

Travelling wave solutions

Substitute $(u, w, P, b) = (\hat{u}(z), \hat{w}(z), P(z), b(z)) \exp[i(kx - \omega t)]$ $\Rightarrow a \text{ set of ODEs or algebraic relationships between } \hat{u}(z) \text{ etc.}$ $-i(\omega - Uk)\hat{u} + \hat{w}U_{z} = -ik\hat{P}$ $-i(\omega - Uk)\hat{w} = -\hat{P}_{z} + \hat{b}$ $-i(\omega - Uk)\hat{b} + N^{2}\hat{w} = 0$ $iku + \hat{w}_{z} - \frac{\hat{w}}{H_{s}} = 0$

Forced waves

If the waves are being generated at a particular source level, the boundary conditions on Scorer's equation are inhomogeneous and a different type of mathematical problem arises: -

$$\hat{\zeta}(z) = Ae^{imz} + Be^{-imz}$$
The boundary condition at the ground is $\zeta(x,0) = h_m e^{ikx}$

$$\hat{\zeta}(0) = h_m$$
The upper boundary condition and hence the solution depends
on the sign of $m^2 = N^2 / U^2 - k^2$
call $l^2 \longrightarrow l = \frac{N}{U} > 0$
There are two cases: $0 < |k| < 1$ \longrightarrow m real
 $l < |k|$ \longrightarrow m imaginary

Exercise		
Calculate the boundary z =	mean rate of working of 0 for the two solutions	pressure forces at the
Show that for drag on the a	$\hat{\zeta}(\mathbf{x}, \mathbf{z}) = \mathbf{h}_{\mathrm{m}} \mathrm{e}^{\mathrm{i}(\mathrm{kx}+\mathrm{mz})}$ irstream	the boundary exerts a
whereas for	$\hat{\zeta}(\mathbf{x},\mathbf{z}) = \mathbf{h}_{\mathrm{m}} \mathrm{e}^{-(\sqrt{k^2 - l^2})\mathbf{z} + \frac{1}{2}}$	^{+ikx} it does not.
Show also th downward fl independent the boundary	at, in the former case, the ux of horizontal moment of height and equal to th y.	ere exists a mean um and that this is e drag exerted at

broad ridge, lb >> 1 → Nb/U >> 1
↓ I₁ >> I₂ and

$$\zeta(x,z) \approx h_m \operatorname{Re} \{ e^{ilz} \int_0^\infty \exp[-u(1-ix/b)] du \} = h_m \operatorname{Re} \left[\frac{be^{ilz}}{b-ix} \right]$$

$$= h_m \left[\frac{\cos |z-(x/b) \sin |z|}{1+(x/b)^2} \right].$$
> In this limit, essentially all Fourier components propagate vertically.

moderate ridge,
$$lb \approx 1$$
 \longrightarrow Nb / U ≈ 1
The integrals I_1 and I_2 are too difficult to evaluate analytically,
but their asymptotic expansions at large distances from the
mountain (compared with 1/l) are revealing.
Let $u = lb \cos \alpha$ where $0 \le \alpha \le \pi / 2$
 $x = r \cos \theta$, $z = r \sin \theta$ where $0 \le \theta \le \pi$
Then
 $I_1 = h_m lb \operatorname{Re} \int_0^{\frac{\pi}{2}} (\sin \alpha e^{-lb \cos \alpha}) e^{irl \cos(\theta - \alpha)} d\alpha$
 $\prod_1 = \operatorname{Re} \int_0^{\frac{\pi}{2}} h(\alpha) e^{irl g(\alpha)} d\alpha$
Asymptotic expansion for large r by stationary phase method

$$\widetilde{w}_{zz} + (l^{2}(z) - k^{2})\widetilde{w} = 0$$
$$l^{2}(z) = \frac{N^{2}}{(U-c)^{2}} - \frac{U_{zz} + U_{z} / H_{s}}{U-c} - \frac{1}{4H_{s}^{2}}$$

$$\frac{d^2 \widetilde{\psi}_n}{dz^2} + (l_n^2 - k^2) \widetilde{\psi}_n = 0, \quad (n = 1, 2)$$
Assume stationary wave solutions so that $c = 0$
then $l^2 = N^2/U^2$ as before
Solutions: $\widetilde{\psi} = exp(im z)$ where $m^2 = l^2 - k^2$
Assume that $m_2^2 > 0$, so that vertical wave propagation is
possible in the lower layer.

$$\frac{\pi}{2} < m_2 h < \pi \quad \Longrightarrow \quad \frac{\pi^2}{4h^2} < m_2^2 = l_2^2 - k^2$$

$$\boxed{\text{Recall that}}_{m_1^2 < 0} \quad \textcircled{l_1^2} < k^2$$

$$\boxed{1_1^2 < k^2 < l_2^2 - \frac{\pi^2}{4h^2}}$$

The general solution may be expressed as a Fourier integral of

$$\psi(x, z) = Ae^{-ikx} \sin m(H - z)$$

$$\psi(x, z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A(k)e^{-ikx} \sin m(H - z)dk$$

$$-\frac{Uh_m}{1 + (x / b)^2} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A(k)e^{-ikx} \sin mHdk$$

