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Advanced Dynamical Meteorology

Roger K. Smith CH03

Waves on moving stratified flows

Small-amplitude internal gravity waves in a stratified shear
flow U = (U(z),0,0), including the special case of uniform flow
U(z) = constant.

Linearized anelastic equations:

u Uu wU Pt x z x+ + = −
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Travelling wave solutions

Substitute
ˆ ˆ(u , w , P, b) (u (z), w (z), P (z), b(z)) exp[i(kx t )]= − ω

a set of ODEs or algebraic relationships between           etc.( )u z

− − + = −i Uk u wU ikPz( )ω

z
ˆˆˆi( U k )w P b− ω − = − +

iku w w
Hz

s
+ − = 0

2ˆ ˆi( U k )b N w 0− ω − + =

* 2
*

z z z2 *
s s

ˆ ˆi w i N wˆˆˆ ˆ ˆ ˆ(u, P, b) w , w kU w ,
k H k H i
⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞ω⎪ ⎪= − ω + −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ω⎪ ⎪⎢ ⎥⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦

ω ω* = − Uk
is the intrinsic frequency of the wave. 

The frequency measured by an observer
moving with the local flow speed U(z).

Relate quantities                to      :wˆˆû, P, b

Then the second equation gives an ODE for w
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ω* ( )= −k c U

~ ( ( ) )~w l z k wzz + − =2 2 0Then

l z N
U c

U U H
U c H

zz z s

s

2
2

2 2
1

4
( ) /

=
−

−
+
−

−a f
Scorer

parameter

Scorer’s
equation

Free waves

When w satisfies homogeneous boundary conditions (e.g. w = 0)
at two particular levels, we have an eigenvalue problem.

w = 0 at z = 0, H ~ ,w at z H= =0 0

For a given horizontal wavenumber k, free waves are possible
only for certain phase speeds c.

Alternatively, when c is fixed, there is a constraint on the
possible wavenumbers.

The possible values of c(k), or given c, the possible values of k,
and the corresponding vertical wave structure are obtained as
solutions of the eigenvalue problem.
Often the eigenvalue problem is analytically intractable.
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z

x w = 0

w = 0

z = 0

z = H

U(z)

N(z)

Example 1:   Stratified shear flow between rigid horizontal
boundaries

z

x

neutrally-stable layer

N = 0        

stable layer   
N(z)

U(z)

A model for the “Morning-Glory” wave-guide

no vertical wave propagation!

Example 2:   Wave-guide for waves on a surface-based stable
layer underlying a deep neutrally-stratified layer
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The Morning-Glory
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The Gulf of Carpentaria Region

Morning-Glory
cloud lines

A Morning Glory over Bavaria
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If the waves are being generated at a particular source
level, the boundary conditions on Scorer’s equation are
inhomogeneous and a different type of mathematical
problem arises: -

Forced waves

Example 1: Waves produced by the motion of a (sinusoidal)
corrugated boundary underlying a stably-stratified
fluid at rest.

c g

z

x

k

c

corrugated boundary
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Assume:

1.  no basic flow (U = 0)

2. the Boussinesq approximation is valid (1/Hs = 0)

3. N and c are given constants

the vertical wavenumber m is determined by the
dispersion relation

m N c k2 2 2 2= −/

k is the horizontal wavenumber

the wavenumber of the corrugations

c is the speed of the boundary

The group velocity of the waves is

cg = −
c
N

m mk
3

2
2( , )

The vertical flux of mean wave energy is

F pw Ewg= =

the mean wave
energy density

the vertical component
of the group velocity

Here c < 0 sgn(wg) = sgn(mk)

these waves propagate
energy vertically

k

phase
lines

c
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The solution of is determined by~ ( ( ) )~w l z k wzz + − =2 2 0

1.  A condition at z = 0 relating       to the amplitude
of the corrugations, and the speed of boundary motion, c.

2.  A radiation condition as z →∞

This condition is applied by ensuring that only wave
components (in this case there is only one) with a positive
group velocity are contained in the solution. 

~w

the condition at z = 0 is an inhomogeneous condition

the condition as  z →∞ ensures that the direction of
energy flux at large heights is away from the wave source,
i.e. vertically upwards.

