The Equations of Motion in a Rotating Coordinate System

Since the earth is rotating about its axis and since it is convenient to adopt a frame of reference fixed in the earth, we need to study the equations of motion in a rotating coordinate system.

Before proceeding to the formal derivation, we consider briefly two concepts which arise therein:

Effective gravity and Coriolis force

Effective Gravity

Effective Gravity

If the earth were a perfect sphere and not rotating, the only gravitational component g^{*} would be radial.

Because the earth has a bulge and is rotating, the effective gravitational force g is the vector sum of the normal gravity to the mass distribution g^{*}, together with a centrifugal force $\Omega^{2} \mathrm{R}$, and this has no tangential component at the earth's surface.

$$
\text { I } \mathbf{g}=\mathbf{g} *+\Omega^{2} \mathbf{R}
$$

The Coriolis force

Mathematical derivation of the Coriolis force

Representation of an arbitrary vector $\mathbf{A}(\mathbf{t})$
inertial reference system
rotating reference system

$$
\mathbf{i}^{l}
$$

The time derivative of an arbitrary vector $\mathbf{A}(\mathbf{t})$

The derivative of $\mathbf{A}(\mathrm{t})$ with respect to time

the subscript "a" denotes the derivative in an inertial reference frame
$\begin{gathered}\text { In the rotating frame } \\ \text { of reference }\end{gathered} \frac{\mathrm{d}_{\mathrm{a}} \mathbf{A}}{\mathrm{dt}}=\mathbf{i}^{\prime} \frac{\mathrm{dA}_{1}^{\prime}}{\mathrm{dt}}+\mathrm{A}_{1}^{\prime} \frac{\mathrm{di}^{\prime}}{\mathrm{dt}}+\ldots$

$$
=\mathbf{i}^{\prime} \frac{\mathrm{dA}_{1}^{\prime}}{\mathrm{dt}}+\mathrm{A}_{1}^{\prime}\left(\Omega \wedge \mathbf{i}^{\prime}\right)+\ldots
$$

$$
=\left[\frac{\mathrm{d}}{\mathrm{dt}}+\Omega \wedge\right]\left(\mathrm{A}_{1}^{\prime} \mathbf{i}^{\prime}+\ldots\right)
$$

Let a be any vector rotating with angular velocity Ω

Position vector $\mathbf{r}(\mathbf{t})$

 Want to calculate $\mathbf{u}_{\mathbf{a}}=\frac{\mathrm{d}_{\mathrm{a}} \mathbf{r}}{\mathrm{dt}}$
 the absolute velocity of an air parcel

The relative velocity in a rotating frame of reference is

$$
\begin{aligned}
& \mathbf{u}=\frac{\mathrm{d} \mathbf{r}}{\mathrm{dt}}=\frac{\mathrm{dr}_{1^{\prime}}}{\mathrm{dt}} \mathbf{i}^{\prime}+\frac{\mathrm{dr}_{2^{\prime}}}{\mathrm{dt}} \mathbf{j}^{\prime}+\frac{\mathrm{dr}_{3^{\prime}}}{\mathrm{dt}} \mathbf{k}^{\prime} \\
& \text { and } \quad \mathbf{u}_{\mathrm{a}}=\mathbf{u}+\Omega \wedge \mathbf{r}
\end{aligned}
$$

Example

$$
\mathbf{u}_{\mathbf{a}}=\mathbf{u}+\Omega \wedge \mathbf{r}
$$

This air parcel starts relative to the earth with a poleward velocity \mathbf{V}.

It begins relative to space with an additional eastwards velocity component ΩR_{e}.

We need to calculate the absolute acceleration if we wish to apply Newton's second law

Measurements on the earth give only the relative velocity u and therefore the relative acceleration

