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PREFACE

These notes are an outgrowth of various advanced courses on dynamical me-
teorology given over a period of years at Monash University in Australia and
the University of Munich. They are an extension of my earlier set ‘Lectures
on Dynamical Meteorology’, to which frequent reference is made. The notes
include in places material adapted from course notes kindly given to me by
Dr. John Green, formerly of Imperial College, London and Dr. Michael
McIntyre from the University of Cambridge. I gratefully acknowledge these
two colleagues for providing me with their unpublished lecture material.

I would like to thank Anna-Riitta Järvinen for her care and patience in
preparing the typescript and to the many people who have pointed out errors
in previous versions.

Roger Smith, Munich, August 2002.
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Chapter 1

INTRODUCTION

Dynamical meteorology concerns itself with the theoretical study of atmo-
spheric motion. It aims to provide an understanding of such motion as well
as a rational basis for the prediction of atmospheric events, including short
and medium weather prediction and the forecasting of climate.

The atmosphere is an extremely complex system involving motions on
a very wide range of space and time scales. As a result, the dynamic and
thermodynamic equations which describe the motions are too general to be
solved easily. Thus, invariably, they have solutions representing phenomena
that may not be of interest in the study of a particular problem: for example,
we do not believe that acoustic (sound) waves are important in cyclogenesis,
but such motions are described by the general equations of motion.

As in earlier courses (Smith, 1992; Lectures on Modern Synoptic Mete-
orology, henceforth referred to as SM; Smith, 2000; Lectures on Dynami-
cal Meteorology, henceforth referred to as DM) we attempt to reduce the
complexity of the equations by scaling whilst aiming to retain a reasonably
accurate description of motion within certain limits of temporal and spatial
scales. In doing this we need first to ascertain the essential physical aspects of
the motion we hope to study. Then we seek ways of making approximations
that are consistent in all equations by using quantitative estimates based on
our physical perception of the problem. Finally, we need to determine for
what scales the estimates accurately reflect physical reality.

It is necessary to be aware of the various types of waves motion which
can occur in the atmosphere. Certain wave types play an important role in
atmospheric dynamics and they may propagate significant amounts of energy
from one place to another in a manner analogous to the propagation of en-
ergy by electromagnetic waves. Moreover, because waves are solutions of the
equations, they will appear when the equations are integrated numerically.
Some of these wave types cause difficulties in attempts to make numerical
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weather predictions and we shall seek ways to modify the equations in order
to filter them out; an example is a modification that makes the equations
‘sound-proof’ discussed in Chapter 2. Under some circumstances, waves may
grow rapidly in amplitude, often as a result of instability. For example,
Kelvin-Helmholtz instability may arise when a strong vertical shear occurs
in the neighbourhood of large stable density gradient such as an inversion
layer; this is one mechanism thought to be responsible for clear air turbu-
lence (CAT). Another example is baroclinic instability, a process responsible
for extra-tropical cyclogenesis; this instability has consequences for the pre-
dictability of the atmosphere. Examples of waves we shall study are listed in
Table 1.

Table 1.1: General wave types in the atmosphere.
Wave type Speed controlled by:
acoustic waves temperature
gravity waves static stability
inertial waves Coriolis forces
Rossby waves latitudinal variation of the Coriolis parameter

1.1 Some revision

1.1.1 The momentum equation in height coordinates

The momentum equation for a rotating stratified fluid may be written as

Du

Dt
+ fk ∧ u = −1

ρ
∇p+ σk − D, (1.1)

where

f = 2Ωsinφ is the Coriolis parameter,
φ is the latitude,
p = pT − p0(z) is the perturbation pressure,
pT is the total pressure,
ρ0(z) is the reference pressure; this satisfies the hydro-

static equation: dp0/dz = −gρ0(z),
σ = g(ρ0 − ρ)/ρ is the buoyancy force per unit mass, and
D is the frictional force per unit mass.

6



A further discussion of Eq. (1.1) is given in DM Chapter 3. Recall that p
and σ are NOT uniquely defined, being dependent on the arbitrarily chosen
definition of the reference density and pressure.

1.2 The Boussinesq approximation

This is an approximation which enables considerable simplification to the
equations for a stably stratified fluid when density variations are not too
large. In it, density variations are considered only in as much as they give
rise to buoyancy forces in 1.1). In particular, 1/ρ in (1.1) is set equal to
1/ρ, a constant ρ, ρ being, for example, the average density over the whole
flow domain. Also σ ≈ g(ρ0(z) − ρ)/ρ, ρ0(z) being the horizontal average of
r at height z, or the ambient density, for example. Density variations are
neglected also in the continuity equation which takes the approximate form
∇ · u = 0.

1.3 The anelastic approximation

In meteorology, the Boussinesq approximation is sometimes too restrictive.
For example, in motions which occupy the entire depth of the troposphere,
density variations in the vertical are considerable. The density near the
tropopause is only about one quarter to one fifth of that at the surface. In
such circumstances the anelastic approximation is more accurate. In this,
the effect of the decrease in density with height on the fluid inertia is taken
into account by setting ρ−1 ≈ ρ0(z)

−1, and the approximate forms of the
buoyancy and of the continuity equation are

σ = g(ρ0(z) − ρ)/ρ0(z), (1.2)

and

∇ · (ρ0(z)u) = 0. (1.3)

The anelastic approximation is best handled by a change of pressure variable
to π = (p/p�)κ, the so-called Exner function, where p� = 1000 mb. This is
especially the case for an atmosphere which is close to adiabatic. For further
information see: Ogura and Phillips (1962), Dutton and Fichtl (1969), Lipps
and Helmer (1982, 1985), Durran (1989, 1990), Fiedler (1990), Lipps (1990),
Nance and Durran (1994), and Bannon (1995).
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1.4 Pressure coordinates

For hydrostatic motions, such as large-scale atmospheric motions, the use
of pressure or some function of pressure as vertical coordinate instead of
height simplifies the equations. More details of the transformations involved
are given in Chapter 10. In particular, in pressure coordinates the continu-
ity equation takes a simpler form than (1.3) and density does not appear
explicitly. The full set of equations is listed below:

Dp

Dt
uh + ω

∂uh
∂p

+ fk ∧ uh = −∇pφ, (1.4)

∂φ

∂p
= −RT

p
, (1.5)

∇p · uh +
∂ω

∂p
= 0, (1.6)

Dp

Dt
ln θ + ω

∂

∂p
ln θ =

1

cpT

DQ

Dt
, (1.7)

θ = T

(
p∗
p

)κ
, (1.8)

and

ω =
Dp

Dt
. (1.9)

Here, Dp/Dt ≡ ∂/∂t + uh · ∇p is the derivative in an isobaric surface (p =
constant, where here, p is the total pressure) and

∇p ≡
(
∂

∂x
,
∂

∂y
, 0

)
p

.