Conditions 1 and 2 determine the forced wave solution uniquely

Example 2: Waves produced by the flow of a stably-stratified
fluid over a corrugated boundary.

c g

z

x

U

This flow configuration is a Galilean transformation of the first:
the boundary is at rest and a uniform flow U (> 0) moves over it.
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Mountain waves

When a stably-stratified airstream crosses an isolated ridge or, more 
generally, a range of mountains, stationary wave oscillations are frequently 
observed over and to the lee of the ridge or range. These so-called mountain 
waves, or lee waves, may be marked by smooth lens-shaped clouds, known 
as lenticular clouds.
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Linear Theory

z h x h kxm= =( ) cos

Assume:   1.  Uniform flow U 
2.  Boussinesq fluid  (1/Hs = 0)
3.  Small amplitude sinusoidal topography:

w
U u

dh
dx

on z h x
+

= = ( )

Surface boundary condition: streamline slope equals the
terrain slope

(U + u, w) = (dx, dh)

w U dh
dx

at z= = 0linearize
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Let                  be the vertical displacement of a fluid parcel.

w D
Dt

=
ζ

ζ( , , )x z t

ζ( , , )x z t

linearize w U
x

=
∂ζ
∂

w ikU= ζ

d
dz

N
U

k
2

2

2

2
2 0ζ
ζ+ −

F
HG

I
KJ =

U = constant ζ satisfies the same equation as w

( )ζ z Ae Beimz imz= + −The general solution is

constants

m N U k2 2 2 2= −/

The boundary condition at the ground is

( )ζ z Ae Beimz imz= + −

ζ( , )x h em
ikx0 =

( )ζ 0 = h m

The upper boundary condition and hence the solution depends
on the sign of  m N U k2 2 2 2= −/

call l2 l N
U

= > 0

There are two cases:  0 < |k| < l

l < |k|

m real

m imaginary
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Two cases:

0 < |k| < lI. m real

if m, k > 0, we must choose B = 0 to satisfy
the radiation condition.

The phase lines slope upstream with height sgn(mk) > 0

Then the complete wave solution is

( , ) ( )ζ x z h em
i kx mz= +

The real part is implied

II.

B = 0

Here, the phase lines are vertical

Then the complete wave solution is

( , ) ( )ζ x z h em
k l z ikx= − − +2 2

l < |k| m imaginary (= im0 say) where m k l0
2 2= + −

The upper boundary condition requires that
remains bounded as

( )ζ z
z → ∞

( )ζ z Ae Bem z m z= +− 0 0Then
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U

U

0 < |k| < l

l < |k|

( , ) ( )ζ x z h em
k l z ikx= − − +2 2

( , ) ( )ζ x z h em
i kx mz= +

vertical propagation: U|k| < N

vertical decay: N < U|k|

Streamline patterns for uniform flow over sinusoidal
topography

Exercise

Calculate the mean rate of working of pressure forces at the
boundary z = 0 for the two solutions

whereas for

( , ) ( )ζ x z h em
i kx mz= +

( , ) ( )ζ x z h em
k l z ikx= − − +2 2

Show that for
drag on the airstream

the boundary exerts a

it does not. 

Show also that, in the former case, there exists a mean
downward flux of horizontal momentum and that this is
independent of height and equal to the drag exerted at
the boundary.
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Flow over isolated topography

Consider flow over an isolated ridge with
h(x) = hm/[1 + (x/b)2]

maximum height of the ridge = hm
characteristic half width = b

hm b

U

The ridge is symmetrical about x = 0

it may be expressed as a Fourier cosine integral

h x h k kx dk

h k e dkikx

( ) ( ) cos( )

Re ( )

=

=

∞

∞

z
z

0

0

where

h k h x kx dx h e dx
x b

h b e du
u

m
ikx

m
ikbu

( ) ( ) cos Re
/

Re

= z =
+

=
+

∞
∞

∞

z
z

2 2
1

2
1

0 0
2

0 2

π π

π

a f
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ζ( , ) Re ( ) ( )[ ( ) ] ( )/ /
x z h k e dk h k e dk

l
i kx l k z

l

ikx k l z= +L
NM

O
QPz z+ −

∞
− −

0

2 2 1 2 2 2 1 2

The solution for flow over the ridge is just the Fourier synthesis
of the two solutions for 0 < |k| < l and l <  |k|.

