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Chapter 6

Quasi-geostrophic waves

Quasi-geostrophic waves

Rossby waves

ω << f
Inertia or 

inertia-gravity 
waves

ω ≈ f

Inertia-
gravity waves

ω >> f

Acoustic 
oscillations

Result of 
disturbing it

SverdrupGeostrophicHydrostaticElastostatic
(compressible)

Balanced state

Quasi-geostrophic waves
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The quasi-geostrophic equations
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t z f

fq f
N z

∂⎡ ⎤+ ⋅ ∇ =⎢ ⎥∂⎣ ⎦
∂ ∂ψ⎡ ⎤+ ⋅ ∇ + =⎢ ⎥∂ ∂⎣ ⎦
= ∧ ∇ψ

∂ ψ
= ∇ ψ + +

∂

u

u

u k

Assume: a Boussinesq fluid, constant Brunt-Väisälä frequency

q is the quasi-geostrophic potential vorticity and f = fo + βy 

ε2

Recall (DM, Chapter 8) that an important scaling 
assumption in the derivation of the QG-equations is that the 
Burger number B = f2L2/N2H2, is of order unity, H and L
being vertical and horizontal length scales for the motion.

It can be shown that this ratio characterizes the relative 
magnitude of the final term in the thermodynamic equation
compared with the advective term.

Hence B ∼ 1 implies that there is significant coupling 
between the buoyancy field and the vertical motion field.

A further implication is that L ∼ LR = NH/f, the Rossby 
radius of deformation.

Some notes
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Principle behind the method of solution 
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∂⎡ ⎤+ ⋅ ∇ =⎢ ⎥∂⎣ ⎦
∂ ∂ψ⎡ ⎤+ ⋅ ∇ + =⎢ ⎥∂ ∂⎣ ⎦
= ∧ ∇ψ

∂ ψ
= ∇ ψ + + ε

∂

u

u

u k

IC :   ψ(x,y,z,0) given. 
(1)

(2)

(3)

(4)

1.  Calculate u(x,y,z,0)

2.  Calculate q(x,y,z,0)

3.  Predict q(x,y,z,Δt)

4.  Diagnose ψ(x,y,z, Δt) using Eq. (4)

5.  Repeat to find ψ(x,y,z, 2Δt) etc.

Eq. 2 is used to evaluate w(x,y,z,t) and to prescribe BCs

An example of the use of the thermodynamic equation for 
applying a boundary condition at horizontal boundaries is 
provided by the Eady baroclinic instability calculation in 
DM, Chapter 9.

The ability to calculate ψ from (4) from a knowledge of q
(step 3) is sometimes referred to as the invertibility principle.

Some notes

2
2 2

2f q
z

∂ ψ
∇ ψ + + ε =

∂

The foregoing steps will be invoked in the discussion that 
follows shortly.

I shall show that perturbations of a horizontal basic potential 
vorticity gradient lead to waves. 

(4)
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Quasi-geostrophic perturbations

2

qu q 0
t x x y

fu w 0
t x z x y z

∂ ∂ ∂ψ ∂⎡ ⎤+ + =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

∂ ∂ ∂ψ ∂ψ ∂ ψ⎡ ⎤+ + + =⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ε⎣ ⎦

Consider a perturbation to the basic zonal flow u(y,z).

q and ψ represent 
perturbation quantities

2
2 2

2 q
z

∂ ψ
∇ ψ + ε =

∂

2 2
2

2 2

q u u
y y z

∂ ∂ ∂
= β − − ε

∂ ∂ ∂

Example 1: Rossby waves

Let u(y,z) = 0,  qy(y,z) = β > 0.

2 2
2 2

2 2q
z x

∂ ψ ∂ ψ
= ∇ ψ + ε =

∂ ∂

q 0
y

∂
= β >

∂

The physical picture is based on the conservation of 
total potential vorticity (here q + q) for each particle.

For a positive (northwards) displacement ξ > 0, q < 0
For a negative (southwards) displacement ξ < 0, q > 0.

