
The Equations of Motion in a Rotating 
Coordinate System

Chapter 3



Since the earth is rotating about its axis and since it is 
convenient to adopt a frame of reference fixed in the earth, 
we need to study the equations of motion in a rotating 
coordinate system.

Before proceeding to the formal derivation, we consider 
briefly two concepts which arise therein:

Effective gravity and Coriolis force
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effective gravity on an earth 
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g is everywhere normal to the earth’s surface

Effective Gravity



Effective Gravity

If the earth were a perfect sphere and not rotating, the only 
gravitational component g* would be radial.

Because the earth has a bulge and is rotating, the effective 
gravitational force g is the vector sum of the normal gravity to 
the mass distribution g*, together with a centrifugal force
Ω2R, and this has no tangential component at the earth’s 
surface.

g g * R= + Ω 2



A line at rest in an 
inertial system

A line that rotates with 
the roundabout

Apparent trajectory of 
the ball in a rotating 

coordinate system

Ω

The Coriolis force



Mathematical derivation of the 
Coriolis force

Representation of an arbitrary vector A(t)
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A(t) = A1(t)i + A2(t)j + A3(t)k

rotating
reference system

A(t) = A1´(t)i ´ + A2´ (t)j ´ + A3´ (t)k´
inertial

reference system



The derivative of A(t) with respect to time
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the subscript “a” denotes the derivative in an inertial reference frame
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The time derivative of an arbitrary vector A(t)
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Let a be any vector rotating with angular velocity Ω



Position vector r(t)

O

The relative velocity in a rotating frame of reference is

u i j k= = ′ + ′ + ′′ ′ ′d
dt

dr
dt

dr
dt

dr
dt

r 1 2 3

and u u ra = + ∧Ω

Want to calculate ua =
d
dt
ar

the absolute velocity of an air parcel



This air parcel starts relative to the earth with a poleward 
velocity V.

It begins relative to space with an additional eastwards velocity
component ΩRe .

V

Ω
u u ra = + ∧Ω

Example

Earth’s radius

ΩRe



We need to calculate the absolute acceleration if we wish to 
apply Newton's second law

d
dt
aua

Measurements on the earth give only the relative velocity u
and therefore the relative acceleration

d
dt
u

With A = ua d
dt
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d
dt

d
dt

a au u
= + ∧ + ∧ ∧2Ω Ω Ωu r( )absolute

acceleration

relative
acceleration

Coriolis-
acceleration

Centripetal
acceleration
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The Centripetal acceleration is directed inwards towards
the axis of rotation and has magnitude |Ω|2R.

Centripetal acceleration



Newton’s second law in a rotating frame of 
reference

ρ
d

dt
a au

= FIn an inertial frame:

density force per 
unit mass

In a rotating frame:

ρ[ ( )]d
dt
u

+ ∧ + ∧ ∧ =2Ω Ω Ωu r F



ρ ρΩ ρΩ
d
dt
u

= − ∧ − ∧ ∧F u r2 ( )Ω

Alternative form

Coriolis force Centrifugal force



Let the total force F = g* + F´ be split up

ρ ρΩ ρΩ
d
dt
u

= ′ + − ∧ − ∧ ∧F g * u r2 ( )Ω

Ω Ω Ω∧ ∧ = −( ) | |r R2

With g g * R= + Ω 2

ρ ρ ρΩ
d
dt
u

= ′ + − ∧F g u2

The centrifugal force associated with the earth’s rotation 
no longer appears explicitly in the equation; it is contained 
in the effective gravity.



When frictional forces can be neglected, F’ is the pressure 
gradient force

′ = −∇F p T per unit volume

ρ ρ ρΩ
d
dt
u

= ′ + − ∧F g u2

d
dt

p T
u

= − ∇ + − ∧
1 2
ρ

g uΩ per
unit mass

This is the Euler equation in a rotating frame of reference.

total pressure



u

− ∧2Ω u

the Coriolis force acts normal to the 
rotation vector and normal to the velocity. 

is directly proportional to
the magnitude of u and Ω. 

Note: the Coriolis force does no work because u ( u)⋅ ∧ ≡2Ω 0

Ω

The Coriolis force does no work



Define p p z pT = +0 ( ) where

p0(z) and ρ0(z) are the reference pressure and density fields

p is the perturbation pressure

Important: p0(z) and ρ0(z) are not uniquely defined

Euler’s equation becomes

dp
dz

g0
0= − ρ
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ρ

the buoyancy force

Perturbation pressure, buoyancy force

g = (0, 0, −g)



But the total force                                        is uniquely defined.

Important: the perturbation pressure gradient

and buoyancy force are not uniquely defined.

01 p ⎛ ⎞ρ − ρ
− ∇ + ⎜ ⎟ρ ρ⎝ ⎠
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g g



A mathematical demonstration

D 1 ˆp ' b
Dt

= − ∇ +
ρ

u
k

Momentum equation       Continuity equation

∇ ⋅ =u 0

The divergence of the momentum equation gives:

( ) ( )2 ˆp ' b⎡ ⎤∇ = − ∇⋅ ρ ⋅∇ −∇⋅ ρ⎣ ⎦u u k

This is a diagnostic equation!



Newton’s 2nd law

ρ ρD w
D t

p
z

g= − ∂
∂

−

mass × acceleration = force



buoyancy form
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buoyancy force is NOT unique
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it depends on choice of reference density ρo(z)
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Buoyancy force in a hurricane
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U(z)

z

Τ + ΔΤ

θ = constant

T

Initiation of a thunderstorm



θ = constant

tropopause
negative buoyancy

outflow

inflow

LCL
LFC

original heated air

negative buoyancy

positive
buoyancy



Some questions

How does the flow evolve after the original thermal has 
reached the upper troposphere?