Put kb = u

ζ( , ) Re exp

exp

/

/

x z h u ix
b

i l b u z
b

du

u ix
b

u l b z
b

du

m

lb

lb

= − −FH
I
K + −L

NM
O
QP

L
NM

+ − −FH
I
K − −L

NM
O
QP
O
QP

z
z∞

0

2 2 2 1 2

2 2 2 1 2

1

1

d i

d i

= I1 + I2 , say

Two limiting cases:

narrow ridge, lb << 1 I1 << I2 and

ζ( , ) Re exp

[ / ( ) ]
.

x z h u ix
b

z
b

du

b
b z

h
x b z

m

m

≈ − − +F
H

I
K

L
NM

O
QP

=
+
F
H
I
K + +

∞z0
2 2

1

1

each streamline has the same general shape as the ridge

the width of the disturbed portion of a streamline increases
linearly with z
its maximum displacement decreases in proportion to
1/(1 + z/b) , becoming relatively small for heights a few times
greater than the barrier width.
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ζ( , )
[ / ( ) ]

.x z b
b z

h
x b z

m=
+
F
H
I
K + +1 2 2

The highest wind speed and the lowest pressure occurs at
the top of the ridge.

Steady flow of a homogeneous fluid over an isolated
two-dimensional ridge, given by

narrow ridge, lb << 1   Nb/U << 1

broad ridge, lb >> 1    Nb/U >> 1

I1 >> I2 and

In this limit, essentially all Fourier components propagate
vertically.

ζ( , ) Re{ exp / } Re

cos ( / )sin
( / )

.

x z h e u ix b du h be
b ix

h lz x b lz
x b

m
ilz

m

ilz

m

≈ − − =
−
L
NM
O
QP

=
−
+

L
NM

O
QP

∞z0
2

1

1

a f
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m

2

(x,z) h

cos lz (x / b)sin lz
1 (x / b)

ζ = ×

⎛ ⎞−
⎜ ⎟+⎝ ⎠

Buoyancy-dominated
hydrostatic flow over
an isolated two-
dimensional ridge,
given by 

The pressure difference across the mountain results in a net
drag on it.

The drag can be computed either as the horizontal pressure
force on the mountain

D p(x dh
dx

dx=
−∞

∞z , )0

D z uwdx=
−∞

∞zρ0 ( )

or as the vertical flux of horizontal momentum in the wave
motion

Boussinesq approximation ρ ρ0 ( ) *z =



19

moderate ridge, Nb U/ ≈ 1lb ≈ 1

The integrals I1 and I2 are too difficult to evaluate analytically,
but their asymptotic expansions at large distances from the
mountain (compared with 1/l) are revealing.

I h lb e e dm
lb irl

1
0

2= z − −Re (sin )cos cos( )
π

α θ αα α

I h e dirl g
1

0

2= zRe ( ) ( )
π

αα α

Let                           whereu lb= cosα 0 2≤ ≤α π /

x r z r= =cos , sinθ θ where 0 ≤ ≤θ π

Then

Asymptotic expansion for large r by stationary phase method

I h lb e e dm
lb irl

1
0

2= z − −Re (sin )cos cos( )
π

α θ αα α

Far field behaviour of I1
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(u lb)z / b
2 m lb u lb

m

ixI h max exp u 1 e du
b

h b exp ( lb) / z .

∞
− −

≤ ≤∞

⎡ ⎤⎛ ⎞≤ − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
= −

∫

ζ θ
π πθ( , ) sin coscos

/

x z h lb e
lr

lrm
lb≈ F
H
I
K −FH

I
K

− 2
4

1 2

Since lb ≈ Ο(1) , I1 + I2 is always the same order as I1

I2 is at most O(b/r)

not surprising since I1 contains all the vertically propagating
wave components.

Then for x > 0 and θ not to close to 0 or π

Lee waves in the case where lb ≈ 1
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~ ( ( ) )~w l z k wzz + − =2 2 0

l z N
U c

U U H
U c H

zz z s

s

2
2

2 2
1

4
( ) /

=
−

−
+
−

−a f

Scorer’s Equation

It was pointed out by Scorer (1949) that, on occasion, a long 
train of lee waves may exist downstream of a mountain 
range.

Scorer showed that a long wave train is theoretically possible
if the parameter l2(z) decreases sufficiently rapidly with
height.

Eigensolutions of

Trapped lee waves

are difficult to obtain when l2 varies with z.