Note that an isobaric surface is almost horizontal in large-scale motion. The
quantity φ, essentially equal to gz, is the geopotential height of an isobaric
surface. The relationship between height coordinates and pressure coordi-
nates is summarized in Fig. 1.1. In pressure coordinates the quantity w
plays the role of vertical velocity w, but note that since pressure decreases
with height, ascent (w > 0) corresponds with ω < 0, and subsidence (w < 0)
with ω > 0. The quantity DQ/Dt denotes the diabatic heating rate per unit
mass.
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1.5 Other pressure coordinate systems

Sometimes a function of p is used as the vertical coordinate rather than
p. Two commonly used choices are: Z(p) = −Hsln(p/p	), introduced by
Eliassen (1949), and χ(p) = [1 − (p/p∗)κ] H/κ, introduced by Hoskins and
Bretherton (1972). Here, Hs = RT0/g is a constant scale height, T0 is a
constant temperature, and H = p0/(ρg), is also a constant, where p0 and ρ0

are the pressure and density at some level. Convenient attributes of these
functions are that Z(p) equals the exact height above the 1000 mb level
in an isothermal atmosphere, and χ(p) is the exact height in an adiabatic
atmosphere. The (x, y, χ) coordinate system is used in Chapter 7 to study
the dynamics of fronts. In both cases, the equations of motion are structurally
similar to those with pressure as vertical coordinate, although the continuity
equation is less simple in form.

1.6 Isentropic coordinates

In a stably-stratified atmosphere, the potential temperature, θ, is an increas-
ing function of height z. In this case there is a one-to-one correspondence
between θ and z and we can use θ as a vertical coordinate instead of z. Then,
D/Dt = ∂/∂t + u(∂/∂x) + v(∂/∂y) + θ̇(∂/∂θ), where θ̇ = Dθ/Dt. Thus in
isentropic coordinates (x, y, θ), θ̇ plays the role that w plays in height coordi-
nates. One advantage of this formulation is that for adiabatic motion, θ̇ = 0,
the effects of vertical advection do not appear explicitly in the equations. See
Chapter 10, for further details.

1.7 Sigma coordinates

A major disadvantage of formulations with pressure or a function of pressure
as the vertical coordinate is the uncertainty involved in prescribing the surface
boundary condition on velocity. For example, in contrast to the condition
w = 0 at z = 0, appropriate for motion over level ground, we need to impose
a condition on ω at some pressure level p = p1, say. From (1.9) and the
hydrostatic equation (dp/dz = −ρg), ω = (∂p/∂t + uh · ∇p) − ρgw. Thus,
w = 0 at z = 0 corresponds with ω = ∂p/∂t + uh · ∇p at z = 0, but the
location of “the ground” in pressure coordinates cannot be determined. One
way out of this difficulty is to use ‘sigma’ coordinates, (x, y, σ), where σ =
p(x, y, z)/ps(x, y), ps being the surface pressure. Then the surface is always
at the level σ = 1 and the ‘top’ of the atmosphere is at σ = 0. However, the
dynamical equations are then more complicated and interpolation procedures

9



Figure 1.1: (a) Two isobaric surfaces in a low pressure trough as they might
appear in (x, y, z) coordinates and (b) as the corresponding geopotential
surfaces might appear in (x, y, p) coordinates. In the figure, z1 > z2, φ1 > φ2

and p2 > p1. Note that, since pressure decreases with height, the areas of low
pressure on z1 and z2 in (a) correspond with the region of low geopotential
on p1 and p2, respectively, in (b).

are necessary for converting between σ and p or z. Sigma coordinates are
used widely for operational numerical weather prediction (NWP) models, but
rather less for research or illustrative purposes.
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Chapter 2

SMALL-AMPLITUDE WAVES
IN A STABLY-STRATIFIED
ROTATING ATMOSPHERE

In1 a stably-stratified atmosphere at rest, the pressure po(z) and density ρo(z)
are in hydrostatic equilibrium and related by the formula

dpo
dz

= −gρo. (2.1)

We consider small-amplitude perturbations to such an atmosphere. The
most general equations for inviscid, isentropic motion are

Du

Dt
+ fk ∧ u = −1

ρ
∇pT − gk, (2.2)

1

ρ

Dρ

Dt
+ ∇ · u = 0, (2.3)

Ds

Dt
= 0, (2.4)

and

p = ρRT, (2.5)

in standard notation (see DM). The specific entropy s is related to the po-
tential temperature θ through the formula

s = cp ln θ + constant = φ+ constant, (2.6)

1Based on lectures by J. S. A. Green, formerly of Imperial College, London.
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where

φ = ln θ. (2.7)

Various parameters characterizing the basic state of the atmospheric are
the Brunt-Väisälä frequency, or buoyancy frequency, N ; the sound speed co;
and the density scale height,Hs. These quantities are defined by the formulae:

N2 = g
dφo
dz

=
g

θo

dθo
dz

, (2.8)

c2o = γRTo = γ
po
ρo

(2.9)

and

1

Hs
= − 1

ρo

dρo
dz

=
g

RTo
+

1

To

dTo
dz

. (2.10)

Here is γ the rate of specific heats cp/cv.
For algebraic simplicity we assume two-dimensional perturbations (∂/∂y ≡

0) to the basic state of rest, characterized by a subscript ′o′. The small-
amplitude assumption implies that u · ∇ << ∂/∂t in D/Dt, except when
acting on a basic state quantity. Denoting p = p0 + p′ etc., and omitting
primes, we obtain from (2.1) - (2.7) the following equations for perturbed
quantities:

ut − fv + [p/ρ(z)]x = 0, (2.11)

vt + fu = 0, (2.12)

n4wt + pz/ρo + gρ/ρo = 0, (2.13)

ux + wz + n1
1

ρo

dρo
dz

w + n2
ρt
ρo

= 0, (2.14)

φt + wφoz = 0, (2.15)

φ =
p

γpo
− ρ

ρo
=

p

ρoc2o
− ρ

ρo
. (2.16)

The ni are tracer quantities, allowing us to follow the terms they multiply
through the subsequent analysis; at a later stage these tracers will be set
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equal to either unity or zero. Eliminating ρ from (2.13) using (2.16) and
(2.10) gives

n4ωt +

(
p

ρo

)
z

− p

ρo

1

Hs

+ g

(
p

ρoc2o
− φ

)
︸ ︷︷ ︸ = 0. (2.17)

The terms grouped with braces may be combined using (2.10) to give, with
tracer n3:

−(N2/g)(p/ρo)n3

Eliminating ρ from (2.14) using (2.16) and (2.10) gives

ux + wz − n1
w

Hs
+
n2

c2o

[
p

ρo

]
t

− n2φt = 0. (2.18)

Writing2 σ = gφ (= gθ′/θo) and P = p/ρo, Eqs. (2.11 - 2.18) become

ut − fv + Px = 0, (2.19)

vt + fu = 0, (2.20)

n4wt + Pz − n3
N2

g
P − σ = 0, (2.21)

ux + wz − n1
w

Hs

+
n2

c2o
Pt − n2

g
σt = 0, (2.22)

σt +N2w = 0. (2.23)

We investigate travelling-wave solutions of the form

(u, v, w, σ, P ) = (û(z), . . .)ei(kx−ωt), (2.24)

to Eqs. (2.19-2.23)3. Substitution leads to a set of ordinary differential equa-
tions for the vertical structure of the waves, characterized by the functions
û(z) etc.. Thus

−iωû− f v̂ + ikP̂ = 0, (2.25)

2Note σ is not equal to buoyancy force; see Ex. (1.1).
3Solutions of this form are anticipated because the equations have coefficients which

don’t depend on x and t.
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−iωv̂ + fû = 0, (2.26)

