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Dynamical Meteorology

Dynamical meteorology concerns itself with the 
theoretical study of atmospheric motion. 

It aims to provide an understanding of such motion as 
well as a rational basis for the prediction of 
atmospheric events, including short and medium 
weather prediction and the forecasting of climate.
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The Atmosphere

The atmosphere is an extremely complex system 
involving motions on a very wide range of space and 
time scales.

The dynamic and thermodynamic equations which 
describe the motions are too general to be easily solved.

They have solutions representing phenomena that may 
not be of interest in the study of a particular problem.

Scaling

We attempt to reduce the complexity of the equations 
by scaling.

We try to retain a reasonably accurate description of 
motion on certain temporal and spatial scales.

First, we need to identify the essential physical aspects 
of the motion we hope to study.
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Atmospheric Waves

Various types of wave motions occur in the atmosphere.

Waves may propagate significant amounts of energy 
from one place to another.

Waves will appear in solutions of the equations of 
motion when these integrated numerically.

Filtering Waves

Some wave types cause difficulties in attempts to make 
numerical weather predictions.

We shall explore ways to modify the equations in order 
to filter them out:
– e.g. we may wish to 'sound-proof' the equations - see 

Chapter 2, or remove inertial gravity waves see 
Chapter 6.
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Wave Instabilities

Some waves may grow rapidly in amplitude, often as a 
result of instability. e.g.

– Kelvin-Helmholtz instability (when a strong vertical 
shear occurs in the neighbourhood of a large stable 
density gradient such as an inversion layer) - a 
mechanism for clear air turbulence (CAT).

– Baroclinic instability - a mechanism for cyclogenesis 
and relevant to atmospheric predictability.

General wave types in the atmosphere

Wave type Speed controlled by:

acoustic waves temperature

gravity waves static stability

inertial waves Coriolis forces

Rossby waves latitudinal variation of
the Coriolis parameter
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The momentum equation for a rotating 
stratified in height coordinates

D

Dt
f p

u
k u k D+ ∧ = − ∇ + −

1

ρ
σ

is the Coriolis parameter
is the latitude
is the perturbation pressure
is the total pressure
is the reference pressure
is the reference density
is the buoyancy force per unit mass
is the frictional force per unit mass

f = 2Ω sin φ
φ

p p z pT o= +( )
pT

ρo
po

σ ρ ρ ρ= − −g o( ) /
D

dp
dz

go
o= − ρ

The Boussinesq approximation

density variations are considered only in as much 
as they give rise to buoyancy forces

1/ρ is set equal to
– where     is the average density over the whole 

flow domain

the continuity equation is

1/ ρ

∇ ⋅ =u 0

σ ρ ρ ρ≅ − −g o( ) /

ρ

E. A. Spiegel
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The anelastic approximation

The Boussinesq approximation is sometimes too restrictive 
and the anelastic approximation is more accurate.

1/ρ is set equal to 1/ρο

– where 1/ρο is the horizontal average of ρ at height z, or the 
ambient density ρo(z)

the continuity equation is

σ ρ ρ ρ≅ − −g o o z( ) / ( )

∇ ⋅ =[ ( ) ]ρo z u 0

Pressure coordinates

D
Dt p

fp
h

h
h pu u k u+ + ∧ = −∇ω

∂
∂

φ ω =
Dp
Dt

∂φ
∂p

RT
p

= −

∇ ⋅ + =h h p
u ∂ω

∂
0

D
Dt p c T

DQ
Dt

p

p
ln lnθ ω

∂
∂

θ+ =
1

θ
κ

=
F
HG
I
KJT p

p
*

D
Dt t

p
h p= + ⋅ ∇

∂
∂

u
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two isobaric surfaces in height coordinates

two geopotential height surfaces in pressure coordinates

Z(p) = −Hsln(p*/p) ,       Hs = RTo/g
– introduced by Eliassen (1950)
– equals exact height in an isothermal atmosphere

Z(p) = [1 − (p*/p)κ]H/κ,       H = po/(ρog)
– introduced by Hoskins and Bretherton (1972)
– equals exact height in an adiabatic atmosphere

