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Advanced Dynamical Meteorology

Roger K. Smith CH 04

Energetics of waves on stratified shear flows

U(z)

z Boussinesq fluid

∂
∂

∂
∂

ρ
E
t

F
z

uwUz= − −

Wave energy equation (see Ex. 3.4)

E = mean wave energy density

F = mean rate of working of the
disturbance pressure force in
the vertical = pw
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F pw=

In the case of a non-moving medium (U = 0),  F is interpreted 
as a mean flux of wave energy and equals Ewg (Ex. 2.11).

It is tempting to retain this interpretation of F in a moving 
fluid and to regard the term Uz in

∂
∂

∂
∂

ρ
E
t

F
z

uwUz= − −

as a 'source' of mean wave energy associated with the 
interaction of the wave with the basic shear, Uz.

This interpretation can be misleading!

Question: What is meant by 'energy flux' in a moving medium?

To see why                      in                              ought not 

to be interpreted as an energy source, consider the equation 
for the mean flow to second-order in wave amplitude.

−ρuwUz
∂
∂

∂
∂

ρ
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t

F
z

uwUz= − −

Full horizontal momentum equation in flux form

ρ ρ ρu u u w pt x z x
* *2 *( ) ( )+ + = −

u* is the total horizontal wind speed

Put u u z t u x z t* ( , ) ( , , )= +

u = deviation from the mean wind u
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mean refers to an average over a wavelength: ( ) ( )= z1 0λ

λ
dx

or for an non-periodic disturbance which vanishes as x → ±∞:

( ) ( )dx
∞

−∞
= ∫

Substitute for u* in and averageρ ρ ρu u u w pt x z x
* *2 *( ) ( )+ + = −

the mean flow momentum equation

ρ ρu uwt z
+ =c h 0

Assume that the wave amplitude is sufficiently small

u = U(z) and w = 0

the interaction between the perturbation and the
basic flow can be ignored.

However, the waves have a second-order effect in amplitude 
on the mean flow governed by

( )t z
u uw 0ρ + ρ = (see ADM)

× ⇒u the mean flow kinetic energy equation

( ) ( )21
2 z

u u uw
t

∂
ρ = − ρ

∂
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∂
∂

ρ ρ
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u u uw
z

1
2

2e j c h= −

local second-order changes in the mean flow 
are associated with nonzero values of u uw

z
ρc h

this term should appears as the "source term" in 

∂
∂

∂
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ρ
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t

F
z

uwUz= − −

Rewrite as ∂
∂

∂
∂

ρ ρ
E
t z

pw U uw U uw
z

= − + +c h c h

Interpret                                    as the total or net energy flux.F = +pw U uwρ

Not Galilean invariant

Put u u u= + +ε ε1
2

2 ... u U z u z t= + +( ) ( , ) ...ε2
2and

where ε << 1 and the ui etc. are O(1), in ρ ρu uwt z
+ =c h 0

ρ ρu u wt z2 1 1 0+ =c h
Assumes that the wave-induced vertical motion is zero at Ο( )ε2

Wave energy equation

∂
∂

∂
∂

ρ ρ
E
t z

pw U uw U uw
z

= − + +c h c h
Mean flow kinetic energy

∂
∂

ρ ρ
t

u u uw
z

1
2

2e j c h= −

At Ο( )ε2 ∂
∂

ρ
∂
∂

ρ
t

E Uu
z

p w U u w( )+ = − +2 1 1 1 1c h

Perturbation analysis
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∂
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E Uu
z

p w U u w( )+ = − +2 1 1 1 1c h

wave energy plus 
mean flow energy

ρ ρ ε ρUu U u U2 1
2

2
2

2 1
2

2= + + −( ...)