−iωn4ŵ + P̂z − (N2/g)n3P̂ − σ̂ = 0, (2.27)

ikû+ ŵz − n1
ŵ

Hs

− iωn2

(
P̂

c2o
− σ̂

g

)
= 0, (2.28)

−iωσ̂ +N2ŵ = 0. (2.29)

Equations (2.25, 2.26 and 2.29) give

û =
kω

ω2 − f 2
P̂ , v̂ = − ikf

ω2 − f 2
P̂ , and σ̂ =

N2

iω
ŵ, (2.30)

and using these equations, (2.27) and (2.28) give

dŵ

dz
+

(
N2

g
n2 − 1

Hs

)
ŵ + iω

(
k2

ω2 − f 2
− n2

c2o

)
P̂ = 0, (2.31)

(
d

dz
− N2

g
n3

)
P̂ − iω

(
n4 − N2

ω2

)
ŵ = 0. (2.32)

Finally, eliminating4 P̂ we obtain the single equation for ŵ(z),

(
d

dz
− N2

g
n3

) [(
k2

ω2 − f 2
− n2

c20

)−1(
d

dz
+
N2

g
n2 − n1

Hs

)]
ŵ −

(ω2n4 −N2)ŵ = 0. (2.33)

This is a homogeneous, second-order, ordinary differential equation for ŵ(z).
When solved, P̂ (z) can be determined from (2.31) and the other quantities
can be obtained from (2.30).

If the boundary conditions on ŵ(z) are homogeneous, for example ŵ(0) =
0, then (2.33) must be solved as an eigenvalue problem. It is usual to regard
k as given, in which case the eigenvalue problem is to find values of ω(k) for
which nontrivial solutions to (2.33) exist, and to determine the corresponding
eigenfunctions, ŵ(z; k, ω(k)).

In general, the quantities N2, c2o and Hs all vary with z and in this case
the eigenvalue problem is difficult to solve, at least analytically. However, for

4These equations can be written in the operator form L1+A(z)P̂ = 0, B(z)ŵ+L2P̂ = 0
whereupon elimination of P̂ leads to

[
L2(A−1L1) −B(z)

]
ŵ = 0.
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an isothermal atmosphere, these quantities are all constants (Ex. 2.1) and
sinusoidal or exponential solutions of (2.33) are then possible. Henceforth
in this course we assume an isothermal atmosphere, except where otherwise
stated.

First we consider waves in an unbounded region of fluid assuming that
all terms are important, i.e., ni ≡ 1. Note that solutions of (2.33) exist in
the form

ŵ(z) exp

(
imz +

z

2Hs

)
, (2.34)

provided that

ω4

c20
− ω2

(
k2 +m2 +

1

4H2
s

+
f 2

c20

)
+N2k2 + f 2

(
m2 +

1

4H2
s

)
= 0, (2.35)

obtained by substituting (2.34) into (2.33) and using (2.35). Equation (2.35)
is the dispersion relation for small amplitude waves. Referring to (2.24) and
(2.34) we see that each of the perturbation quantities u, v, w, σ, P , varies in
proportion to ŵ(z) ∝ exp [i(kx+mz − ωt) + z/2Hs] , or

exp [i(k · x − ωt] exp [z/2Hs] , (2.36)

where k = (k,m) [here, it is not the unit vector in the vertical! ]. Thus the
planes k ·x = constant are surfaces of constant phase; in particular the wave
‘crests’ and ‘troughs’ are planes oriented normal to the vector k as shown
in Fig. 2.1. The wavelength is the distance in the direction of k over which
k · x increases (or decreases) by 2π; i.e., λ = 2π/ |k|.

Note that the wave amplitude is appreciably uniform over height ranges
small compared with Hs, but increases exponentially as z → ∞; this is
related to the exponential decrease of the density with height.

Using the result (2.35), the dispersion relation can be displayed graph-
ically as shown in Fig. 2.2. For waves propagating in the x-direction, k is
real and therefore k2 must be positive and only the upper right quadrant of
the diagram is relevant. We consider now the various possible wave modes.

Geostrophic motion, ω = 0.

Equations (2.11-2.18) have a steady solution with ∂/∂t ≡ 0 (equivalent to
ω = 0). In this solution, Eqs. (2.11-2.18) give

−fv = −px/ρo, u = 0, and pz/ρo = σ.
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Figure 2.1: Wave crests and troughs of an unbounded plane wave propor-
tional to (2.36).

Figure 2.2: Dispersion relation in (k2, ω2) space.

Thus air parcels are displaced in the y-direction (v �= 0) and the solution,
which holds whether or not N2, c2o and Hs are constant, corresponds with a
thermal wind in this direction.

Inertia-gravity waves: ω << (k2 +m2)c2o

In this situation, (2.35) gives

16



ω2 ≈ N2k2 + f 2(m2 + 1/4H2
s )

k2 +m2 + 1/4H2
s + f 2/c2o

. (2.37)

Note that in the atmosphere, at middle latitudes, f ∼ 10−4 s−1, N ∼ 10−2

s−1, Hs ∼ 104 m and c0 ∼ 103/3 ms−1, in which case ε2 = f 2/N2 = 10−4 <<
1. Also, 1/4H2

s + f 2/c20 = (1 + 4H2
sf

2/c20)/4H
2
s and the last term in paren-

theses is ∼ 4 × 10−5 and can be neglected.
Equation (2.37) indicates that stratification and rotation are equally im-

portant when

N2k2 ∼ f 2(m2 + 1/4H2
s ).

Assuming that m2 ≤ 1/4H2
s , the criterion is k2 ∼ f 2/4N2H2

s , i.e., λ ∼ λo =
4πNHs/f ≈ 12,000 km in the atmosphere. Thus for λ << λo, rotation effects
are negligible unless |m| is sufficiently large, implying a vertical wavelength
that is much less than Hs.

With the assumption that k >> (m2 + 1/4H2
s )

1/2, then (2.37) implies
that |m| ≤ N and Eqs. (2.30) show that

v̂ ∼ εû, P̂ ∼ (ω/k)û and σ̂ ∼ (N2/ω)ŵ. (2.38)

With the variation (2.36), (2.32) gives

iω(1 −N2/ω2) = (1/2Hs + im−N2/g)P̂ = µP̂ , say,

and since

2N2Hs/g ∼ 1.6 × 10−1, |u| ∼ (m2 + 1/4H2
s )

1/2,

then

(m2 + 1/4H2
s )

1/2ŵ ∼ (k2/ω)P̂ . (2.39)

It follows that

σ̂ ∼ N2

ω2
k2(m2 + 1/4H2

s )
−1/2P̂ ,

and finally

ŵ

û
∼ k

(m2 + 1/4H2
s )

1/2
>> 1 (2.40)

Thus, in this limit, the wavenumber vector is nearly horizontal (|k| >>
|m|) and the motion is essentially an oscillation in the vertical plane (w >>
u, w >> v) as indicated in Fig. (2.3); i.e., the waves are transverse.
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Figure 2.3: Particle motions in an inertial gravity wave with k2 >> m2 +
1/4H2

s .