Isentropic coordinates (x,y,θ)

Sigma coordinates (x,y,σ) ,  σ = p/ps or

Other coordinate systems

top

s top

p p
p p

−
σ =

−
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Plan

Start with the general equations

Linearize

Introduce tracers

Look for travelling wave solutions

Find the dispersion relation for such waves

Filter out sound waves

Filter out inertia-gravity waves

Chapter 2:  Small-amplitude waves in a stably-
stratified rotating atmosphere

Small-amplitude waves in a  stably-stratified rotating 
atmosphere at rest

In a stably-stratified atmosphere at rest
dp
dz

go
o= − ρ

Equations for inviscid, isentropic motion:

D
Dt

f p gT
u k u k+ ∧ = − ∇ −

1
ρ

momentum

1 0
ρ

ρD
Dt

+ ∇⋅ =u continuity

D s
D t

= 0 specific entropy

p RT= ρ state
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Some basics

s c cons t c cons tp p= + = +ln tan tanθ φ

φ θ= ln

N g d
dz

g d
dz

o

o

o2 = =
φ

θ
θ N = Brunt-Väisälä frequency,

or buoyancy frequency

c RT po o o o
2 = =γ γ ρ/ co = sound speed

1 1 1
H

d
dz

g
RT T

dT
dzs o

o

o o

o= − = +
ρ

ρ Hs = density scale height

γ = c cp v/ ratio of specific heats

Note that
N
g

g
c Ho s

2

2
1

= − +

f = Coriolis parameter

Assumptions

two-dimensional perturbations

small-amplitude perturbations

∂
∂

= ≠
y

bu t v0 0,

| |u ⋅ ∇ < <
∂
∂ t

in D
D t
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The linearized equations

u fv p zt o x− + =[ / ( )]ρ 0

v fut + = 0

n w p gt z o o4 0+ + =/ /ρ ρ ρ

u w n d
dz

w nx z
o

o t

o
+ + + =1 2

1 0
ρ

ρ ρ
ρ

φ φt ozN+ =2 0

φ
γ

ρ
ρ ρ

ρ
ρ

= − = −
p
p

p
co o o o o

2

tracers = 1 or 0

φ
ρ

ρ
ρ

= −
p
co o o

2

n w p gt z o o4 0+ + =/ /ρ ρ ρ

substitute

n w p p
H

g p
ct o z

o s o o
4 2

1 0+ − + −
F
HG

I
KJ =( / )ρ

ρ ρ
φ

use
N
g

g
c Ho s

2

2
1

= − + −
N
g

p

o

2

ρ

insert tracer

n3

n w P n N
g

Pt z4 3

2
0+ − − =σ

P p
o

=
ρ

o

g g
′θ

σ = φ =
θ
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u fv Pt x− + = 0

v fut + = 0

u w n w
H

n
c

P nx z
s o

t t+ + + − =1 2 2 2
1 0φ

σ t N w+ =2 0 tracers = 1 or 0

n w P n N
g

Pt z4 3

2
0+ − − =σ

five dependent variables: u v w P, , , , σ

The linearized equations

Travelling wave solutions

Substitute ( , , , , ) ( ( ), . . . ) exp[ ( )]u v w P u z i kx tσ ω= −

a set of ODEs or algebraic relationships between          etc.( )u z

− − + =i u fv ikPω 0

− + =i v fuω 0

− + − − =i n w P n N
g

Pzω σ4 3

2
0

z 1 2 2
s o

ˆ ˆw 1 ˆˆ ˆiku w n i n P 0
H c g

⎛ ⎞σ
+ + + − ω − =⎜ ⎟

⎝ ⎠
− + =i N wωσ 2 0
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L w A z P1 0( )+ =