With $\mathbf{A}=\mathbf{u}_{\mathbf{a}}$

$$
\begin{gathered}
\frac{\mathrm{d}_{\mathrm{a}} \mathbf{u}_{\mathrm{a}}}{\mathrm{dt}}=\frac{\mathrm{d} \mathbf{u}_{\mathrm{a}}}{\mathrm{dt}}+\Omega \wedge \mathbf{u}_{\mathrm{a}} \\
\frac{\mathbf{d}_{\mathrm{a}} \mathbf{u}_{\mathrm{a}}}{\mathrm{dt}}=\frac{\mathrm{d} \mathbf{u}}{\mathrm{dt}}+2 \Omega \wedge \mathbf{r} \\
2 \Omega \mathbf{u}+\Omega \wedge(\Omega \wedge \mathbf{r})
\end{gathered}
$$

$$
\begin{gathered}
\begin{array}{c}
\text { absolute } \\
\text { acceleration }
\end{array}
\end{gathered} \longrightarrow \frac{\mathrm{d}_{\mathrm{a}} \mathbf{u}_{\mathrm{a}}}{\mathrm{dt}}=\frac{\mathrm{d} \mathbf{u}}{\mathrm{dt}}+2 \Omega \wedge \mathbf{u}+\Omega \wedge(\Omega \wedge \mathbf{r})
$$

Centripetal acceleration

Position vector \mathbf{r} is split up

$$
\mathbf{r}=(\mathbf{r} . \hat{\Omega}) \hat{\Omega}+\mathbf{R}
$$

$\Omega \wedge(\Omega \wedge \mathbf{r})=\Omega \wedge(\Omega \wedge \mathbf{R})$

$$
=-|\Omega|^{2} \mathbf{R}
$$

The Centripetal acceleration is directed inwards towards the axis of rotation and has magnitude $|\Omega|^{2} \mathbf{R}$.

Newton's second law in a rotating frame of reference

In an inertial frame:

In a rotating frame:

$$
\rho\left[\frac{\mathrm{d} \mathbf{u}}{\mathrm{dt}}+2 \Omega \wedge \mathbf{u}+\Omega \wedge(\Omega \wedge \mathbf{r})\right]=\mathbf{F}
$$

Alternative form

Let the total force $F=\mathbf{g}^{*}+\mathbf{F}^{\prime}$ be split up
$\leadsto \rho \frac{\mathrm{d} \mathbf{u}}{\mathrm{dt}}=\mathbf{F}^{\prime}+\mathbf{g} *-2 \rho \Omega \wedge \mathbf{u}-\rho \Omega \wedge(\Omega \wedge \mathbf{r})$

With $\mathbf{g}=\mathbf{g} *+\Omega^{2} \mathbf{R}$

$$
\Omega \wedge(\Omega \wedge \mathbf{r})=-|\Omega|^{2} \mathbf{R}
$$

$$
\rho \frac{\mathrm{d} \mathbf{u}}{\mathrm{dt}}=\mathbf{F}^{\prime}+\rho \mathbf{g}-2 \rho \Omega \wedge \mathbf{u}
$$

The centrifugal force associated with the earth's rotation no longer appears explicitly in the equation; it is contained in the effective gravity.

When frictional forces can be neglected, F^{\prime} is the pressure gradient force

This is the Euler equation in a rotating frame of reference.

The Coriolis force does no work

Note: the Coriolis force does no work because $\mathbf{u} \cdot(2 \Omega \wedge \mathbf{u}) \equiv 0$

Perturbation pressure, buoyancy force

Define $\quad p_{T}=p_{0}(z)+p \quad$ where $\quad \frac{d p_{0}}{d z}=-g \rho_{0}$
$p_{0}(z)$ and $\rho_{0}(z)$ are the reference pressure and density fields
p is the perturbation pressure
Important: $\mathrm{p}_{0}(\mathrm{z})$ and $\rho_{0}(\mathrm{z})$ are not uniquely defined
Euler's equation becomes

$$
\frac{\mathrm{Du}}{\mathrm{Dt}}+2 \Omega \wedge \mathbf{u}=-\frac{1}{\rho} \nabla \mathrm{p}+\underset{\mathbf{g}\left[\frac{\rho-\rho_{0}}{\rho}\right]}{\text { the buoyancy force }}
$$

Important: the perturbation pressure gradient $-\frac{1}{\rho} \nabla \mathrm{p}$
and buoyancy force $g\left(\frac{\rho-\rho_{0}}{\rho}\right)$ are not uniquely defined.

But the total force $-\frac{1}{\rho} \nabla p+\mathbf{g}\left(\frac{\rho-\rho_{0}}{\rho}\right)$ is uniquely defined.