to Ο( )ε2

the divergence of the vertical advective 
flux of total kinetic energy
1
2 1

2 2ρ ε ε( ... ) ( )U u at+ + Ο

= the divergence of the first nonzero
term in the expression

1
2 1

2
1ρ ε ε( ... )U u w+ +

Show that the perturbation and mean flow equations:

form an energetically closed system in the sense that, for a
free wave with

∂
∂

∂
∂

ρ
E
t

F
z

uwUz= − − ∂
∂

ρ ρ
t

u u uw
z

1
2

2e j c h= −

F( )0 0= F as z→ → ∞0and

0
1
2

2∞z +E u dzρe j is a constant

F pw=
recall that

Exercise
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The perturbation equations for waves in a Boussinesq fluid are:

t x z x

t x x
2

t x

x z

u Uu wU P
w Uw P

U N w 0
u w 0

+ + = −
+ = − + σ

σ + σ + =
+ =

Look for steady travelling wave solutions of the form

( , , , ) Re ( ),.... ( )u w P u z eik x ctσ = −a f

The nonacceleration theorem

ik U c u U w ikPz( )− + = −

ik U c w Pz( )− = − + σ

ik U c N w( )− + =σ 2 0

iku w z+ = 0

( )P i
k

Vw V wz z= − −

Put V = U - c

σ =
iN
kV

w
2

P ikV iN
kV

wz = − +
L
NM

O
QP

2

w N
V

V
V

k wzz
zz+ − −

L
NM

O
QP

=
2

2
2 0
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w N
V

V
V

k wzz
zz+ − −

L
NM

O
QP

=
2

2
2 0

This is the Boussinesq form of Scorer’s equation

( , , , ) Re ( ),.... ( )u w P u z eik x ctσ = −a f
We can write the components of

as u u z eik x ct= +−1
2 ( ) ( ) *( )

etc.

complex conjugate

ab ab a b= +
1
4

* *e j
Then, for any two dependent variables a and b

ik U c u U w ikPz( )− + = −Multiply by ρ * /w ik

and use iku w z+ = 0

( ) * | | *U c uw i
k

U w pwz− − = −ρ ρ 2

Add this equation to its complex conjugate and use

( )U c uw pw− = −ρ

ab ab a b= +
1
4

* *e j
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Also, for wave perturbations such as
( , , , ) Re ( ),.... ( )u w P u z eik x ctσ = −a f

F = + =
−

=pw U uw cF
c U

c uwρ ρ

For a steady (in amplitude) sinusoidal wave ∂E/∂t = 0 and from

∂
∂

∂
∂

ρ
E
t

F
z

uwUz= − − and ( )U c uw pw− = −ρ

∂
∂

ρ
F
z

uwUz= − ( )U c uw F− = −ρ

( )U c d
dz

uw− =ρc h 0

d
dz

uwρc h = 0

( )U c d
dz

uw− =ρc h 0

U = c

or

F = c uwρd
dz

uwρc h = 0 and dF
dz

= 0

( )t z
u uwρ = − ρ

the waves do not force any second-order
acceleration of the mean flow
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This result is now known as the nonacceleration theorem. 

It was first obtained in a slightly less general form by 
Eliassen and Palm (1960) and has been shown to be a 
quite general result by Andrews and McIntyre (1978). 

The quantity is the total vertical flux of wave 
energy.

ρ ρu uwt z
= −c hd

dz
uwρc h = 0 and ut

F = c uwρ

For a steady (in amplitude) sinusoidal wave

The nonacceleration theorem

For waves which radiate vertically (0 < |k| < l), there exists a 
downward flux of mean horizontal momentum (               ).

is independent of height and equal to the drag per 
unit wavelength exerted by the boundary on the airstream
(see Ex. 3.5).

ρuw < 0

where sgn(mk) > 0 for upward propagation. 

ρuw < 0

ρ ρuw U mkhm= − 1
2

2 2

Evidently, the momentum flux originates at infinity, where, 
presumably, the drag exerted by the boundary on the air
stream acts.  This is at first sight puzzling !

Flow over sinusoidal orography
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When a general airstream U(z) flows over mountain ridge 
and produces upward radiating waves, a forward wave drag
is exerted on the mountain.