B z w L P( ) + =2 0

u k
f

P=
−
ω

ω 2 2 v ikf
f

P=
−

−ω 2 2 σ
ω

=
N
i

w
2

Three algebraic equations

Two ODEs

dw
dz

N
g

n n
H

w i k
f

n
c

P
s o

+ −
L
NM

O
QP

+
−

−
L
NM

O
QP

=
2

2
1

2

2 2
2
2 0ω

ω

d
dz

N
g

n P i n N w−
L
NM

O
QP

− −
L
NM

O
QP

=
2

3 4

2

2 0ω
ω

A single ODE

d
dz

N
g

n k
f

n
c

d
dz

N
g

n n
H

w

n N w

o s
−

L
NM

O
QP −

−
F
HG

I
KJ + −
F
HG

I
KJ

L
N
MM

O
Q
PP

− − =

−2

3

2

2 2
2
2

1 2

2
1

2
4

2 0

ω

ω

If the boundary conditions are homogeneous, i.e. if             
at two horizontal boundaries, we have an eigenvalue 
problem for ω as a function of k.

w = 0

In general                         are functions of height, z.N c Ho s
2 2, ,

In an isothermal atmosphere they are all constants.
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First we consider waves in an unbounded region of fluid
assuming that all terms are important, i.e., ni = 1 (i = 1,5).

Put sŵ(z) exp(imz z / 2H )∝ +

We obtain the dispersion relation for small amplitude waves:

ω
ω

4

0
2

2 2 2
2

2

0
2

2 2 2 2
2

1
4

1
4

0
c

k m
H

f
c

N k f m
Hs s

− + + +
F
HG

I
KJ + + +

F
HG

I
KJ =

Each of the perturbation quantities u, v, w, σ, P, varies in
proportion to w ∝ exp[i(kx + mz – ωt + z/2Hs)]

or w i t z Hs∝ ⋅ − +exp[ ( ) / ]k x ω 2

Waves with all terms included

The wavelength is the distance in the direction of k over 
which k · x increases (or decreases) by 2π , i.e. λ = 2π/|k|

w i t z H s∝ ⋅ − +ex p[ ( ) / ]k x ω 2Consider

Here k = (k, m).     It is not the unit vector in the vertical!

The planes   k · x = constant are surfaces of constant phase

The wave 'crests' and 'troughs' are planes oriented normal 
to the vector k.

Note that the wave amplitude is appreciably uniform over
height ranges small compared with Hs, but increases
exponentially as z; this is related to the exponential decrease
of the density with height.

Plane waves
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wavelength

crest

crest

crest

trough

trough

x

Wave crests and troughs in an unbounded plane wave

z

λ

k = (k, m)

1.  Show that the phase speed of the plane wave is ω/|k| . 

2.  Show that the phase speed is not a vector; i.e., the 
components of the vector ω k /|k|2 are in general not equal to 
the components of the phase speed in the x and z directions.

Exercises
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Dispersion relation in k - ω space

1.  Geostrophic motion: ω = 0
− = − = =fv p u and px o z o/ , , /ρ ρ σ0

Thus air parcels are displaced in the y-direction (v ≠ 0).

The solution holds whether or not N2, co
2, and Hs are constant

and corresponds with a thermal wind in the y-direction

2.   Inertia-gravity waves: ω2 2 2 2<< +( )k m co

Then
ω2

2 2 2 2 2

2 2 2 2 2
1 4

1 4
≈

+ +
+ + +

N k f m H
k m H f c

s

s o

( / )
/ /

This term is negligible

Possible wave modes
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ω2
2 2 2 2 2

2 2 2
1 4

1 4
≈

+ +
+ +

N k f m H
k m H

s

s

( / )
/

In the atmosphere at middle latitudes:

f ~ 10-4 s-1, N ~ 10-2 s-1, Hs ~ 104m  and c0 ~ 103/3ms-1.

Then ε2 2 2 410 1= = <<−f N/

and                                          ⇒ it can be neglected.

1 4 1 4 42 2
0
2 2 2

0
2 2/ / ( / ) /H f c H f c Hs s s+ = +Also

4 4 102 2
0
2 5H f cs / ≈ × −

Stratification and rotation are equally important when

N k f m Hs
2 2 2 2 21 4≈ +( / )

If , this

Thus for  λ << λo , rotation effects are negligible unless |m|
is sufficiently large, implying a vertical wavelength much
less than Hs.

m Hs
2 21 4<< /

in the atmosphere.