What drives the updraught at low levels?

– Observation in severe thunderstorms: the updraught at 
cloud base is negatively buoyant!

– Answer: - the perturbation pressure gradient
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Scale analysis

Assume a homogeneous fluid  ρ = constant.

Euler’s equation becomes:
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2Ω = 10−4  s−1
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U = 50 m/sec
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Tropical cyclone
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Ro U
L

= =
×

= →−
− −

2
10

10 10 100
10 104

3 4
Ω ( , )

Dust devil



L

L = 100 m

U = 50 ms−1 

2Ω = 10−4s−1 

R o = ×5 10 3

Waterspout



L = 10 m U = 200 m s−1 2Ω = 10−4s−1  Ro = ×2 105

Aeroplane wing



Flow system L U m s−1 Ro 

Ocean circulation 103 - 5 × 103 km 1 (or less) 10−2 - 10−3 

Extra-tropical cyclone 103 km 1-10 10−2 - 10−1 

Tropical cyclone 500 km 50 (or >) 1 

Tornado 100 m 100 104 

Dust devil 10-100 m 10 103 - 104 

Cumulonimbus cloud 1 km 10 102 

Aerodynamic 1-10 m 1-100 103 - 106 

Bath tub vortex 1 m 10-1 103 

The Rossby number



(i) Large scale meteorological and oceanic flows are strongly 
constrained by rotation (Ro << 1), except possibly in 
equatorial regions.

(ii)Tropical cyclones are always cyclonic and appear to 
derive their rotation from the background rotation of the 
earth. They never occur within 5 deg. of the equator 
where the normal component of the earth's rotation is 
small. 

(iii) Most tornadoes are cyclonic, but why?
(iv) Dust devils do not have a preferred sense of rotation as 

expected.
(v) In aerodynamic flows, and in the bath (!), the effect of the 

earth's rotation may be ignored.

Summary



Many of the flows we shall consider have horizontal 
dimensions which are small compared with the earth's 
radius.
In studying these, it is both legitimate and a great 
simplification to assume that the earth is locally flat and 
to use a rectangular coordinate system with z pointing 
vertically upwards.
Holton (§2.3, pp31-35) shows the precise circumstances 
under which such an approximation is valid. 
In general, the use of spherical coordinates merely refines 
the theory, but does not lead to a deeper understanding of 
the phenomena.

Coordinate systems and the earth's sphericity
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Take rectangular coordinates fixed relative to the earth and 
centred at a point on the surface at latitude. 
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In component form

I will show that for middle latitude, synoptic-scale weather 
systems such as extra-tropical cyclones, the terms involving
cos φ may be neglected.

2 2 | | cos 2 | | sin∧ = φ ∧ + φ ∧Ω u Ω j u Ω k u

The important term for large-scale motions



To a good approximation

2 2Ω Ω∧ = ∧ = ∧u k u f u| | s in φ

f = 2 | | s i nΩ φ f k= f

Coriolis parameter



Much of the significant weather in middle latitudes is 
associated with extra-tropical cyclones, or depressions. 
We shall base our scaling on such systems.
Let L, H, T, U, W, P and R be scales for the horizontal size, 
vertical extent, time, |uh|, w, perturbation pressure, and 
density in an extra-tropical cyclone, say at 45° latitude, 
where f (= 2Ω sin φ ) and 2Ω cos φ are both  of order 10−4.
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Scale analysis of the equations for middle 
latitude synoptic systems



horizontal momentum equations

Du
Dt

v w
p
x

Dv
Dt

u
p
y

− + = −

+ = −

2 2
1

2
1

Ω Ω

Ω

sin cos

sin

φ φ
ρ

∂
∂

φ
ρ

∂
∂

scales U2/L  2 ΩU sin φ 2ΩW cos φ δP/ρL

10 10 10 104 3 6 3− − − −orders

D
Dt

f ph
h h

u
k u+ ∧ = − ∇

1
ρ



vertical momentum equations

Dw
Dt

u
p
z

gT− = − −2
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Ω cos φ
ρ

∂
∂

scales UW/L   2ΩU cosφ δPT/ρΗ g

orders

the atmosphere is strongly hydrostatic on the synoptic scale. 

negligible

7 310 10 10 10− −

But are the disturbances themselves hydrostatic?



Question: when we subtract the reference pressure p0 from pT, 
is it still legitimate to neglect Dw/Dt etc.?

vertical momentum equations

Dw 1 p2 u cos b
Dt z

∂
− Ω φ = − +

ρ ∂

scales UW/L   2ΩU cosφ δP/ρΗ∗ gδT/T0

orders

still negligible

7 3 1 110 10 10 10− − − −≥

H* = height scale for a 
perturbation pressure 
difference δp of 10 mb

assume that H* ≤ H

assume that δT ≈ 3oK/300 km



Dw 1 p2 u cos b
Dt z

∂
− Ω φ = − +

ρ ∂

orders 7 3 1 110 10 10 10− − − −≥

1 p0 b
z

∂
= − +

ρ ∂

In synoptic-scale disturbances, the perturbations 
are in close hydrostatic balance

Remember:  it is small departures from this equation which 
drive the weak vertical motion in systems of this scale. 

In summary



The hydrostatic approximation permits enormous 
simplifications in dynamical studies of large-scale 

motions in the atmosphere and oceans.

The hydrostatic approximation



End of
Chapter 3