In this limit also, the vertical acceleration due to the buoyancy term is
much greater than that due to the pressure gradient, i.e., from (2.27) and
(2.29),

P̂z − (N2/g)P̂

σ̂
= 1 − ω2

N2
=

(m2 + 1/4H2
s)(1 − f 2/N2)

k2+m2+1/4H2
s

<< 1,

whereas

ŵt
σ̂

∼
∣∣∣∣∣iω(k2/ω) (m2 + 1/4H2

s )
−1/2

k2(m2+1/4H2
s )

−1/2

∣∣∣∣∣ ∼ 1.

Thus the vertical acceleration of a displaced air parcel is due to its buoyancy
and the motion is essentially a gravity wave in which the displacement of
isopycnal (constant-density) surfaces supplies the restoring force.

Ultra-long waves, k→ 0.

In this limit, ω → f . Then only Coriolis forces are important and the mo-
tion is purely horizontal. Neither buoyancy nor pressure forces are significant.
Such waves are called inertial waves. Pure inertial waves are regarded of-
ten as a meteorological curiosity (Holton, 1992, pp64-65, §3.2.3), although
they may be important in atmospheric tidal motions. They are certainly
observed in the oceans. In addition, since their phase speed cp = ω/k = f/k
is large, they may be a computational nuisance. Nevertheless, inertial effects
are observed in the atmosphere (see DM, Chapter 11). When both rota-
tion and stratification are important, though not necessarily comparable in
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magnitude, the waves are called inertial-gravity waves. In the atmosphere,
gravity waves usually have horizontal wavelengths 10 km and may be excited,
for example, by airflow over orography, by convection penetrating a stably
stratified air layer, or by shearing instability.

Acoustic waves, ω2 >> N2, f 2.

In this case, (2.35) gives

ω2 ≈ (k2 +m2 + 1/4H2
s )c

2
0.

Let us consider the special case where mHs >> 1. Then (û, ŵ) ≈
ω−1(k,m)P̂ ; i.e., the particle motions are in the direction of the wave k,
and are associated with negligible entropy change, φ̂ ≈ 0. These are well
known properties of acoustic waves; the waves are longitudinal and the phase
speed cp = ω/ |k| ≈ c0 is large. Mechanisms of excitation include lightening
discharges and aeroplane noise (a rumble when clouds are around).

Lamb waves, w = 0.

Equation (2.33) has the trivial solution ŵ = 0. However, this does not
lead to a trivial solution of the complete system of equations (2.25-2.29).
Indeed, it is easily verified that ŵ(z) = 0 is a solution of (2.31), provided
that ω2 = f 2 + k2c2o, and of (2.32) provided that P̂ (z) = P̂ (0)exp(N2z/g).
Furthermore, using (2.30), these solutions correspond to û ≈ (k/ω)P̂ , v̂ ≈ 0
and σ̂ ≡ 0. This solution is a so-called Lamb wave, modified slightly by
rotation. Its existence requires the ground (z = 0) to be flat, so that ŵ(0) =
0. The pressure perturbation in the Lamb wave is essentially supported by
the ground. See Ex. (2.6).

2.1 Boundary waves

The upper and lower limits of the atmosphere, or a layer of it, are defined by
boundary conditions in mathematical formulations. These conditions give
additional constraints on the possible wave types and their scales. An exam-
ple is the free-surface boundary condition. The stable boundary separating
the troposphere and stratosphere, the tropopause, is sometimes modelled as
a rigid lid on which w = 0. Alternatively it may be modelled as a free sur-
face on which the total pressure is a constant. Suppose the total pressure
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along some layer of particles is unaffected by the motion, even though the
individual particles may move. An example is a water surface. If the surface
is at h+ ζ(x, t), where h is a constant, the condition is expressed by

Dp
T

Dt
= 0 at z = h + ζ.

The linearized version of this condition is

∂p

∂t
+ w

dpo
dz

=
∂p

∂t
− ρowg = 0 at z = h.

For waves proportional to (2.36) this condition gives P̂ = −(g/iω)ŵ, and
using (2.31), we obtain

dŵ

dz
+

[(
N2

g
+
g

c2o

)
n2 − n1

Hs
− gk2

ω2 − f 2

]
ŵ = 0 at z = h. (2.41)

The solution of (2.33) subject to (2.41) is straightforward, but no essential
features are omitted if we:

(a) neglect the stratification; i.e., set N2 = 0 and omit the σ equation (Eq.
2.29, and

(b) assume the motion to be hydrostatic, wt << g; i.e., set n4 = 0 (this
assumption is valid provided that the waves are long enough), and

(c) assume there is no coupling between pressure and density in the conti-
nuity equation5; i.e., set n2 = 0.

Then Eqs. (2.25-2.28) become

−iωû− f v̂ + ikP̂ = 0,

−iωv̂ + fû = 0,

P̂z = 0,

ikû+ ŵz − ŵ/Hs = 0

and (2.33) becomes

d

dz

[
d

dz
− 1

Hs

]
ŵ = 0 (2.42)

5This suppresses acoustic waves; see later.

20



The solution of (2.42) for motion over level ground (i.e., with ŵ(0) = 0) is

ŵ(z) = W [exp (z/Hs) − 1] , (2.43)

where W is a constant. Note that û, v̂ and P̂ are related to W and, as
P̂z = 0, P̂ is a constant. If this solution satisfies (2.41) also, it is easy to
verify that

ω2 = f 2 + gHsk
2 [exp(h/Hs) − 1] . (2.44)

The solution corresponding with (2.43) and (2.44) includes the case of surface
waves in a liquid, for which h/Hs is small6, and gives also a definite ‘surface
wave’ solution for a deep gas, where h/Hs is large and the mass of air above
h is very small. Thus, in a deep atmosphere, the ‘free-surface wave’ travels
with the approximate phase speed ω/k ≈√(gHs), unless the wavelength is
extremely large, in which case Coriolis effects are important and ω/k ≈ f/k.
Coriolis effects are comparable with gravitational effects if k ∼ f/

√
(gHs),

i.e. λ ∼ 2π
√

(gHs)/f . At latitude 45◦, f ∼ 10−4 s−1 and when T = 275 K,√
(gHs) ∼ 281 m s−1 giving λ ∼ 1.8 × 104 km, which is more than one half

of the distance around the latitude circle at 45◦, i.e., 2π × 6370 × sin 45 =
2.8 × 104 km. Thus the gravitational term is always important.

Although not an acoustic wave, the free surface wave has a phase speed
comparable with the speed of sound co, and may be a computational nuisance.

2.2 The effects of shear

At a later stage we shall consider the effects of shear in detail. For the present
we note that if shear is included, the foregoing solutions are significantly
modified. Briefly,

• acoustic waves are refracted by superimposed shear; enhanced down-
wind audibility results from the convergent refraction of sound waves,
usually due to wind shear, but, occasionally, temperature variations
may play a role also.

• gravity waves may be severely modified by shear. The refraction
effect is considerable and leads to the total reflection of some (shorter)
components, which may be trapped in channels as well marked trains
of lee waves downstream of mountains (see Chapter 3). In certain
situations waves may be absorbed also.

6Note that for h/Hs << 1, (2.44) reduces to ω2 = f2 + ghk2, which is the dispersion
relation for inertia-gravity waves on a shallow water layer (see DM, Chapter 11).
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• where vorticity gradients are large, gravity waves may grow sponta-
neously by Kelvin- Helmholtz instability, giving rise to billows or clear
air turbulence (CAT); see Chapter 5.