Consider for simplicity motions for which ∂x >> ∂y, ∂z
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String analogy for solving  ψxx = q

2

2 q
x

∂ ψ
=

∂

Given q(x) we can diagnose ψ(x) using the “string analogy”
and our intuition about the behaviour of a string!

Interpret ψ(x) = ξ(x), F(x) = −q(x)

F(x)

F(x)ξ

2

2

d F(x)
dx

ξ
= −

The dynamics of Rossby waves

one wavelength

v = ψx

Displace a line of parcels 
into a sinusoidal curve

The corresponding q(x)
distribution

Invert q(x) ⇒ ψ(x)
2

2 q
x

∂ ψ
=

∂

Note ξ(x) & v(x) are 
90o out of phase.



6

Example 2: Topographic  waves

Let u(y,z) ≡ 0,  qy(y,z) = β ≡ 0 (but see later!) and a slightly 
sloping boundary.

stratified rotating fluid

α
☼

yx

f       z

z = αy

w v tan= α

qu q 0
t x x y

∂ ∂ ∂ψ ∂⎡ ⎤+ + =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
q 0
t

∂
=

∂

stratified rotating fluid

α
☼

yx

f       z

z = αy

w v tan= α

α must be no larger than O(RoH/L), otherwise the implied w
for a given v would be too large to be accommodated within 
quasi-geostrophic theory.

If α << 1, tan α ≈ α and can apply the boundary condition at 
z = 0 with sufficient accuracy ⇒ w = vα at z = 0.
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Plane wave solutions

There exist plane wave solutions for ψ of the form

2 2 1/ 2a exp i(kx ly t) (N / f )(k l ) z⎡ ⎤ψ = + − ω − +⎣ ⎦

2 2 1/ 2

Nk
(k l )

α
ω = −

+

fu w 0
t x z

∂ ∂ ∂ψ⎡ ⎤+ + =⎢ ⎥∂ ∂ ∂ ε⎣ ⎦
w = ψxα at  z = 0

This is the dispersion relation.

Some notes

2 2 1/ 2

Nk
(k l )

α
ω = −

+

The wave propagates to the left of upslope (towards –ve x).

Note that ω does not depend of f.

This does not mean that f is unimportant; in fact for 
horizontal wavelength 2π/κ, where κ2 = k2 + l2, the e-folding 
vertical scale of the wave is f/(Nκ).

Changes in relative vorticity ζ arise from stretching and 
shrinking of vortex lines at the rate fwz, associated with the 
differences between the slope of the boundary and those of 
the density isopleths. 
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Reformulation of the problem

Above the boundary, qy ≡ 0, but we can say that there is a 
potential vorticity gradient at the boundary if we generalize 
the notion of potential vorticity:

2
t xx yy zz[ ] 0∂ ∂ ψ + ∂ ψ + ε ∂ ψ =

(f/N2)ψzt + αψx = 0 at  z = 0

The foregoing problem can be written as

It is mathematically equivalent to the problem:
2

t xx yy zz y x[ ] q 0∂ ∂ ψ + ∂ ψ + ε ∂ ψ + ψ =

ψz = 0, continuous at z = 0− yq f (z)= αδ

Dirac
delta 

function

Proof of mathematical equivalence

δ(z) ≡ 0 for z > 0

2
t xx yy zz

2
t xx yy zz y x

[ ] 0

[ ] q 0

∂ ∂ ψ + ∂ ψ + ε ∂ ψ =

∂ ∂ ψ + ∂ ψ + ε ∂ ψ + ψ =

(f/N2)ψzt + αψx = 0 at  z = 0

identical for 
z > 0. 

2

2

2

[ ]dz f (z) dz 0t xx yy xzz

f2 max z 0zt xxxt yytz

0 as 0 as 0zt z 0

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

τ

−ττ τ

τ τ
∂ ψ +ψ + ε ψ + αδ ψ =

−τ −τ
ε ψ αψ≤ ψ +ψ =− < <

→ → → ε ψ τ →= +τ

τ

∫ ∫

ψx = 0 at z = 0−
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Physical interpretation

stratified rotating fluid

α
☼

yx

f       z

The alternative formulation involves a potential vorticity 
gradient qy confined to a "sheet" at z = 0, and the wave 
motion can be attributed to this.