Indeed

$$
-\frac{1}{\rho} \nabla p+\mathbf{g}\left(\frac{\rho-\rho_{0}}{\rho}\right)=-\frac{1}{\rho} \nabla p_{\mathrm{T}}+\mathbf{g}
$$

A mathematical demonstration

$$
\frac{\mathrm{Du}}{\mathrm{Dt}}=-\frac{1}{\rho} \nabla \mathrm{p}^{\prime}+\mathrm{b} \hat{\mathbf{k}} \quad \nabla \cdot \mathbf{u}=0
$$

Momentum equation Continuity equation

The divergence of the momentum equation gives:

$$
\nabla^{2} \mathrm{p}^{\prime}=-[\nabla \cdot(\rho \mathbf{u} \cdot \nabla \mathbf{u})-\nabla \cdot(\rho b \hat{\mathbf{k}})]
$$

This is a diagnostic equation!

Newton's 2nd law

buoyancy form

Put

$$
\begin{aligned}
& \mathrm{p}=\mathrm{p}_{\mathrm{o}}(\mathrm{z})+\mathrm{p}^{\prime} \\
& \rho=\rho_{\mathrm{o}}(\mathrm{z})+\rho^{\prime}
\end{aligned} \quad \text { where } \quad \frac{\mathrm{dp}}{\mathrm{~d}} \mathrm{~d}=-\mathrm{g} \rho_{\mathrm{o}}
$$

Then $\quad \frac{D \mathrm{w}}{\mathrm{Dt}}=-\frac{1}{\rho} \frac{\partial \mathrm{p}^{\prime}}{\partial \mathrm{z}}+\mathrm{b} \quad$ where $\quad \mathrm{b}=-\mathrm{g}\left(\frac{\rho-\rho_{\mathrm{O}}}{\rho}\right)$

buoyancy force is NOT unique

$$
b=-g\left(\frac{\rho-\rho_{0}}{\rho}\right)
$$

it depends on choice of reference density $\rho_{0}(z)$
but

$$
-\frac{1}{\rho} \frac{\partial \mathrm{p}}{\partial \mathrm{z}}-\mathrm{g}=-\frac{1}{\rho} \frac{\partial \mathrm{p}^{\prime}}{\partial \mathrm{z}}+\mathrm{b} \quad \text { is unique }
$$

Buoyancy force in a hurricane

Initiation of a thunderstorm

Some questions

$>$ How does the flow evolve after the original thermal has reached the upper troposphere?
$>$ What drives the updraught at low levels?

- Observation in severe thunderstorms: the updraught at cloud base is negatively buoyant!
- Answer: - the perturbation pressure gradient

Scale analysis

$>$ Assume a homogeneous fluid $\rho=$ constant.
$>$ Euler's equation becomes:

$$
\frac{\mathrm{Du}}{\mathrm{Dt}}+2 \Omega \wedge \mathbf{u}=-\frac{1}{\rho} \nabla \mathrm{p}
$$

scales:

$$
\frac{\mathrm{U}^{2}}{\mathrm{~L}} \quad 2 \Omega \mathrm{U} \quad \frac{\Delta \mathrm{P}}{\rho \mathrm{~L}}
$$

Then $\quad \frac{|\mathrm{Du} / \mathrm{Dt}|}{|2 \Omega \wedge \mathbf{u}|} \sim \frac{\mathrm{U}^{2} / \mathrm{L}}{2 \Omega \mathrm{U}}=\frac{\mathrm{U}}{2 \Omega \mathrm{~L}}=\mathrm{Ro}$
Rossby number

Extratropical cyclone

$$
\mathrm{Ro}=\frac{\mathrm{U}}{2 \Omega \mathrm{~L}}=\frac{10}{10^{-4} \times 10^{6}}=10^{-1}
$$

Tropical cyclone

Dust devil

$$
\begin{aligned}
\mathrm{L} & =10-100 \mathrm{~m} \quad \mathrm{U}=10 \mathrm{~ms}^{-1} \quad 2 \Omega=10^{-4} \mathrm{~s}^{-1} \\
\mathrm{Ro} & =\frac{\mathrm{U}}{2 \Omega \mathrm{~L}}=\frac{10}{10^{-4} \times(10,100)}=10^{-3} \rightarrow 10^{-4}
\end{aligned}
$$