2.3 The energy equation

The kinetic energy equation in any dynamical problem is normally7 derived
by taking the scalar product of the velocity with the momentum equation.
Thus, in the context of small-amplitude waves studied above, it is obtained
by multiplying (2.11), (2.12) and (2.17) by u, v, and w, respectively, and
adding, i.e.,

1

2
(u2 + v2 + n4w

2)t + u

(
p

ρo

)
x

+ w

(
p

ρo

)
z

− n3
pw

ρo

N2

g
− gwφ = 0. (2.45)

Other components of the total energy are obtained by multiplying (2.18) by
p/ρo, i.e.,

p

ρo
(ux + wz) − n1

Hs

pw

ρo
+ n2

p

ρo

(
pt
ρoc2o

− φt

)
= 0. (2.46)

Adding (2.45) and (2.46), and using (2.15) and the fact that φoz = N2/g,
we obtain the total energy equation,

∂

∂t
1
2

[
(u2+v2+n4w

2) + n2

p2

ρ2
oc

2
o

+
g2φ2

N2

]
+(

up

ρo

)
x

+

(
wp

ρo

)
z

− n1

Hs

pw

ρo
+
pw

ρo

N2

g
(n2 − n3) = 0 . (2.47)

This may be written more concisely as

ρo
∂E

∂t
= −∇ · F + (n1 − 1)

pw

Hs
+ pw

N2

g
(n3 − n2) , (2.48)

where

E =
1

2

[
(u2+v2+n4w

2) + n2

p2

ρ2
oc

2
o

+
g2φ2

N2

]
, (2.49)

7An exception is the derivation for quasi-geostrophic motion which starts from the
potential vorticity equation (see Chapter 6).
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is the total wave energy per unit mass, and F = (pu, 0, pw) can be interpreted
as the flux of wave energy per unit mass. Note that the energy equation does
not include f and recall that Coriolis forces do no work (see DM, p.21). Note
also that when n1 = n2 = n3 = 1, the second and third terms on the right of
(2.48) are zero and the equation then shows that the local rate of change of
total wave energy equals the convergence of wave energy flux.

In any particular type of wave motion, the energy will fluctuate between
kinetic energy and some other energy form. Pure wave types are:

(a) gravity waves, in which the energy is stored in potential energy form
1
2
σ2/N2, when not in kinetic energy form, and

(b) compressible, or acoustic waves, in which the energy is stored as internal
energy 1

2
p2/ρ2

o c
2
o, when not in kinetic energy form.

Inertia-gravity waves undergo energy conversions similar to pure gravity
waves. In general, waves of the mixed gravity-acoustic type are such that
kinetic energy is converted partly into potential energy and partly into inter-
nal energy. However, in this case, the interpretations of 1

2
σ2/N2 as potential

energy and 1
2
p2/ρ2

o c
2
o as internal energy are not strictly correct.

2.4 Simplified solutions and filtered equations

If the tracers ni are retained and the expression ŵ(z) ∝ exp [(im+ n1/2Hs) z],
is substituted into (2.33) instead of (2.34), we obtain, after using (2.54) and
a little algebra, the dispersion relation

m2 +
n2

1

4H2
s

+
N2

g

[
im(n3 − n2) + n2(n3 − 1)

N2

g
+

1

Hs

{
n2 − 1

2
n1(n2 + n3)

}]

+ (n4ω
2 −N2)

k2

ω2 − f 2
− n2n4

ω2

c2o
= 0. (2.50)

The consequences of omitting certain terms in the equations of motion
(2.11, 2.12, 2.15, 2.17 and 2.18) may now be investigated. It is desirable that
any approximation yields a consistent energy equation.

2.5 ‘Sound-proofing’ the equations

Examination of (2.47) suggests that setting n2 = 0 in (2.18) will remove the
acoustic mode from the equations. Equation (2.50) then gives
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ω2 =
N2k2 + f 2

(
m2 +

n2
1

4H2
s

+ n3
N2

g

(
im− n1

2Hs

))
n4k2 +m2 +

n2
1

4H2
s

+ n3
N2

g

(
im− n1

2Hs

) , (2.51)

which, when n1 = n4 = 1, differs from the dispersion relation for inertia-
gravity waves (2.37), only in respect of the terms involving n3. But (2.51)
shows that ω2 is complex, implying that ω is complex, and hence there exist
exponentially growing solutions (c/f (2.36) with ω complex)! Such solutions
must have an energy source, although none is available in the unapproximated
system. Equation (2.48) shows that with n2 = 0, there is, indeed, an energy
source represented by the last term, unless n3 = 0 also. Hence, to filter sound
waves from the system of equations (2.11-2.18), we must take both n2 and
n3 to be zero to preserve energetic consistency.

Note that sound waves are filtered out also by letting c2o → ∞. However
this device is clumsy and inaccurate, particularly when applied to (2.54);
recall from Ex. (2.2) that

(−g/c2o)/(1/Hs) = gHs/c
2
o = O(1)!

Setting n2 = n3 = 0 in (2.50) instead of n2 = n3 = 1 results only in
the term ω2/c2o being omitted. The condition for this term to be negligible
is complicated; the worst situation is clearly for high frequency waves when
ω2 is large, in which case the term is negligible provided that ω2c2o << k2 +
m2 + (4H2

s )
−1, equivalent to cp << co; see Eq. (2.35). The frequency of the

inertia-gravity wave is given then by

ω2 = f 2 +
(N2 − f 2)k2

k2 +m2 + 1/4H2
s

, (2.52)

which agrees closely with accurate solutions of (2.35) under typical condi-
tions.

When n2 = 0, the Lamb wave no longer exists when ŵ = 0, since (2.31)
then gives P̂ = 0. This is a computational advantage, but the free surface
wave still exists if the surface condition (2.41) is used. Putting n2 = n3 = 0
in the full nonlinear equations gives the anelastic system of equations (see
Chapter 1). Sound waves are absent and the whole flow is instantly aware of
any adjustment to the pressure field. This approximation may be used for
practically all meteorological problems, including phenomena in which the
pressure is nonhydrostatic, e.g., cumulonimbus convection. If the vertical
scale of the motion is much less than the density scale height, i.e., mHs >> 1,
then (2.52) becomes
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ω2 = f 2 +
(N2 − f 2)k2

k2 +m2
, (2.53)

which is identical with the dispersion relation for waves in a Boussinesq liquid
(see Ex. 2.10).

2.6 The hydrostatic approximation

In many atmospheric situations, the pressure is very close to its hydrostatic
value. In the foregoing analysis, pressure is hydrostatic if n4 = 0 (this elim-
inates Dw/Dt, or in linearized form ∂w/∂t, from the vertical momentum
equation). Now, with n1 = n2 = n3 = 1, the dispersion relation (2.50) gives

−n4
ω4

c2o
+ ω2

(
m2 +

1

4H2
s

+ n4
f 2

c2o
+ n4k

2

)
−N2k2 − f 2

(
m2 +

1

4H2
s

)
= 0.

Clearly, the terms involving n4 are negligible if

(i) ω2/c2o << m2 + 1/4H2
s , and

(ii) ω2 << N2.