The mountain exerts a drag on the airstream

Question: How is the stress on the airstream distributed? i.e. 
at what level(s) does the drag act on the airstream?

For steady waves, the nonacceleration theorem rules out the 
possibility of interaction except at a critical level where U = c, 
a level where the intrinsic frequency of the waves vanishes 
(see Eq. 3.4). 

In the case of stationary mountain waves, c = 0.

Linear theory suggests that at a critical level, the wave is 
almost completely absorbed, leading to a deceleration of the 
mean flow at that level.

However, nonlinear and viscous effects may be important 
near the critical level.

I shall not address the critical-layer problem in this course -
for further details, see the important paper by Booker and 
Bretherton (1967).

For a propagating wave packet with a spectrum of 
horizontal phase speeds, there may be a range of critical 
levels.

Then absorption by the mean flow takes place in a finite 
layer.

For stationary mountain waves, c = 0 for all Fourier 
components.
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The analysis of unsteady wave development and of wave 
propagation in arbitrary shear flows is mathematically 
difficult. 

For unsteady wave development Laplace transforms methods 
for initial-value problems usually lead to uninvertible
transforms.

For wave propagation in arbitrary shear flows, typical 
eigenvalue problems are analytically intractable, or at best, 
very complicated.

Some analytical progress and further physical insight may be 
obtained by studying slowly-modulated wave trains or wave 
packets, in which the waves are locally plane, with wavelength 
and amplitude varying significantly only over a space scale of 
many wavelengths

Theory of Acheson (1976, pp 452 – 455): 

Assume the waves have constant frequency ω and horizontal 
wavenumber k, but their amplitude varies with height and 
time on scales very long compared with one wavelength and 
one period, respectively. 

Define 'slow' variables:     Z = αz and T = αt, where α << 1 
is a dimensionless measure of how slowly the wave train is 
modulated.

Slowly varying means that at any given height/time the wave 
amplitude varies by a factor O(1) over a height/time scale of 
O(α–1) wavelengths/periods.

Slowly varying wave trains or wave packets
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Assume a Boussinesq fluid with N constant, but with a basic 
shear (U(Z),0,0). 

Consider linear wave perturbations with streamfunction
ψ ψ αψ= + +1 2 . . .

ψ ψ θ ω
n n

i kx z tZ T e= + −Re ( , ) ( ( ) )where

A local vertical wavenumber defined in terms of the phase 
function θ(z) is

m Z d
dz

( ) =
θ

Similar expansions are taken for other flow quantities.

Replace time and height derivatives by

∂
∂

∂
∂

α
∂

∂t t T
→ +

∂
∂

∂
∂

α
∂

∂z z Z
→ +and

u Uu P u wUt x x T Z+ + = − +( )α

w Uw P w wPt x z T Z+ + − = − +σ α( )

σ σ ασt x TU N w+ + = −2

u w wx z Z+ = − α

Term describing the effect of vertical shear appears only at O(α). 

The multiple-scaling technique
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Substitution of the expansions for u, w, P, gives to O(α0) a 
locally-plane wave solution, identical with that which 
would be obtained if U were a constant. 

For this solution
ω*2 2 2

2 2=
+

N k
k m

ω*(Z) = ω − kU(Z) is the intrinsic frequency.

ω* is a function of Z through U(Z) and m(Z).

Zero-order solution

At O(α) in the expansion, the equations for subscript ´2´
quantities become:

i u kP u U wT Z( * )ω 2 2 1 1− = +

i w mP w PT Z( * )ω σ2 2 2 1 1− + = +

i N w Tω σ σ* )2
2

2 1− =

i ku mw w Z( )2 2 1+ = −

Eliminating û2, … etc. we obtain an expression of the form

(. . . )w 2 = expression involving T and Z derivatives of  
subscript '1' quantities

where the coefficient of        is zero.w 2

First-order solution
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= [expression involving T and Z derivatives of  
subscript '1' quantities]

(. . . )w 2

This expression, when set equal to zero, gives a 
solvability condition for the O(α) problem. 

