surmount the obstacle, i.e.
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Alternatively, if 2U/aN < 1.0, all fluid parcels in a layer of 
at least depth a centred on z = h will be blocked.



Blocking is a common occurrence in the atmosphere in the 
neighbourhood of hills or mountains.

A good example is the region of Southern California. 

Blocking in the atmosphere

Pacific
Ocean

Los Angeles
Coastal Plain

San Gabriel
Mountains

Mojave
Desert

Blocked smog air

Blocking over Southern California



Los Angeles Smog

We can interpret the formation of Taylor columns along 
the axis of a rotating fluid in a similar manner to the 
foregoing interpretation of blocking.

In the former case, fluid particles, or rings of fluid must do 
work against centrifugal forces to pass round the obstacle.

If they have insufficient energy to do this, the flow will be 
"blocked" and a Taylor column will form.

It is instructive to work through some details. 

Analogy between blocking and axial Taylor columns
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Consider a fluid rotating with tangential velocity v(r) about 
a vertical axis. 

The forces acting on the 
parcel at B are:

the parcel at A conserves its 
angular momentum

during its radial displacement to B
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Special case: solid body rotation (as in the Taylor column 
experiment)

v = Ωr, and for a small displacement from radius r1 = r to  
r2 =  r + ξ,

The displaced parcel experiences an outward force per unit 
mass,
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F ≈ −4 2Ω ξ



F ≈ −4 2Ω ξ

A fluid parcel displaced outwards experiences an inwards 
force and one displaced inwards experiences an outward 
force. In both cases there is a restoring force, 
proportional to the displacement and to the square of the 
angular frequency Ω.

This is in direct analogy with the restoring force 
experienced in a stably stratified, non-rotating fluid.

The physical discussion relating to blocking carries over 
to explain the formation of axial Taylor columns.

v = Ωr

The stability of solid body rotation

We can now establish a criterion for the stability of a general 
rotating flow v(r) analogous to the criterion in terms of 
sgn(N2) for the stability of a density stratified fluid.
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A general swirling flow v(r) is stable, neutrally-stable, or 
unstable as the square of the circulation increases, is zero, 
or decreases with radius.

Let Γ(r) = rv(r) be the circulation at radius r.

Then for a small radial displacement ξ, the restoring force
on a displaced parcel is given by

Stability of a rotating fluid
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