Balanced Equations
DM Ch 15

Reminder: Inertia-gravity waves
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Shallow water model configuration

> In pure inertial wave motion, horizontal pressure gradients
are zero.

» Consider now waves in a layer of rotating fluid with a free
surface where horizontal pressure gradients are associated

with free surface displacements.




Consider hydrostatic motions - then
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independent of z

» The fluid acceleration is independent of z.

» If the velocities are initially independent of z,
then they will remain so.

Linearized equations - no basic flow
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Consider wave motions which are independent of y.
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A solution exists of the form
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These algebraic equations for 0, ¥and 1 have solutions
only if
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The solution with o = 0 corresponds with the steady solution
(olot = 0) of the equations and represents a steady current in
strict geostrophic balance in which
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The other two solutions correspond with so-called inertia-
gravity waves, with the dispersion relation
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The phase speed of these is
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> The waves are dispersive




Inclusion of the beta effect

» Replace the v-momentum equation by the vorticity equation
=>

where Se—m—

Assume that f can be approximated by its value f, at a particular latitude,
except when differentiated with respect to y in the vorticity equation. This
is justified provided that meridional particle displacements are small.

» Again assume that 6/dy = 0 and consider travelling-wave
solutions of the form:

u =0 cos (kx —wt),
v =V sin (kx — ot),
n =1 cos (kx — ot),
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These are consistent only if the determinant is zero »




expanding by the second row
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A cubic equation for o with three real roots.

When o >> B/k, the two non-zero roots are given approximately

by the formula
®® = gHK? +f5

This is precisely the dispersion relation for inertia-gravity waves.

When w? << gHK?, there is one root given approximately by
o=—Bk/(k*+fZ/gH)
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If o/oy =0 as before, the vorticity equation reduces to an
equation for n, and since £ = ov/ox =>
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This has the solution n =1 cos (kx — wt) , where




Dispersion relation for a divergent planetary wave

® = Bk / (k% + ¢ / gH)

> There is no other solution for o as there was before.

> In other words, making the geostrophic approximation
when calculating v has filtered out in the inertia-gravity
wave modes from the equation set, leaving only the low
frequency planetary wave mode.

» This is not too surprising since the inertia-gravity waves,
by their very essence, are not geostrophically-balanced
motions.

Filtered equations more generally

» The idea of filtering sets of equations is an important one in
geophysical applications.

» The quasi-geostrophic equations are often referred to as
"filtered equations’ since, as in the above analysis, the
consequence of computing the horizontal velocity
geostrophically from the pressure or stream-function
suppresses the high frequency inertia-gravity waves which
would otherwise be supported by the Boussinesq equations.

» Furthermore, the Boussinesq equations themselves form a
filtered system in the sense that the approximations which
lead to them filter out compressible, or acoustic waves.




The Balance Equations

» The full nonlinear form of the shallow-water equations in
a layer of fluid of variable depth h(x,y,t) is
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» The u- and v-equations can be replaced by the vorticity
and divergence equations: =>

vorticity equation
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Combine the vorticity equation and the continuity equation to
form the potential vorticity equation:
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potential vorticity is q = (£ + f)/h
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Scale analysis

» Choose representative scales:
U for the horizontal velocity components u, v,
L for the horizontal length scale of the motion,
H for the undisturbed fluid depth,
oH for depth departures h — H,
f, for the Coriolis parameter, and
T = L/U - an advective time scale.
» Define two nondimensional parameters:
the Rossby number, Ro = U/(f,L), and
the Froude number, Fr = U%/(gH).




Treatment of f

Let f=fy(1+Rop’y),
where y is nondimensional and B’ = BL2 /U .

For middle latitude systems

U~10ms™*, B~10"m™*s, L~10°m

» B'is of order unity.

The nondimensional forms of the u-momentum and continuity
equations are:
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» Let us examine first the quasi-geostrophic scaling:
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» In quasi-geostrophic motion (Ro << 1), the term proportional
to Ro can be neglected.

» Then gdH/fUL = O(1).

» We could choose the scale H so that this quantity is exactly
unity, i.e. 8H = f,UL/g. Then the term dH/H may be written

SH/H=Ro *Fr.
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» D=0 (or, more generally, D <O(Ro0)).
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a consistent scaling for quasi-geostrophic motion is that
SdH/H = Ro! Fr = O(Ro) so that the term proportional to
dH/H —» 0as Ro — 0.




