

Quasi-geostrophic waves							
Balanced state	Elastostatic (compressible)	Hydrostatic	Geostrophic	Sverdrup			
Result of disturbing it	Acoustic oscillations	Inertia- gravity waves ω >> f	Inertia or inertia-gravity waves $\omega \approx f$	Rossby waves ω << f			
Quasi-geostrophic waves							

Principle behind the method of solution
$$\left[\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right] \mathbf{q} = 0$$
(1)IC : $\psi(x,y,z,0)$ given. $\left[\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right] \frac{\partial \psi}{\partial z} + \frac{N^2}{f_o} \mathbf{w} = 0$ (2)I. Calculate $u(x,y,z,0)$ $\mathbf{u} = \mathbf{k} \wedge \nabla \psi$ (3)2. Calculate $q(x,y,z,0)$ $\mathbf{q} = \nabla^2 \psi + \mathbf{f} + \varepsilon^2 \frac{\partial^2 \psi}{\partial z^2}$ (4)4. Diagnose $\psi(x,y,z, \Delta t)$ using Eq. (4)5. Repeat to find $\psi(x,y,z, 2\Delta t)$ etc.Eq. 2 is used to evaluate $w(x,y,z,t)$ and to prescribe BCs

$$\begin{bmatrix} \frac{\partial}{\partial t} + \overline{u} \frac{\partial}{\partial x} \end{bmatrix} q + \frac{\partial \psi}{\partial x} \frac{\partial \overline{q}}{\partial y} = 0$$

$$\begin{bmatrix} \frac{\partial}{\partial t} + \overline{u} \frac{\partial}{\partial x} \end{bmatrix} q = 0 \quad \text{for} \quad z > 0$$

$$q = 0 \text{ is a solution as before}$$
The solution is the same as in Example 2 if α is identified with $-f\Lambda/N^2$, since the slope of the density isopleths is
$$\alpha = \frac{\rho_y}{\rho_z} = \frac{(g/\overline{\rho})\rho_y}{(g/\overline{\rho})\rho_z} = \frac{\sigma_y}{N^2} = -\frac{f\overline{u}_z}{N^2} = -\frac{f\Lambda}{N^2}$$

	QUARTERLY JO	URNAL	
ROYAL	METEOROLOGI	CAL	SOCIETY
Vol. 111	OCTOBER 1985		No. 470
Quart. J. R. Met. Soc. On the use	(1985), 111, pp. 877-946 and significance of isentropic	551.509 c potential vo	3:551.511.2:551.511.32 rticity maps
By	B. J. HOSKINS ¹ , M. E. McINTYRE ² and	A. W. ROBERTS	ON ³
² Departmen ³ Laboratoire de Pl	¹ Department of Meteorology, Univers t of Applied Mathematics and Theoretical F sysique et Chimie Marines, Université Pierre	sity of Reading Physics, University o e et Marie Curie, 75	f Cambridge 230 Paris Cédex 05
Eucoratone ac 1	.,		

The End	