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Advanced Dynamical Meteorology

Roger K. Smith CH 05

Shear instability

U(z)

z

Boussinesq fluid

In Chapter 3 we studied stable gravity waves,
including those modified by shear. 

The relative effects of stratification and shear
are characterized by the Scorer parameter:
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We consider now the other extreme of sheared motion, possibly
modified by stratification.
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Cross-differentiate

Introduce a streamfunction  such that the horizontal
vorticity component

u Uu wU Pt x z x+ + = −
and

w Uw Pt x z+ = − + σ

u wz x− = ∇2ψ
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Assume buoyancy effects are unimportant (σ ≈ 0) and 
suppose that U(z) changes from one relatively uniform value
to another in a small height interval. 

Idealization:
z inviscid, homogeneous fluid

uniform flow,  U1

uniform flow,  U2

z = 0

The interface z = 0 may be regarded as a vortex sheet.

Helmholtz instability
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Consider small-amplitude perturbations to this basic flow
of the form

ψ ψ( , , ) ( ) ex p [ ( )]x z t z ik x c t= −

An eigenvalue problem gives c = c(k) which turns out
to be complex. 

constants

The phase speed of the wave is Re[c].
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Boundary conditions:    pressure along the vortex sheet and
vertical displacement of the sheet are continuous. 

(as usual these condition are linearized to z = 0).

Exercise 3.6 ψ ψ/ ( ) ( )c U and c U z− −

are continuous at z = 0. 

and

c U U i U U= + ± −1
2 1 2

1
2 1 2( ) ( )

perturbation travels with
the average flow speed

growth rate k c i
= −k U U( )1 2
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It happens frequently in the atmosphere that the region of 
strong shear coincides with a sharp, stable density gradient.

Idealization:

z

inviscid, homogeneous
fluid layers

uniform flow,  U1
density

uniform flow,  U2
density

z = 0
ρ 1

ρ 2

ρ ρ1 2<

Kelvin-Helmholtz instability

Show that continuity of interface displacement and total
pressure at the mean position of the interface z = 0 requires
that

/ ( ) ( )ψ ρ ζ ρ ψc U and g c U z− − + −

are both continuous at z = 0.

sinusoidal interface displacement ζ ζ( , ) R e[ ]( )x t e ik x ct= −

Exercise 3.6
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/ ( ) ( )ψ ρ ζ ρ ψc U and g c U at zz− − + − = 0

Show that
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c0 is the speed of interfacial waves in the absence of mean
currents (i.e. when U1 and U2 are both zero)

Exercise 5.1
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Kelvin-Helmholz flow is unstable to small-amplitude
perturbations (with Im(c) > 0) when
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The Helmholtz and Kelvin-Helmholtz instabilities may be
interpreted as being due to a redistribution of vorticity in
the vortex sheet by the disturbance.

View the perturbation in the frame of reference in which it
is stationary. Assume that ρ ρ ρ ρ2 1 1 2− << +

1
2 U

1
2 U

A
B

C

D

E

induced velocity takes crest upwards

trough goes down



7

ρ1

ρ 2

interface pressure  suction

gravity

U1

U2

Force balance in Kelvin-Helmholtz instability

(i) (ii) (iii)

(iv) (v)

Sequence illustrating the growth of
Kelvin-Helmholtz waves
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U1

U2

h

z

h

z

U(z) ρ ( )z

the vortex sheet and density contrast have a finite depth scale

Uniform shear model for Kelvin-Helmholtz instability
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the velocity shear

the density gradient d
d z

hρ
ρ ρ= −( ) /2 1

d U
d z

U U h= −( ) /1 2

the static stability parameter analogous to N2 is
g
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ρ(z) = constant

Threshold for instability occurs when kh is about 1.3

Exercise: Uniform shear model for Helmholz instability
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The nondimensional quantity Ri is called the Richardson number.

Ri N
dU
dz

= F
H
I
K

2

2

The Richardson number criterion for Kelvin-
Helmholz instability

It is a measure of the stabilizing effect of the stratification 
compared with the destabilizing effect of the shear.

With the threshold value of 1.3 for kh as obtained in the 
Helmholz problem for the case of no stratification, the 
Richardson number criterion gives Ri < 0.65 for instability.

H

- H

z z

before mixing after mixing
Θ

θθ β= +Θ z

Θ

U z+ α U

Before and after states in the complete mixing of a uniform 
shear layer with a uniform potential-temperature gradient.

An energy criterion
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Does the total energy (kinetic + potential) increase or decrease? 

Assume that no net work is done by the pressure field as a 
consequence of the mixing process.

Change in KE KE U U z dz H
H

H
= = − + = −

−zΔ 1
2

2 2 1
3

3 2ρ α ρ αa f

Change in PE PE g zdz
H

H

F I= = −
−zΔ ( )ρ ρ

final and initial densities
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κ
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zero pressure change

or 
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Hence, the total energy is decreased if 

Δ ΘKE PE i e if H g+ < − <a f d i0 2 01
3

3 2, . . /ρ β α

Ri < 1
2
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Inviscid, Boussinesq fluid

η(x,z,t) = vertical displacement of a fluid parcel

η ηt xU w+ =For linear disturbances

η η( , , ) ( ) exp[ ( )] .x z t z ik x ct etc= −Assume

w ikV= η

( ) ( )V N k Vz z
2 2 2 2 0η η+ − =

Consider a flow between horizontal rigid boundaries at
z = 0 and z = d. ( ) ( )η η0 0= =d

Instability of stratified shear flows

Miles’ theorem

If the Richardson number                              everywhere,
then the flow is stable.
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2
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2

2 1 1
4
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Substitution for       and      givesη η z
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( ) [ ( )]VG U k V V U N Gz z zz z− + + − =−1
2

2 1 1
4
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Multiply by the complex conjugate G* of G and integrate
0

d
d zz

Note that

0 0 0

d d d
G V G d z G d V G V G G d zz z z z zz z z= −* * *( ) ( )
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If                 the imaginary part givesc i ≠ 0
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If                         i.e. if                  , k and Gz must be identically
zero

N U z
2 1

4
2> R i > 1

4

G = constant

Hence, if                   everywhere, the flow is stable.  q.e.d.R i ≥ 1
4

( ) ( ) [ ( ) ]η z V G z U z c= ∝ −− −1
2

1
2
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Multiply                                                        by       and

Howard’s semi-circle theorem

The complex wave speed c of any unstable mode must lie 
inside the semi–circle in the upper half of the c–plane 
with the range of U as its diameter.

Proof Assume that c i ≠ 0

( ) ( )V N k Vz z
2 2 2 2 0η η+ − =
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Put                                      and take the real partQ kz= +| | | |η η2 2 2

0 0
2 2 2 2

d d
U c c Q dz N dzr iz z− − =[( ) ] | |η

and imaginary part

0 0

d d
U Q dz c Q dzrz z=

These equations can be combined to give
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All eigenvalues of unstable modes lie in the semi-circle

Howard’s semi-circle theorem
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0 0
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Bound on the growth rates
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This result contains Miles’ theorem because

( )N U z
2 1

4
2≥ k c i

2 2 0≤ and the flow is stable

Since | |U c ic cr i i− − ≥ 2 | |V c i
2 2≤ −and

KH Instability in the laboratory

From S. A. Thorpe, J. Fluid Mech., 46, 299-319