The first of these conditions is typically well satisfied for inertia-gravity
waves; however the second is more discriminating. If a layer is close to
adiabatic, then N2 ≈ 0, and the dispersion relation becomes ω2(m2 + n4k

2 +
1/4H2

s ) = f 2(m2 + 1/4H2
s ), requiring that k2 << m2. But, since for finite

N2,

ω2 = (N2k2 + f 2(m2 + 1/4H2
s ))/(n4k

2 +m2 + 1/4H2
s ),

the condition k2 << m2 implies that ω2 << N2 and hence the hydrostatic
approximation may be considered appropriate whenever it is satisfied. In
other words, the hydrostatic approximation is valid for waves whose horizon-
tal wavelength is much larger than the vertical wavelength. It is important to
note that the magnitude of g−1Dw/Dt is irrelevant to the usefulness of the
hydrostatic approximation for finding the acceleration. Even if this quan-
tity is small, the dynamics will be incorrectly modelled by its neglect if the
motion is in tall narrow columns (k2 >> m2).

The condition k2 << m2 is usually well satisfied for large scale atmo-
spheric motions and the hydrostatic approximation is used exclusively in
‘primitive equation’ (PE) numerical weather prediction (NWP) models.

25



2.7 Sound-proofed hydrostatic approximation

If we formally set n1 = 1 and n2 = n3 = n4 = 0, valid under the same
conditions (i) and (ii) for the hydrostatic approximation alone, the dispersion
relation gives

ω2 = f 2 +N2k2/(m2 + 1/4H2
s ).

The Lamb wave now disappears (c/f Ex. 2.9) as it does when the other
acoustic waves are eliminated. However, the free surface wave still exists and
leads to a spurious fast moving wave. It is filtered out by using a rigid-lid
condition. A primitive equation, numerical weather prediction model can be
devised for the set of equations with n1 = 1 and n2 = n3 = n4 = 0 together
with a rigid upper boundary condition.

2.8 Variation of mean density with height;

the equivalent incompressible atmosphere

The upward decrease of mean density that distinguishes between continu-
ity of volume and mass is represented by the term in n1 and appears in
the multiplier exp(z/2Hs) ∝ ρ

−1/2
o in ŵ etc.. Over tropospheric depths

this factor is significant, but elsewhere n1 appears only in the combination
m2 + n1/4H

2
s and then it is often negligible. For example, if m = π/Hs,

(4H2
s )

−1 = 1
4
(m/π)2 ≈ m2/40. Thus in many applications, particularly where

the vertical length scale of the motion is not large, the density variation can
be neglected by setting n1 = 0 as long as the ρ

1/2
0 factor is included im-

plicitly. A prediction of u, for example, obtained from the incompressible
(Boussinesq) model should then be compared with (ρo/ρs)

1/2u observed in
the (compressible) atmosphere, where ρs = ρo(0).

2.9 Geostrophic motion

The solution of (2.35) corresponding with ω = 0 is independent of the values
of n1 → n4, but the more general “quasi-geostrophic” solutions are not. If
we are interested only in the slowly-moving, nearly geostrophic waves, we
can omit sound waves and suppose that the pressure is hydrostatic, i.e., put
n2 = n3 = n4 = 0.
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Exercises

(1.1) Neglecting friction effects, the momentum equation may be written as

Du

Dt
+ fk ∧ u = −1

ρ
∇p′ + g

(
ρ0 − ρ

ρ

)
k.

Show that

−1

ρ

∂p′
∂z

= − cpθ
∂

∂z
(π − π0) −W

and

g

(
ρ0 − ρ

ρ

)
= g

(
θ − θ0
θ0

)
+W,

where θ is the potential temperature, π is the Exner function and a
subscript ‘o’ denotes a horizontal average or reference state value. Note
that although

W = g
θ

θ0

[(
π

π0

)1−1/κ

− 1

]
,

the terms on the RHS can be interpreted as the ‘perturbation pressure
gradient’ and ‘buoyancy force’ respectively, only if the horizontal pres-
sure deviation is small enough for W to be negligible. This is not valid,
for example, in a tornado (Leslie and Smith, 1978).

(1.2) The equation of motion for rotating stratified flow of an inviscid fluid
is

Du

Dt
+ fk ∧ u = − 1

ρ∗
∇p′ + σk,

where the Boussinesq assumption has been made. Obtain the vorticity
equation and identify that part of it which corresponds with the thermal
wind equation,

f
∂uh
∂z

= k ∧ ∇hσ.

[Hint: it may help to write the total vorticity ω = ωh + ζk, where
ωh is the horizontal component and ζ is the vertical component. The
following formulae may to be useful also:[
u ∧ ω = 1

2
∇(u2) − u · ∇u,∇ ∧ (ω ∧ u) = u · ∇ω − ω · ∇u + ω(∇ · u).

]
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(1.3) Show that

Z(p) = −RTo
g

ln (p/p∗)

measures actual height above the pressure level p	 (= 1000 mb) in an
isothermal atmosphere with temperature To.

(1.4) Show that χ(p) = [1 − (p/p∗)κ] Hs/κ measures actual height above
the p	 level in an adiabatic atmosphere. Determine the characteristic
height scale z = Hs/k appropriate to the atmosphere.

(2.1) Show that for an isothermal atmosphere, N , c0 and Hs are constants.
Show that for T0 = 275 K, c0 = 332 ms−1, Hs = 8054 m and the
Brunt-Väisälä period, 2π/N , equals 5.6 minutes.

(2.2) Show that

N2

g
= − g

c2o
+

1

Hs
. (2.54)

Deduce that for an isothermal atmosphere, the ratio 2N2Hs/g is of
order unity (use γ = 1.4).

(2.3) Show that φ = γ−1 ln p− ln ρ+ constant.

(2.4) Show that the phase speed of the plane wave represented by (2.36) is
ω/ |k|. Show that the phase speed is not a vector; i.e., the components
of the vector ω/ |k2| are in general not equal to the components of the
phase speed in the x and z directions.

(2.5) Show that with the substitutions ω2 = Y + b, k2 = X + d and µ2 =
m2 + 1/4H2

s in (2.35) and with appropriate choices for b and d, the
equation represents a hyperbola in the X, Y plane with equation

Y 2

c2o
−XY = (N2 − f 2)

(
µ2 − N2

c2o

)
. (2.55)

(2.6) Verify that ω2 = f 2 + k2c20 is a solution of (2.35) provided that m2 =
−(1 − 4H2

s N
2/c20) /4H

2
s , and show that for To = 275 K, m2 < 0.

(2.7) Verify that in the limit as k → 0, the pressure perturbation drops out
of the momentum equation and that σ̂ , and P̂ → 0.
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(2.8) Deduce the following properties of acoustic waves:

û ∼ k

ω
P̂ , ŵ ∼ (im/ω)(m2H2

s + 1
4
)P̂

im2H2
s+(1

2
−gHs/c

2
o)mHs

, v̂ ∼ 0, φ̂ ∼ 0.

(2.9) Show that the assumption n4 = 0 does not filter out the Lamb wave
from (2.19, 2.20, 2.21, 2.22 and 2.23), even though it removes all other
acoustic wave modes. Show also that when n4 = 0 and the condi-
tion (2.41) is used, the free surface wave exists even when N2 is not
negligible.