Waterspout

Aeroplane wing

$$
\mathrm{L}=10 \mathrm{~m}
$$

$$
\mathrm{U}=200 \mathrm{~m} \mathrm{~s}^{-1}
$$

$$
2 \Omega=10^{-4} s^{-1}
$$

$$
\text { Ro }=2 \times 10^{5}
$$

The Rossby number

Flow system	L	$\mathrm{U} \mathrm{m} \mathrm{s}^{-1}$	Ro
Ocean circulation	$10^{3}-5 \times 10^{3} \mathrm{~km}$	1 (or less)	$10^{-2}-10^{-3}$
Extra-tropical cyclone	$10^{3} \mathrm{~km}$	$1-10$	$10^{-2}-10^{-1}$
Tropical cyclone	500 km	$50($ or >)	1
Tornado	100 m	100	10^{4}
Dust devil	$10-100 \mathrm{~m}$	10	$10^{3}-10^{4}$
Cumulonimbus cloud	1 km	10	10^{2}
Aerodynamic	$1-10 \mathrm{~m}$	$1-100$	$10^{3}-10^{6}$
Bath tub vortex	1 m	10^{-1}	10^{3}

Summary

(i) Large scale meteorological and oceanic flows are strongly constrained by rotation ($\mathrm{Ro} \ll 1$), except possibly in equatorial regions.
(ii) Tropical cyclones are always cyclonic and appear to derive their rotation from the background rotation of the earth. They never occur within 5 deg. of the equator where the normal component of the earth's rotation is small.
(iii) Most tornadoes are cyclonic, but why?
(iv) Dust devils do not have a preferred sense of rotation as expected.
(v) In aerodynamic flows, and in the bath (!), the effect of the earth's rotation may be ignored.

Coordinate systems and the earth's sphericity

$>$ Many of the flows we shall consider have horizontal dimensions which are small compared with the earth's radius.
$>$ In studying these, it is both legitimate and a great simplification to assume that the earth is locally flat and to use a rectangular coordinate system with z pointing vertically upwards.
$>$ Holton (§2.3, pp31-35) shows the precise circumstances under which such an approximation is valid.
> In general, the use of spherical coordinates merely refines the theory, but does not lead to a deeper understanding of the phenomena.

Take rectangular coordinates fixed relative to the earth and centred at a point on the surface at latitude.

$\boldsymbol{\Omega}=|\boldsymbol{\Omega}| \cos \phi \mathbf{j}+|\boldsymbol{\Omega}| \sin \phi \mathbf{k}$

$2 \boldsymbol{\Omega} \wedge \mathbf{u}=|\boldsymbol{\Omega}| \cos \phi \mathbf{j} \wedge \mathbf{u}+|\boldsymbol{\Omega}| \sin \phi \mathbf{k} \wedge \mathbf{u}$

In component form

$$
2 \Omega \wedge \mathbf{u}=\left[\begin{array}{c}
-2 \Omega v \sin \phi+2 \Omega \mathrm{w} / \cos \phi \\
2 \Omega \mathrm{u} \sin \phi \\
-2 \Omega / \cos \phi
\end{array}\right]
$$

I will show that for middle latitude, synoptic-scale weather systems such as extra-tropical cyclones, the terms involving $\cos \phi$ may be neglected.

$$
2 \boldsymbol{\Omega} \wedge \mathbf{u}=2|\boldsymbol{\Omega}| \cos \phi \mathbf{j} \wedge \mathbf{u}+2|\boldsymbol{\Omega}| \sin \phi \mathbf{k} \wedge \mathbf{u}
$$

The important term for large-scale motions

To a good approximation

$$
\begin{gathered}
2 \Omega \wedge \mathbf{u}=2|\Omega| \sin \phi \mathbf{k} \wedge \mathbf{u}=\mathbf{f} \wedge \mathbf{u} \\
\mathrm{f}=2|\Omega| \sin \phi \quad \mathbf{f}=\mathrm{f} \mathbf{k} \\
\text { Coriolis parameter }
\end{gathered}
$$

Scale analysis of the equations for middle latitude synoptic systems

$>$ Much of the significant weather in middle latitudes is associated with extra-tropical cyclones, or depressions.
> We shall base our scaling on such systems.
$>$ Let $\mathrm{L}, \mathrm{H}, \mathrm{T}, \mathrm{U}, \mathrm{W}, \mathrm{P}$ and R be scales for the horizontal size, vertical extent, time, $\left|\mathbf{u}_{\mathrm{h}}\right|$, w, perturbation pressure, and density in an extra-tropical cyclone, say at 45° latitude, where $f(=2 \Omega \sin \phi)$ and $2 \Omega \cos \phi$ are both of order 10^{-4}.