~ ( ( ) )~w l z k wzz + − =2 2 0
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A two-layer model

layer 1

layer 2

U

U

l N U1
2

1
2 2

1= / , ψ

l N U2
2

2
2 2

2= / , ψ

In the Boussinesq approximation        satisfies the same ODE as

perturbation streamfunction

~ψ ~w

d
dz

l k nn
n n

2

2
2 2 0 1

~
( )~ , ( ,2)ψ

ψ+ − = =

u w w w ikx z x+ = ⇒ = − ⇒ = −0 ψ ψ~ ~

d
dz

l k nn
n n

2

2
2 2 0 1

~
( )~ , ( ,2)ψ

ψ+ − = =

Assume stationary wave solutions so that c = 0

then l2 = N2/U2 as before

where m2 = l2 − k2~ exp( )ψ = im zSolutions:

Assume that m2
2 > 0, so that vertical wave propagation is

possible in the lower layer.
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Case (a): upper layer more stable (l1 >  l2)

z = 0

layer 1

layer 2

incident wavereflected wave

transmitted wave

k1

k2

k2k

k

k

m1

- m2
m2

layer
interface

Streamfunctions:

transmitted wave

incident plus reflected wave

ψ β2
2 2= ++ −a e ei kx m z i kx m z( ) ( )

ψ α1
1= +ei kx m z( )

a given

m1 , m2 > 0

Wave solutions are coupled by conditions expressing the 
continuity of interface displacement and pressure at z = 0.
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Continuity of interface displacement at z = 0

ζ ζ1 2 0= =at z

w w at z1 2 0= =

ψ ψ1 2 0= =at z

provided, as here,
that U1 = U2

When the density is continuous across the interface,
continuity of pressure implies that

ψ ψ1 2 0z z at z= = see Ex. 3.6

α β=
+

=
−
+

F
HG

I
KJ

2 2

1 2

2 1

1 2

m a
m m

and m m
m m

a

always a transmitted wave no trapped "resonant"
solutions in the lower layer

Case (a): upper layer less stable (l1 <  l2)

z = 0

layer 1

layer 2

incident wavereflected wave

exponential decay

k

k

k

layer
interface

Assume that
m1

2 < 0
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The appropriate solution in the upper layer is the one which
decays exponentially with height:

ψ α1
1= −eikx m z

ψ β2
2 2= ++ −a e ei kx m z i kx m z( ) ( )

β = −a

ikx
2 2Ae sin m zψ =

ikx
2 2 2w ik ikAe sin m z= − ψ = −

2 2w 0 at z h if sin m h 0= = − =

y

x

y x= tan

y x
m h

= −
| |1

tan
| |

m h m h
m h2

2

1
= − put x = m2h

ππ
2

−
π
2

π
π

2 2< <m h

3
2
π

3
2

22
π

π< <m h
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π
π

2 2< <m h π 2

2 2
2

2
2 2

4h
m l k< = −

Recall that
m1

2 < 0 l k1
2 2<

l k l
h1

2 2
2
2

2

24
< < −

π

To illustrate the principles involved in obtaining solutions for
trapped lee waves, we assume that the upper layer behaves as 
a rigid lid for some appropriate range of wavelengths

U l N U2 2 2= / , ψ

z = H

z = 0

w = ⇒ =0 0ψ

ψ ( , ) sin ( )x z Ae m H zikx= −−
Solution

m l k2 2 2= −constant
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The general solution may be expressed as a Fourier integral of

ψ ( , ) sin ( )x z Ae m H zikx= −−

ψ
π

( , ) ( ) sin ( )x z A k e m H z dkikx= −
−∞

∞
−z1

2

−
+

=
−∞

∞
−zUh

x b
A k e mH dkm ikx

1
1
22( / )

( ) sin
π



28

A solution showing trapped lee waves.

Summary

Lee waves for lb ≈ 1  Nb/U ≈ 1
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ζ( , )
[ / ( ) ]

.x z b
b z

h
x b z

m=
+
F
H
I
K + +1 2 2

The highest wind speed and the lowest pressure occurs at
the top of the ridge.

Steady flow of a homogeneous fluid over an isolated
two-dimensional ridge, given by

narrow ridge, lb << 1 Nb/U << 1

m

2

(x,z) h

cos lz (x / b)sin lz
1 (x / b)

ζ = ×

⎛ ⎞−
⎜ ⎟+⎝ ⎠

Broad ridge 1 << lb

Nb/U << 1
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Cross-section of potential temperature field (K) during a severe downslope 
wind situation in the Colorado Rockies on 11 January 1972. From Klemp
and Lilly, 1975.

The End