This 4 * 4 set of linear equations has the general form Ax = b, 
where A is a 4 * 4 matrix with det A = 0 and x and b are 
column vectors. 

It has a non-unique solution, but only if b is orthogonal to the 
solution y of the adjoint homogenous problem A´y = 0.

After some algebraic manipulation (see Appendix to ADM), 
the solvability condition for                           may be written 
in the form

(. . . ) . . .w 2 =

∂
∂

∂
∂

A
T Z

w Ag+ =( ) 0
where

A E= / *ω

w
mg =

∂ω
∂

E m k wo= +1
2

2 2
1

21ρ ( / | |) |

called the wave action

is the local vertical component 
of the group velocity

expresses the conservation of wave action
∂
∂

∂
∂

A
T Z

w Ag+ =( ) 0

Wave action
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Assuming that the mean second-order perturbation to the 
basic flow forced by the foregoing slowly-varying wave varies 
only with Z and T, the mean horizontal momentum equation 
may be written

α ∂ ∂u t U w u wZ z2 1 1/ + = −b g c h
where, from continuity wz = 0

Show that ρ
∂
∂

∂
∂

u
T

k
Z

w Ag
2 = − ( )

Moreover, show that if u2 = 0 in the absence of waves 
(i.e., when A = 0), then

ρu E
c U2 =

−

Exercise

when the amplitude of the wave is independent of time, Awg
is independent of height.

∂
∂

∂
∂

A
T Z

w Ag+ =( ) 0

when the wave amplitude is steady, this is true even when 
no restriction is placed on how fast U varies over a vertical 
wavelength.

p w c U1 1 / ( )− is independent of height.

d
dz

uwρc h = 0
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Consider now a wave train set up by the horizontal translation 
with speed c of a corrugated boundary at z = 0. 

The corrugations are assumed to increase gradually in amplitude 
(from zero at time t) on the slow time scale T as governed by the 
formula

ζ(x,t;T) = A(T) cos k(x – ct) 

As the slowly-modulated wave train propagates upwards past 
any given level, the local wave energy density E will slowly 
increase to a maximum and (in the absence of dissipation) then 
diminish again to zero as the wave train passes.

w at z= =0 0

w ≡ 0wz = 0Thus

the local modification      to the mean flow varies similarly, the 
mean flow being accelerated (decelerated) if c > U (c < U).

ρu E
c U2 =

−
According to

u2

If the forcing ζ(x,t;T) = A(T) cos k(x – ct)  slowly attains a 
constant amplitude A0 on the time scale T and persists at 
that amplitude thereafter, the wave train will consist of a 
precursor (which contains O(α-1) wavelengths and whose 
amplitude increases with depth from effectively zero to that 
amplitude A0 which the source ultimately attains) and a 
lower part of constant amplitude A0 extending all the way 
down to the source.



17

In particular, what we call for convenience the 'front' of the 
wave train moves upwards at this speed. 

∂
∂

∂
∂

A
T Z

w Ag+ =( ) 0

When U is a constant, so are m and wg and

reduces to the statement that amplitude modulations propagate 
upwards at the group velocity.

the tolerably well-defined highest 
point at which the amplitude is A0

z

wave front

E   wave energy

wgt

U          U(z)

z

c > U

c < U

U

Wave energy density E as a function of height for a wave 
source switched on at z = 0 at t = 0 (left) and corresponding 
mean flow changes (right).
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We may now understand the result that for steady flow 
over sinusoidal topography there is a downward flux of 
mean horizontal momentum from infinity. 

If we imagine such a flow to be established by the gradual 
evolution of the topography as described by

ζ(x,t;T) = A(T) cos k(x – ct)

with c = 0, it is clear that the source of the downward 
momentum flux in the steady wave regime (i.e. at heights 
below z = wgt) is the deceleration of the mean flow in the 
region constituting the front of the wave train. At no finite 
time is there a momentum flux at infinity.

The End