λ λ π≈ = ≈o sNH f km4 12000/

k f N Hs
2 2 2 24≈ / )

ω2
2 2 2 2 2

2 2 2
1 4

1 4
≈

+ +
+ +

N k f m H
k m H

s

s

( / )
/
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~
) /

w
u

k
(m  +  1 / 4H2

s
2 1 2 1>>

( / ) ( / )( / )P N g P
N

m f Nz −
= − =

+ −
<<

2 2

2

2 2 2
1 1 4 1 1

σ
ω H

k + m  +  1 / 4H
s
2

2 2
s
2

~ ( / )( )
)

~
/

/
w i k mt

σ
ω ω2 2 1 2

1 2 1+ −

−
 1 / 4H

k (m  +  1 / 4H
s
2

2 2
s
2

k m Hs
2 2 21 4>> + /

wavenumber vector

Particle motions in an internal gravity wave with
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In this limit, ω → f.
Then only Coriolis forces are important and the motion is
purely horizontal.
Neither buoyancy nor pressure forces are significant.
Such waves are called inertial waves.
Pure inertial waves are regarded often as a meteorological
curiosity (Holton, pp59-60, §3.2.3).
They may be important in atmospheric tidal motions, they 
are certainly observed in the oceans.
In addition, since their phase speed  cp = ω/k = f/k is large, 
they may be a computational nuisance.

3.   Ultra-long waves: k → 0 ω 2
2 2 2 2 2

2 2 2
1 4

1 4
≈

+ +
+ +

N k f m H
k m H

s

s

( / )
/

Nevertheless, inertial effects are observed in the atmosphere 
(see DM, Chapter 11).

When both rotation and stratification are important, though 
not necessarily comparable in magnitude, the waves are 
called inertia-gravity waves.

In the atmosphere, gravity waves usually have horizontal
wavelengths 10 km and may be excited, for example, by
airflow  over orography, by convection penetrating a
stably-stratified air layer, or through shearing instability.

Inertial Effects
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In this case
ω2 2 2 2

0
21 4≈ + +( / )k m H cs

Consider the special case where mHs >> 1

( , ) ( , )u w k m P≈ −ω 1

the particle motions are in the direction of the wave, k, and
are associated with negligible entropy change, φ ≈ 0.

These are well known properties of acoustic waves

• the waves are longitudinal, and

• the phase speed  cp = ω/|k| ≈ co is large.

Mechanisms of excitation include lightening discharges and
aeroplane noise (a rumble when clouds are around).

4.   Acoustic waves: ω2 >> N2, f2

This does not lead to a trivial solution of the complete
system of equations, a nontrivial solution of which is

provided that

The equation

( )w z = 0

ω 2 2 2
0
2= +f k c

( )

12 2 2
2 1

3 22 2 2
o s

2 2
4

d N k n d N n ˆn n w
dz g f c dz g H

ˆn N w 0

−⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞
− − + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ω −⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

− ω − =

has the trivial solution                     .( )w z = 0

5.   Lamb waves: w = 0
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− − + =i u fv ikPω 0 − + =i v fuω 0

unchanged

σ = 0

− + − − =i n w P n N
g

Pzω σ4 3

2
0

P n N
g

Pz − =3

2
0 ( ) ( ) /P z P eN z g= 0

2

iku w n w
H

i n
c

P
gz

s o
+ + − −

F
HG

I
KJ =1 2 2

1 0ω
σ

− + =i N wωσ 2 0

iku i n P c o/− =ω 2
2 0

( )w z = 0When

These solutions correspond to

( / ) ,u k P v and≈ ≈ =ω σ0 0

This solution is a so-called Lamb wave, modified slightly by
rotation.