(2.10) The Boussinesq equations for a non-rotating stratified liquid are

Du

Dt
= − 1

ρ∗
∇p+ σk, ∇ · u = 0, and

Dρ

Dt
= 0

where ρ∗ is a constant. Show that the dispersion relation for small-
amplitude waves in the x− z plane is

ω2 =
N2k2

k2 +m2
.

(2.11) Show that in the absence of a basic mean flow, the energy equation for
small amplitude waves in a nonrotating Boussinesq liquid is

∂Ẽ

∂t
= −∇ · F̃

where Ẽ = 1
2
ρ∗(u2 + w2 + σ2/N2) is the energy density, and F̃ =

(pu, 0, pw) is the energy flux. Deduce that

∂E

∂t
= −∂F

∂z
,

where E is the mean energy density and F is the mean vertical energy
flux averaged over a horizontal wavelength of a wave. Calculate E and
F for a plane wave, for which

(u, w, σ, P ) = Re

[(
−m
k
, 1 ,

iN2

ω
,−ωm

k2

)
ŵ ei(kx+mz−ωt)

]
,

and show that F = Ewg, where wg is the vertical component of the
group velocity vector, ∂ω/∂m.
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(2.12) Find the solution of (2.33), with n2 = n3 = 0, n1 = n4 = 1, (the sound-
proof system) which satisfies ŵ(0) = 0 and the free surface condition

ŵz −
(

1

Hs
+

gk2

ω2 − f 2

)
ŵ = 0 at z = h.

Show that, in addition to the dispersion relation for inertia-gravity
waves, ω satisfies also the equation

ω2 = f 2 +
gHsk

2

mHs cot mh − 1
2

.

For k = 1/(2Hs), corresponding with a horizontal wavelength of about
100 km, compare the phase speed of the fastest moving wave in this
case with the phase speed obtained from the formula (2.44), assuming
that To = 275 K and f = 0.
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Chapter 3

WAVES ON MOVING
STRATIFIED FLOWS

In Chapter 2 we studied small-amplitude waves in a compressible, stably-
stratified, rotating gas when there is no basic flow. We turn now to consider
the propagation of small-amplitude internal gravity waves in a stratified shear
flow U = (U(z), 0, 0), including the special case of uniform flow U(z) =
constant. The linearized form of the anelastic equations is

ut + Uux + wUz = −Px, (3.1)

wt + Uwx = −Pz + σ, (3.2)

σt + Uσx +N2w = 0, (3.3)

ux + wz − w/Hs = 0. (3.4)

Proceeding as before, we seek travelling-wave solutions of the form (2.24) to
obtain

−i(ω − Uk)û+ ŵUz = −ikP̂ , (3.5)

−i(ω − Uk)ŵ = −P̂z + σ̂, (3.6)

−(ω − Uk)σ̂ +N2ŵ = 0, (3.7)

ikû+ ŵz − ŵ/Hs = 0. (3.8)
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Equations (3.8), (3.5) and (3.7) lead respectively to expressions relating
û, P̂ and σ̂ to ŵ:

(û, P̂ , σ̂) =

[
i

k

(
ŵz − ŵ

Hs

)
,
i

k2

{
ω∗ŵz +

(
kUz − ω∗

Hs

)
ŵ

}
,
N2ŵ

iω∗

]
, (3.9)

where

ω∗ = ω − Uk, (3.10)

is the intrinsic frequency1 of the wave; the frequency measured by an observer
moving with the local flow speed U(z). Then (3.6) together with (3.9) gives
a second order ordinary differential equation for ŵ, i.e.

ŵzz − 1

Hs

ŵz +

[
k

ω∗Uzz +
k

ω∗
Uz
Hs

−
(

1

Hs

)
z

+

(
N2

ω∗2 − 1

)
k2

]
ŵ = 0. (3.11)

This equation may be further simplified by taking

w̃(z) = exp(z/2Hs)w̃(z), (3.12)

as suggested by the analysis in Chapter 2. We set c = ω/k so that ω∗ =
k(c− U). Then, assuming that Hs is a constant, w̃(z) satisfies the equation

w̃zz + (l2(z) − k2)w̃ = 0, (3.13)

where

l2(z) =
N2

(U − c)2 − Uzz + Uz/Hs

U − c
− 1

4H2
s

. (3.14)

There are two types of problem; one concerned with free waves, the other
with forced waves.

3.1 Free waves

When w, and hence ŵ(z), satisfies homogeneous boundary conditions at two
particular levels, we have an eigenvalue problem. For a given horizontal
wavenumber k, free waves are possible only for certain phase speeds c. Al-
ternatively, when c is fixed, there is a constraint on the possible wavenumbers.

1It is sometimes referred to alternatively as Doppler-shifted frequency.
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The possible values of c(k), or given c, the possible values of k, and the corre-
sponding vertical wave structure ŵ(z, k, c(k)) are obtained as solutions of the
eigenvalue problem. Unfortunately, except for one or two simple expressions
for U(z), the eigenvalue problem is analytically intractable and, in general,
one must resort to numerical methods.

Two examples of free wave problems are shown schematically in Figs.
3.1 and 3.2. In the first, a stably-stratified shear flow is confined between
rigid horizontal boundaries at z = 0 and z = H . In the second, a stratified
shear flow U(z) in the region 0 ≤ z ≤ H underlies an infinitely-deep layer
of a neutrally-stratified (N ≡ 0) uniform flow U(z) ≡ U(H) in the region
z > H . Such flow configurations, in which waves are confined in a particular
direction (here the z-direction) are sometimes referred to as wave-guides.
Note that in the latter example, vertical wave propagation cannot occur in
the region z > H as there is no stratification or shear in this region. Thus
l2(z) is negative in (3.13) and solutions for w̃, and hence for other tilde
wave quantities following from (3.9), must decay exponentially with height.
This model is of some relevance to understanding the waves associated with
the spectacular ”Morning-Glory” clouds shown in Figs. 3.3 and 3.3. The
morning glory phenomenon occurs regularly at certain times of the year in
the Gulf of Carpentaria region of northern Australia (see e.g. Smith, 1988;
Christie, 1992; Smith et al., 1986).

Figure 3.1: Stratified shear flow between rigid horizontal boundaries.

3.2 Forced waves

If the waves are being generated at a particular source level, the boundary
conditions on Eq. (3.13) are inhomogeneous and a different type of math-
ematical problem arises. Examples are the flow detailed in Figs. 3.5 and
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Figure 3.2: Wave-guide for waves on a surface-based stable layer underlying
a deep neutrally-stratified layer. This configuration is an approximation to
the wave-guide for ‘morning-glory waves’.

Figure 3.3: A northeasterly Morning Glory cloud formation.

3.6. In the former, waves are generated at z = 0 by a moving boundary with
small amplitude sinusoidal corrugations on it, and propagate upwards.

Assuming that there is no basic flow (U ≡ 0), that the Boussinesq ap-
proximation is valid (1/Hs ≡ 0), and that N and c are given constants, the
vertical wavenumber m is determined by the dispersion relation,

m2 = N2/c2 − k2, (3.15)

where k is the horizontal wavenumber (this equals the wavenumber of the
corrugations) and c is the speed of the boundary. The group velocity of the
waves is
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Figure 3.4: A southerly Morning Glory.