$$
\begin{aligned}
& \mathrm{U}=10 \mathrm{~ms}^{-1} ; \mathrm{W}=10^{-2} \mathrm{~ms}^{-1} ; \\
& \mathrm{L}=10^{6} \mathrm{~m}\left(10^{3} \mathrm{~km}\right) ; \mathrm{H}=10^{4} \mathrm{~m}(10 \mathrm{~km}) ; \\
& \mathrm{T}=\mathrm{L} / \mathrm{U} \sim 10^{5} \mathrm{~s}(\sim 1 \text { day }) ; \delta \mathrm{P}=10^{3} \mathrm{~Pa}(10 \mathrm{mb}) \\
& \mathrm{R}=1 \mathrm{~kg} \mathrm{~m}^{-3} .
\end{aligned}
$$

horizontal momentum equations

$$
\begin{aligned}
\frac{\mathrm{Du}}{\mathrm{Dt}}-2 \Omega \mathrm{v} \sin \phi+2 \Omega \mathrm{w} \cos \phi & =-\frac{1}{\rho} \frac{\partial \mathrm{p}}{\partial \mathrm{x}} \\
\frac{\mathrm{Dv}}{\mathrm{Dt}}+2 \Omega \mathrm{u} \sin \phi & =-\frac{1}{\rho} \frac{\partial \mathrm{p}}{\partial y}
\end{aligned}
$$

scales
$\mathrm{U}^{2} / \mathrm{L} 2 \Omega \mathrm{U} \sin \phi 2 \Omega \mathrm{~W} \cos \phi \quad \delta \mathrm{P} / \rho \mathrm{L}$
orders

$$
\begin{aligned}
& 10^{-4} \quad 10^{-3} \quad 10^{-6} \\
& \frac{\mathrm{D} \mathbf{u}_{\mathrm{h}}}{\mathrm{Dt}}+\mathrm{fk} \wedge \mathbf{u}_{\mathrm{h}}=-\frac{1}{\rho} \nabla_{\mathrm{h}} \mathrm{P}
\end{aligned}
$$

vertical momentum equations

$$
\frac{\mathrm{Dw}}{\mathrm{Dt}}-2 \Omega \mathrm{u} \cos \phi=-\frac{1}{\rho} \frac{\partial \mathrm{p}_{\mathrm{T}}}{\partial \mathrm{z}}-\mathrm{g}
$$

scales $\quad \mathrm{UW} / \mathrm{L} \quad 2 \Omega \mathrm{U} \cos \phi \quad \delta \mathrm{P}_{\mathrm{T}} / \rho \mathrm{H} \quad \mathrm{g}$
orders

$$
\underbrace{10^{-7} \quad 10^{-3}}_{\text {negligible }}
$$

the atmosphere is strongly hydrostatic on the synoptic scale.

But are the disturbances themselves hydrostatic?

Question: when we subtract the reference pressure p_{0} from p_{T}, is it still legitimate to neglect Dw/Dt etc.?
vertical momentum equations

$$
\frac{\mathrm{Dw}}{\mathrm{Dt}}-2 \Omega \mathrm{u} \cos \phi=-\frac{1}{\rho} \frac{\partial \mathrm{p}}{\partial \mathrm{z}}+\mathrm{b}
$$

In summary

$$
\frac{\mathrm{Dw}}{\mathrm{Dt}}-2 \Omega \mathrm{u} \cos \phi=-\frac{1}{\rho} \frac{\partial \mathrm{p}}{\partial \mathrm{z}}+\mathrm{b}
$$

orders $10^{-7} \quad 10^{-3} \quad \geq 10^{-1} \quad 10^{-1}$

In synoptic-scale disturbances, the perturbations are in close hydrostatic balance

Remember: it is small departures from this equation which drive the weak vertical motion in systems of this scale.

The hydrostatic approximation

The hydrostatic approximation permits enormous simplifications in dynamical studies of large-scale motions in the atmosphere and oceans.