Its existence requires the ground (z = 0) to be flat, so that

( )w 0 0=

The pressure perturbation in the Lamb wave is essentially
supported by the ground.
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Example: water waves

z

h

z h x t= + ζ ( , )

pT = constant

D p
D t

T = 0 at z h x t= + ζ ( , )

linearize
∂
∂

∂
∂

ρ
p
t

w d p
d z

p
t

gwo
o+ = − = 0 at  z = h

6.   Boundary waves

∂
∂

∂
∂

ρ
p
t

w d p
d z

p
t

gwo
o+ = − = 0 at  z = h

( / )P g i w= − ω

( , , , , ) ( ( ), . . . ) exp[ ( )]u v w P u z i kx tσ ω= −With

Using
d
dz

N
g

n P i n N w−
L
NM

O
QP

− −
L
NM

O
QP

=
2

3 4

2

2 0ω
ω

set to 1

g d w
d z

w− =ω 2 0 at  z = h
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The solution of

d
dz

N
g

n k
f

n
c

d
dz

N
g

n n
H

w

n N w

o s
−

L
NM

O
QP −

−
F
HG

I
KJ + −
F
HG

I
KJ

L
N
MM

O
Q
PP

− − =

−2

3

2

2 2
2
2

1 2

2
1

2
4

2 0

ω

ω

g d w
d z

w− =ω 2 0 at  z = h

subject to

at  z =0w = 0

is straightforward

no essential features are lost if we

- neglect the stratification; i.e., set N2 = 0 and omit the
σ-equation, and

- assume the motion to be hydrostatic, wt << g; i.e., set n4 = 0
(this assumption is valid provided that the waves are long
enough), and

- assume there is no coupling between pressure and density
in the continuity equation ; i.e., set n2 = 0.

This suppresses acoustic waves



24

unchanged

− − + =i u fv ikPω 0 − + =i v fuω 0

− + − − =i n w P n N
g

Pzω σ4 3

2
0

iku w n w
H

i n
c

P
gz

s o
+ + − −

F
HG

I
KJ =1 2 2

1 0ω
σ

− + =i N wωσ 2 0 σ = 0

Pz = 0

Then

set n1 = 1

iku w w
Hz

s
+ + = 0

Then d
dz

N
g

n k
f

n
c

d
dz

N
g

n n
H

w

n N w

o s
−

L
NM

O
QP −

−
F
HG

I
KJ + −
F
HG

I
KJ

L
N
MM

O
Q
PP

− − =

−2

3

2

2 2
2
2

1 2

2
1

2
4

2 0

ω

ω

becomes
d

dz
d

dz H
w

s
−

L
NM

O
QP

=
1 0

g d w
d z

w− =ω 2 0

Assume w = 0 at  z = 0

at  z = h

( ) [ e x p ( / ) ]w z W z H s= −1

where W is a constant
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1.                       are related to W, ,u v P

2. Pz = 0

Notes:

tanP cons t=

3.    If                                                        satisfies( ) [ e x p ( / ) ]w z W z H s= −1

g d w
d z

w− =ω 2 0 at  z = h

then

ω 2 2 2 1= + − −f g H k h Hs s[ e x p ( / ) ]

The solution corresponds to a free surface wave

The effects of shear

see later

acoustic waves are refracted by superimposed shear; 
enhanced downwind audibility results from the convergent 
refraction of sound waves, usually due to wind shear, but, 
occasionally, temperature variations may play a role also.

gravity waves may be severely modified by shear. The 
refraction effect is considerable and leads to the total
reflection of some (shorter) components which may be
trapped in channels as well-marked trains of lee waves 
downstream of mountains. In certain situations waves may 
be absorbed also.

where vorticity gradients are large, gravity waves may grow
spontaneously by Kelvin-Helmholtz instability, giving rise to
billows or clear air turbulence (CAT).
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1
2