2
t xx yy zz y x[ ] q 0∂ ∂ ψ + ∂ ψ + ε ∂ ψ + ψ =

+   +   +   +   +   +   +   +   +   +   +

Note

Note that it is of no formal consequence in the quasi-
geostrophic theory whether the boundary is considered to 
be exactly at z = 0, or only approximately at z = 0.

What matters dynamically is the slope of the isopleths 
relative to the boundary. 
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Example 3: Waves on vertical shear

Let β = 0 and  u = Λz, Λ constant. Then again qy ≡ 0, but now 
we assume a horizontal lower boundary.

buoyancy isopleths

α
☼

f     z

z (up)

y (north)

z

u (east)

⊗

When Λ < 0, the slopes of the density isopleths relative to the 
boundary are the same as before. Since qy = 0 for z > 0, the 
dynamics is as before within the quasi-geostrophic theory. 

qu q 0
t x x y

∂ ∂ ∂ψ ∂⎡ ⎤+ + =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

u q 0 for z 0
t x

∂ ∂⎡ ⎤+ = >⎢ ⎥∂ ∂⎣ ⎦

q = 0 is a solution as before

The solution is the same as in Example 2 if α is identified 
with −fΛ/N2, since the slope of the density isopleths is

( )
( )

y y y z
2 2 2

z z

g / fu f
g / N N N

ρ ρ ρ σ Λ
α = = = = − = −

ρ ρ ρ
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Example 4: Waves on vertical shear

Waves at a boundary of discontinuous 
vertical shear (β = 0, u = ΛzH(z)), and 
the flow unbounded above and below.

z

u (east)

There is a thin layer of negative qy
concentrated at z = 0 .

zu z (z) H(z)= Λ δ + Λ

zzu 2 (z)= Λδ
2

y 2

fq 2 (z)
N

= − Λ δ

d H(z) (z)
dz

z (z) 0

= δ

δ =

H(z) = 1 for z > 0, 
H(z) = 0 for z < 0.

0
qlim u q 0 dz

t x x y

τ

−ττ→

⎧ ⎫∂ ∂ ∂ψ ∂⎡ ⎤+ + =⎨ ⎬⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦⎩ ⎭∫

εψ zt x z0

0

02
−

+
== Λεψ

2 2 2

2 2 20
lim u (z) dz 0

t x x y z x

τ

−ττ→

⎧ ⎫⎛ ⎞∂ ∂ ∂ ψ ∂ ψ ∂ ψ ∂ψ⎡ ⎤+ + + ε + Λδ =⎨ ⎬⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎝ ⎠⎩ ⎭∫

Boundary condition at z = 0
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εψ zt x z0

0

02
−

+
== Λεψ

2 2 2

2 2 20
lim u (z) 0

t x x y z xτ→

⎛ ⎞∂ ∂ ∂ ψ ∂ ψ ∂ ψ ∂ψ⎡ ⎤+ + + ε + Λδ =⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎝ ⎠

By inspection, the solution of the perturbation vorticity 
equation

subject to ψ → 0 as z → ± ∞ together with 

2 2 1/ 2a exp i(kx ly t) sgn(z)(N / f )(k l ) z⎡ ⎤ψ = + − ω − +⎣ ⎦

2 2 1/ 2

fk
2N(k l )

Λ
ω =

+
This is the dispersion relation.

The wave is stable and has vertical scale f/(kN).

Zonal flow configuration in the Eady problem 
(northern hemisphere).

zf

x

w
ar

m

co
ld

isentropes

H u

σ = −
fU
H

y
u U

H
z=

Baroclinic instability: the Eady problem
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The membrane analogy
2 2

2 2

h h F(x, y)
x y

∂ ∂
+ = −

∂ ∂

Equilibrium displacement of a stretched membrane over a 
square under the force distribution F(x,y).

