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The geostrophic approximation

For frictionless motion (D = 0) the momentum equation is
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This is called the geostrophic equation

We expect this equation to hold approximately in synoptic
scale motions in the atmosphere and oceans, except possibly
near the equator.
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Take the scalar product with Q
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In geostrophic motion, the perturbation pressure
gradient is perpendicular to Q.

Choose rectangular

coordinates: _
k = (0,0,1) z p =0k
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velocity components u = (u,v,w), u=u,+wk

u, = (u,v,0) is the horizontal flow velocity
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This is the solution for geostrophic flow.

The geostrophic wind
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» The geostrophic wind blows parallel to the lines (or more
strictly surfaces) of constant pressure - the isobars, with
low pressure to the left.

» Well known to the layman who tries to interpret the
newspaper "‘weather map"’, which is a chart showing
isobaric lines at mean sea level.

> In the southern hemisphere, low pressure is to the right.




Choice of coordinates

» For simplicity, let us orientate the coordinates so that x
points in the direction of the geostrophic wind.

» Thenv =0, implying that dp/ox=0.
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> Note that for fixed Q , the winds are stronger when the
isobars are closer together and, for a given isobar
separation, they are stronger for smaller |Q]|.
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(Northern hemisphere case: > 0)




A mean sea level isobaric chart over Australia

Streamlines and Isobars

Note that in geostrophic flow V,- u,=0
» there exists streamfunction y such that
Up = (_Wy’foo) =k A Vh\v
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The streamlines are coincident with the isobars = just
another way of saying the flow is parallel with the isobars.
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tells us nothing about the vertical velocity w.

» For an incompressible fluid, V-u=0.
» Also, for geostrophic flow, V,- u,=0.
» then ow/oz = 0 implying that w is independent of z.
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If w=0 at some particular z, say z = 0, which might be the
ground, thenw= 0.

The geostrophic equation is degenerate!

» The geostrophic equation is degenerate, i.e. time
derivatives have been eliminated in the approximation.

» We cannot use the equation to predict how the flow will
evolve.

» Such equations are called diagnostic equations.

> In the case of the geostrophic equation, for example, a
knowledge of the isobar spacing at a given time allows
us to calculate, or 'diagnose’, the geostrophic wind.

» We cannot use the equation to forecast how the wind
velocity will change with time.




The Taylor-Proudman Theorem

The curl of the geostrophic equation gives
2(Q-Viu=0

In our rectangular coordinate frame,
u _
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» u =u(x, y, t) only; it is independent of z.
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This is the Taylor-Proudman theorem which asserts
that geostrophic flows are strictly two-dimensional.

Note that 2(Q-V)u=0 is the vorticity equation for
geostrophic flow of a homogeneous fluid.

» The implications of the Taylor-Proudman theorem are
highlighted by a series of laboratory experiments

performed by G. I. Taylor after whom the theorem is
named.




Taylor’s experiment

An obstacle with linear dimension a is towed with speed
U along the bottom of a tank of fluid of depth greater
than a in solid body rotation with angular velocity Q.

Taylor performed also a second experiment in which a
sphere was towed slowly along the axis of a rotating
fluid.




\ no column observed
downstream

» Itis worth reiterating the conditions of the Taylor-
Proudman theorem:

» The theorem applies to slow, steady, inviscid flow in a
homogeneous (p = constant) rotating fluid.

» If the flow becomes ageostrophic in any locality, the
theorem breaks down and three-dimensional flow will
occur in that locality, i.e., time dependent, nonlinear, or
viscous terms may become important.




Jupiter

» Taylor columns are not observed in the atmosphere in
any recognizable form, presumably because one or
more of the conditions required for their existence are
violated.

> It has been suggested by R. Hide that the Giant Red
Spot on the planet Jupiter may be a Taylor column
which is locked to some topographical feature below
the visible surface.

» Although it is not easy to test this idea, it should be
remarked that Jupiter has a mean diameter 10%/, times
that of the earth and rotates once every ten hours.

Jupiter




Jupiter’s Red Spot

Blocking

» The phenomenon of blocking in a stably stratified fluid is
analogous to that of Taylor column formation in a rotating
fluid.

» If an obstacle with substantial lateral extent such as a long
cylinder is moved horizontally with a small velocity parallel
to the isopycnals (lines of constant p) in a stably stratified
fluid, the obstacle will push ahead of it and pull behind it
fluid in a layer of order the diameter of the body.
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Blocking

Po(2)

Physical interpretation of blocking

» The restoring force on a parcel of fluid displaced
vertically in a stratified fluid is approximately minus N2
times the displacement.

» Blocking occurs when parcels of fluid have insufficient
kinetic energy to overcome the buoyancy forces which
would be experienced in surmounting the obstacle.

» We can do a rough calculation to illustrate this.
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» Consider a stationary obstacle symmetrical about the
height z =h.

Suppose a fluid parcel of mass mis at a height z=h+3a

To surmount the obstacle, the parcel will need to rise a
distance of at least 1a .

The work it will have to do against the buoyancy forces is
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If the fluid parcel moves with speed U, its kinetic energy is
1 mu?
Neglecting friction effects, this will have to be greater than
imuU? > L mN%?
for the parcel to be able to surmount the obstacle, i.e.
U>Z$aN

Alternatively, if 2U/aN < 1.0, all fluid parcels in a layer of
at least depth a centred on z = h will be blocked.




Blocking in the atmosphere

» Blocking is a common occurrence in the atmosphere in the
neighbourhood of hills or mountains.

» A good example is the region of Southern California.

Blocking over Southern California

Blocked smog air
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Los Angeles Smog

Analogy between blocking and axial Taylor columns

» We can interpret the formation of Taylor columns along
the axis of a rotating fluid in a similar manner to the
foregoing interpretation of blocking.

> In the former case, fluid particles, or rings of fluid must do
work against centrifugal forces to pass round the obstacle.

> If they have insufficient energy to do this, the flow will be
"blocked™ and a Taylor column will form.

> Itis instructive to work through some details.




Consider a fluid rotating with tangential velocity v(r) about
a vertical axis.

the parcel at A conserves its
angular momentum
during its radial displacement to B
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The displaced parcel experiences an outward force per unit
mass,

F = centrifugal force — radial pressure gradient
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» Special case: solid body rotation (as in the Taylor column
experiment)

—

> v =Qr, and for a small displacement from radiusr, =r to

r,=r+Eg, Fz_4Q2EJ




The stability of solid body rotation

v=Qr > F~-40%

» A fluid parcel displaced outwards experiences an inwards
force and one displaced inwards experiences an outward
force. In both cases there is a restoring force,
proportional to the displacement and to the square of the
angular frequency Q.

» This is in direct analogy with the restoring force
experienced in a stably stratified, non-rotating fluid.

» The physical discussion relating to blocking carries over
to explain the formation of axial Taylor columns.

Stability of a rotating fluid

We can now establish a criterion for the stability of a general
rotating flow v(r) analogous to the criterion in terms of
sgn(N2) for the stability of a density stratified fluid.

Let I'(r) = rv(r) be the circulation at radiusr.

Then for a small radial displacement &, the restoring force
on a displaced parcel is given by

A general swirling flow v(r) is stable, neutrally-stable, or
unstable as the square of the circulation increases, is zero,
or decreases with radius.
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