2 2
4

2
3

2
0( )u v n w u p w p n pw N

g
gwt

o x o z o
+ + +

F
HG
I
KJ +
F
HG
I
KJ − − =

ρ ρ ρ
φ

The kinetic energy equation

The potential energy equation

u u
t

v v
t

w
t

n w× + × + × ⇒
∂
∂

∂
∂

∂
∂

( )4

p continuity
oρ

× ⇒( )

p u w n
H

pw n p p
co

x z
s o o

t

o o
tρ ρ ρ ρ

φ( )+ − + −
F
HG

I
KJ =1

2 2 0

2 2 2
2 2 2

4 2 2 2 2
o o

2
1

2 3
o o s o ox z

1

2

p gu  + v  + n w + n
t c N

up wp n pw pw N (n n ) 0 .
H g

⎡ ⎤⎛ ⎞∂ φ
+ +⎢ ⎥⎜ ⎟∂ ρ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞
+ − + − =⎜ ⎟ ⎜ ⎟ρ ρ ρ ρ⎝ ⎠ ⎝ ⎠

or ρ
∂
∂o

s

E
t

n pw
H

pw N
g

n n= −∇ ⋅ + − + −F 1

2

3 21b g b g

where
2 2 2

2 2 2
4 2 2 2 2

o o

1

2

p gE u  + v  + n w + n
c N

⎛ ⎞φ
= +⎜ ⎟ρ⎝ ⎠

Add the K. E. and P. E. equations

The total energy equation
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E = total wave energy
per unit mass

F = (pu, 0, pw) can be interpreted as the
wave energy flux per unit mass

ρ
∂
∂o

s

E
t

n pw
H

pw N
g

n n= −∇ ⋅ + − + −F 1

2

3 21b g b g

Note 2: f  does not appear in the energy equation!

Note 1: these terms are zero when n1 = n2 = n3 = 1

ρ
∂
∂o
E
t

= −∇ ⋅ F

the local rate of change of total wave energy equals
the convergence of wave energy flux

In any particular type of wave motion, the energy will fluctuate
between kinetic energy and some other energy form.

Pure wave types are:

(a)   gravity waves , in which the energy is stored in potential
energy form                    , when not in kinetic energy
form, and

1
2

2 2σ / N

(b)   compressible, or acoustic waves, in which the energy is
stored as internal energy  , when not in
kinetic energy form.

1
2

2 2 2p co o/ ρ

2 2 2
2 2 2

4 2 2 2 2
o o

1

2

p gE u  + v  + n w + n
c N

⎛ ⎞φ
= +⎜ ⎟ρ⎝ ⎠
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1
2

2 2σ / N
1
2

2 2 2p co o/ ρ

Inertia-gravity waves undergo energy conversions similar to 
pure gravity waves.

In general, waves of the mixed gravity-acoustic type are such 
that kinetic energy is converted partly into potential energy 
and partly into internal energy.

However, in this case, the interpretations of                   as
potential energy and                         as internal energy are not
strictly correct.

If the tracers ni are retained and the expression

is substituted into

( ) exp /w z im n H zs∝ + 1 2b g

d
dz

N
g

n k
f

n
c

d
dz

N
g

n n
H

w

n N w

s
−

F
HG

I
KJ −

−
F
HG

I
KJ + −
F
HG

I
KJ

L
N
MM

O
Q
PP

− − =

−2

3

2

2 2
2

0
2

1 2

2
1

2
4

2 0

ω

ω( )

we obtain

Simplified solutions and filtered equations
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The consequences of omitting certain terms in the equations of
motion may now be investigated. 

It is desirable that any approximation yields a consistent 
energy equation.
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Examination of

suggests that setting n2 = 0 in

will remove the acoustic mode from the equations.
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'Sound-proofing' the equations
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The equation

then gives
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When n1 = n4 = 1, this differs from the dispersion relation for
inertia-gravity waves only in respect of the terms involving n3.

ω2

2 2 2 2
4 3 2

4
2 2

4 3 2

1
2

2
2 1

1
2

2
2 1

=
+ + + −FH IK

+ + + −

N k f m n im

n k m n im

n
H

N
g

n
H

n
H

N
g

n
H

s s

s s

e j
e j

note that  ω2 is complex ω is complex

there exist exponentially growing wave solutions

Such solutions must have an energy source, although none is
available in the unapproximated system!
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The equation

ρ
∂
∂o

s

E
t

n pw
H

pw N
g

n n= −∇ ⋅ + − + −F 1

2

3 21b g b g

shows that with n2 = 0, there is an energy source unless n3 = 0.