F(x,y)

F(x,y)

h(x,y)

slippery glass 
walls
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y

x

ψ = constant

2 2

2 2 (x, y)
x y

∂ ψ ∂ ψ
+ = ζ

∂ ∂

ζ = ζcδ(x)δ(y)
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The description is similar to that given for Example 1, but 
requires the motion to be viewed in two planes; a horizontal 
x-y plane and a vertical x-z plane.

Consider the qy defined by the shear flow U(z) shown in the 
next slide. 

A unified theory

The generalization of the definition of potential vorticity 
gradient to include isolated sheets of qy, either internal or at 
a boundary, enable a unified description of "potential 
vorticity to be given.

u(z) x

z2

z1

z z

z2

z1
qy > 0

Non-uniform vertical shear flow
Layer of non-zero PV

Consider a perturbation in the form of a sinusoidal 
displacement in the north-south direction.
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A sinusoidal displacement in the north-south direction leads to a potential 
vorticity perturbation in horizontal planes.

HI LO HI

⊗

� �⊗ ⊗

contours of ψ(x,z)

z2

z1

z   up

�
z   up             x  east

y  north

q < 0 q > 0 q < 0

v > 0 v < 0

v < 0 v > 0

η
north-south displacement η

x

y   north       x  east

q < 0

q > 0

q < 0

qy > 0

yq 0<

yq 0>

v > 0 v > 0v < 0 v < 0

zu

z
u 0>

u 0<

η > 0η < 0 η < 0
q > 0 q > 0q < 0

L

Phase configuration for a growing wave

v > 0 v > 0v < 0 v < 0

η > 0η < 0 η < 0
q > 0 q > 0q < 0

H
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The baroclinic instability mechanism

The foregoing ideas may be extended to provide a 
qualitative description of the baroclinic instability 
mechanism.

We shall use the fact that a velocity field in phase with a 
displacement field corresponds to growth of amplitude, 
just as quadrature corresponds to phase propagation.

Suppose that the displacement of a particle is 

A(t)sin nt (A,n 0)η = >

v B(t)(cos nt sin nt)= + μ

Suppose that we know (by some independent means) that 
the velocity of the particle is

yq 0<

yq 0>

contours of ψ(x,z)

v > 0 v > 0v < 0 v < 0

Induced v velocities from the top layer are 
felt in the lower layer

zu

z

HI HILO

H
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Zonal flow configuration in the Eady problem 
(northern hemisphere).

zf

x

w
ar

m

co
ld

isentropes

H u

σ = −
fU
H

y
u U

H
z=

Baroclinic instability: the Eady problem

Upper boundary

Lower boundary
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The unstable Eady wave

The unstable Eady wave
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The neutral Eady wave c > 0

The neutral Eady wave c < 0
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Transient
wave 

growth
during one 

cycle

From Rotunno
& Fantini, 1989

t = 0

t = T

1
2t T=

1
4t T=

3
4t T=

The 3D unstable Eady wave
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Judging the stability of various flows

β = 0

β = 0

N = const

N = const

unstable stable

horizontal boundary

yq 0<

yq 0<

yq one signed
unbounded
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unstable stable

yq 0=

yq 0>

yq 0<

horizontal boundary

above 
boundary

yq 0>

yq 0<

yq 0=

Boundary sloping parallel to 
basic isopleths of buoyancy

yq 0=

yq one
signed

yq one
signed

Both boundaries sloping parallel 
to basic isopleths of buoyancy

Green’s Problem

From  J. S. A. Green, QJRMS, 1960

zf = fo + βy

x

isentropes

H u

σ = −
fU
H

y
u U

H
z=

­­­­­­­­

­­­­­­­­
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Green’s Problem

From  J. S. A. Green, QJRMS, 1960

Charney’s Problem

From  J. G. Charney, J. Met., 1947

β-plane

U(z) = U'z

z

­­­­­­­­­­­­­­­­
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Charney’s Problem

From  J. G. Charney, J. Met., 1947

The question now arises:

To what extent can we develop the foregoing ideas to 
understand the dynamics of synoptic-scale systems in 
the atmosphere?

We address this question in the next lecture

Applications to the atmosphere

The Ertel potential vorticity
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The End