The vorticity and divergence equations

> In nondimensional form, the vorticity and divergence
equations are
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where J(u,v) is the Jacobian G_XE - 8_XE

The quasi-geostrophic approximation
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» These are the quasi-geostrophic forms of the vorticity,
divergence and continuity equations.

» Note that the divergence equation has reduced to a
diagnostic one relating the fluid depth to the vorticity
which is consistent with £ obtained from
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v = h +constant (e.g. h — H).




The potential vorticity equation

» The potential vorticity equation in nondimensional form
can be obtained by eliminating D, between
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» a single equation for vy (or h) =>
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analogous to the form for a stably-stratified fluid.

Note: in the case with a continuous vertical stratification, the y term would
be replaced by a second-order vertical derivative of .

» The quasi-geostrophic approximation leads to an elegant
mathematical theory, but calculations based upon it tend to
be inaccurate in many atmospheric situations such as when
the isobars are strongly curved.

» In the latter case, we know that centrifugal forces are
important and gradient wind balance gives a more accurate
approximation.

» We try to improve the quasi-geostrophic theory by
including terms of higher order in Ro in the equations.

» We decompose the horizontal velocity into rotational and
divergent components u = u, +u,

UW:k/\V\I’ _/ \ uX=VX

v is the streamfunction. x, the velocity potential




It follows that
C= VZ\V and D= sz
» This decomposition is general (see Holton, 1972, Appendix),

but is not unique : =

» One can add equal and opposite flows with zero vorticity and
divergence to the two components without affecting the total
velocity u.

» Consistent with the quasi-geostrophic scaling, where y is zero
to O(Ra?), we scale yx with ULRo so that in nondimensional

form
u=u, +u, » u=u, +Rou,

Equations  Ro[0;{+...+B'V]+ D+ Ro(B'y+&)D =0,
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The idea is to neglect terms of order Ro? and Ro® in these

equations, together with the equivalent approximation in
the continuity equation

oh+uoh+voh+h(ou+0oyv)=0,
In dimensional form they may be written
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Note: the divergence equation has been reduced to a
diagnostic one relating y to h.

Moreover the advection of V2w +f in

[0, +U-V](Viy + )+ (Viy +f) V23 =0

and of h in ath+u-Vh+hV2x=0

is by the total wind u and not just the nondivergent
component of u as in the quasi-geostrophic approximation.




The Balance Equations
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» These equations are called the balance equations.
» They were first discussed by Charney (1955) and Bolin (1955).

The Balance Equations

» It can be shown that for a steady axisymmetric flow on an
f-plane, the equation:
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reduces to the gradient wind equation.

» => we may expect the equations to be a better
approximation than the quasi-geostrophic system for
strongly curved flows.




Methods of solution

» Unfortunately it is not possible to combine the balance
equations into a single equation for y as in the quasi-
geostrophic case and they are rather difficult to solve.

» Methods of solution are discussed by Gent and McWilliams
(1983).

> Note: although the balanced equations were derived by
truncating terms of O(Ro?) and higher, the only equation
where approximation is made is the divergence equation.

» => the equations represent an approximate system valid
essentially for sufficiently small horizontal divergence.

> As long as this is the case, the Rossby number is of no
importance.

> Elimination of V2x between
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gives the potential vorticity equation:

Thus an alternative form of the balance system is
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Given ¢, the first two equations can be regarded as a pair of
simultaneous equations for diagnosing y and h, subject to
appropriate boundary conditions.

Equation a—q+ u 6_q+ V@_q: 0 enables the prediction of q,
ot OX oy
while 0

6—T+ u-vh+hv? =0 may be used to diagnose .

The Linear Balance Equations

Under certain circumstances [e.g. Ro << 1, B' > O(1)], the
nonlinear terms in Eq.(11.47) may be neglected in which
case the equation becomes

V- (fVy)-gv?h =0

With this approximation, the system (11.46), (11.48)
and (11.49) or (11.30), (11.31), (11.48), (11.49) constitute
the linear balance equations.

These systems are considerably easier to solve than the
balance equations.