Hence, to filter sound waves from the system of equations,
we must take both n2 and n3 to be zero to preserve energetic
consistency.

Note that sound waves are filtered out also by letting co
2 → ∞

Filtering the sound waves

In many atmospheric situations, the pressure is very close to
its hydrostatic value.

In the foregoing analysis, pressure is hydrostatic if n4 = 0.

This eliminates Dw/Dt, or in linearized form ∂w/∂t , from the
vertical momentum equation.

With n1 = n2 = n3 = 1, the dispersion relation gives
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The hydrostatic approximation
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The terms involving n4 are negligible if
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typically well satisfied for
inertia-gravity waves

More discriminating

If a layer is close to adiabatic, then                , and the dispersion
relation becomes
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/

The condition  k2 << m2 implies that ω2 << N2

The hydrostatic approximation may be considered appropriate
whenever k2 << m2 is satisfied.

The hydrostatic approximation is valid for waves whose
horizontal wavelength is much larger than the vertical 
wavelength.
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Note that the magnitude of  g-1Dw/Dt is irrelevant to the 
usefulness of the hydrostatic approximation for finding the 
acceleration.

Even if this quantity is small, the dynamics will be incorrectly
modelled by its neglect if the motion is in tall narrow columns,
i.e. if  m2 << k2 .

The condition k2 << m2 is usually well satisfied for large-scale
atmospheric motions and the hydrostatic approximation is 
used exclusively in 'primitive equation' (PE) numerical 
weather prediction (NWP) models.

If we formally set n1 = 1 and n2 = n3 = n4 = 0, valid under the
same conditions (a) and (b) for the hydrostatic approximation
alone, the dispersion relation gives

The Lamb wave now disappears as it does when the other 
acoustic waves are eliminated. However, the free surface wave 
still exists and leads to a spurious fast moving wave. It is 
filtered out by using a rigid-lid condition. A primitive 
equation, numerical weather prediction model can be devised 
for the set of equations with n1 = 1 and n2 = n3 = n4 = 0 together 
with a rigid upper boundary condition.

ω 2 2 2 2 2 21 4= + +f N k m Hs/ ( / )

Sound-proofed hydrostatic approximation
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Variation of mean density with height; the 
equivalent incompressible atmosphere

The upward decrease of mean density that distinguishes between
continuity of volume and mass is represented by the term in n1
and appears in the multiplier in       etc. exp( / )z H s o2 ∝ ρ w
Over tropospheric depths this factor is significant, but elsewhere
n1 appears only in the combination m2 + n1/4Hs

2 and then it is 
often negligible, e.g. if 2 2 21

s s 4m / H , 1/ 4H (m / ) m / 40= π = π ≈

When the vertical length scale of the motion is not large, the
density variation can be neglected by setting n1 = 0 as long as the
factor           is included implicitly.ρo

A prediction of u obtained from the incompressible (Boussinesq)
model should then be compared with                        observed in
the (compressible) atmosphere, where                     .

( / )ρ ρo s u
ρ ρs o= ( )0

The solution of

corresponding with  ω = 0 is independent of the values of
n1 − n4, but the more general "quasi-geostrophic" solutions
are not. 
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If we are interested only in the slowly-moving, nearly 
geostrophic waves, we can omit sound waves and suppose that 
the pressure is hydrostatic, i.e., put n2 = n3 = n4 = 0.

Geostrophic motion
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The Boussinesq equations for a non-rotating stratified liquid 
are:

D
Dt

pu
= − ∇ +

1
ρ

σ
*

k ∇ ⋅ =u 0 D
Dt

ρ
= 0

Show that the dispersion relation for small-amplitude waves
in the x-z plane is

ω2
2 2

2 2=
+

N k
k m

Exercise (2.10)

The End