Figure 3.5: Waves produced by the motion of a (sinusoidal) corrugated
boundary underlying a stably-stratified fluid at rest.

cg =
c3

N2
(m2, −mk). (3.16)

According to a result of problem 2.11, the vertical flux of mean wave
energy is pw , denoted by F , and this is equal to Ewg, the mean wave energy
density times the vertical component of the group velocity. In the problem
under consideration, c < 0, and therefore sgn(wg) = sgn(mk). Thus those
waves with their phase lines tilting with height in the negative x-direction
(the direction of c) are those which propagate energy vertically.
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In this problem, the solution of (3.13) for ŵ(z) is determined by a con-
dition at z = 0 relating ŵ(0) to the amplitude of the corrugations and the
speed of boundary motion (an inhomogeneous condition), together with a ra-
diation condition as z → ∞ which ensures that the direction of energy flux at
large heights is away from the wave source, i.e., it is vertically upwards. This
condition is applied by ensuring that only wave components with a positive
group velocity (in this case there is only one) are contained in the solution.
These two conditions determine the forced wave solution uniquely.

In the second example, the flow configuration is a Galilean transformation
of the first; now the boundary is at rest and a uniform flow u(> 0) moves
over it. The two problems are clearly dynamically equivalent, but, as we shall
see presently, they are not energetically equivalent. In particular, F can no
longer be simply interpreted as the energy flux 2 and, without recognition
of the dynamical equivalence with the former problem, it is not immediately
clear how to choose an appropriate radiation condition.

Figure 3.6: Waves produced by the flow of a stably-stratified fluid over a
corrugated boundary.

3.3 Mountain waves

When a stably-stratified airstream crosses an isolated ridge or, more gen-
erally, a range of mountains, stationary wave oscillations are frequently ob-
served over and to the lee of the ridge or range. These so-called mountain
waves, or lee waves, may be marked by smooth lens-shaped clouds, known as
lenticular clouds. The clouds occur in the crests of waves when a layer of air
approaching the mountain is sufficiently moist; see Figs. 3.7. Photographs

2Indeed, the energy equation is not Galilean invariant.
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of such clouds are shown in Figs. 3.8 - 3.10 The clouds are formed contin-
uously on the upwind side of the crests as air rises, cools adiabatically, and
becomes saturated so that condensation occurs. They are likewise eroded
on the downwind side due to adiabatic heating and re-evaporation as the air
descends into a wave trough. Sometimes, clouds marking many wave crests
are observed downstream of the mountain ridge; they are usually more or
less stationary, both in position and appearance, while the air blows through
them. The smooth appearance of the clouds is indicative of low turbulence
levels. In strong wind conditions, there may exist rotors in localized areas
near the mountain. These are very turbulent regions with a closed mean
circulation and may be marked by a ragged roll cloud. They are extremely
hazardous for aircraft.

Figure 3.7: Formation of lenticular clouds in a series of mountain lee waves.

3.4 Linear Theory

With the foregoing discussion in mind, we consider now stationary solutions
of (3.13) (i.e. solutions with ω = 0, implying c = 0) within the framework
of the Boussinesq approximation. Thus, for simplicity, we assume inter alia
that 1/Hs ≡ 0. It is instructive to begin by considering uniform flow U over
sinusoidal topography z = h(x) = hm cos kx, bearing in mind that solutions
for flow over other topographic shapes may be constructed as Fourier syn-
theses of those for sinusoidal terrain. The flow configuration is as shown in
Fig. 3.6.

At the surface, the condition that the flow follows the terrain, or, in other
words that the streamline slope equals the terrain slope, is

w

U + u
=
dh

dx
on z = h(x). (3.17)
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Figure 3.8: Lenticular mountain wave clouds over the European Alps.

Figure 3.9: Lenticular mountain wave clouds produced by the Australian
southern Alps.

This condition is nonlinear, but for small-amplitude topography and distur-
bance velocity it can be linearized to give

w = U
dh

dx
at z = 0. (3.18)
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Figure 3.10: Lenticular wave clouds near the Grampian Hills in Victoria,
Australia.

Likewise, if ζ(x, z, t) is the vertical displacement of an air parcel from its
level at a specified distance upstream, then w = Dζ/Dt. This linearizes to
w ≈ U∂ζ/∂x, so that

ŵ = ikUζ̂. (3.19)

When U is a constant, ζ̂ satisfies the same equation as ŵ, i.e.

d2ζ̂

dz2
+

(
N2

U2
− k2

)
ζ̂ = 0. (3.20)

Here it is slightly more convenient3 to work in terms of ζ̂ rather than ŵ.
The general solution of (3.20) is

ζ̂(z) = Aeimz +Be−imz, (3.21)

where A and B are constants to be determined and

m2 = N2/U2 − k2. (3.22)

The boundary condition at the ground, ζ(x, 0) = hm exp(ikx), gives

3One can also define a streamfunction ψ such that u = ψz , w = −ψx. Then ŵ = −ikψ̂
and hence ψ̂ satisfies the same equation as ŵ. Moreover, from (3.19) it follows that ψ̂ = Uζ̂.
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ζ̂(0) = hm. (3.23)

Evidently, the upper boundary condition and hence the solution depends on
the sign of N2 − U2k2 in (3.22). Let l = N/U .

Case 0 < |k| < l

Then m is real and if m, k > 0, we must choose B = 0 to satisfy the radiation
condition; this requires that the phase lines slope upstream with height (i.e.
here sgn(mk) > 0) as discussed earlier in this chapter. Then the complete
wave solution is

ζ(x, z) = hme
i(kx+mz), (3.24)

the real part being implied, of course. The streamline patterns are shown in
Fig. 3.11a. Since in this case the intrinsic frequency of the motion Uk is less
than N , internal gravity waves are excited (this frequency is that experienced
by a fluid parcel moving through the stationary wave pattern). These waves
propagate vertically and thus the disturbance does not decay upwards. For
very long waves, i.e., |k| << l, the vertical wavenumber of the disturbance is
approximately equal to l; thus, it depends only on the characteristics of the
airstream, not on k. Such motions are closely hydrostatic.

Case l < |k|
Then m is imaginary (= im0 say) where m0 is the positive root (k2 − l2)1/2,
and the expression for ζ̂(z) is no longer wavelike. The appropriate upper
boundary condition requires that ζ̂(z) remains at least bounded as z → ∞,
i.e. B = 0. The complete solution is therefore

ζ(x, z) = hme
−(k2−l2)1/2z+ikx. (3.25)

The streamlines for this solution are shown in Fig. 3.11b. As the intrinsic
frequency is now greater than the buoyancy frequency, gravity waves are not
excited and the flow is qualitatively similar to irrotational flow (l = 0) in that
the phase lines are vertical and the disturbance decays with height. It may
be helpful to think of this as the case of “closely spaced” topography, but
not in absolute terms; only in relation to the airflow parameter l. Note that
as k2 → l2, the vertical penetration of the disturbance increases as buoyancy
forces become more important.
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Figure 3.11: Streamline patterns for uniform flow over sinusoidal topograhy:
(a) vertical propagation, U |k| < N , (b) vertical decay, N < U |k|.

3.5 Flow over isolated topography

We study now flow over an isolated ridge or mountain with shape z = h(x) =
hm/[1 + (x/b)2], sometimes referred to as the ‘Witch of Agnesi’ profile. The
flow configuration is shown in Fig. 3.12. While the principal of the method to
be described is quite general, the ridge shape chosen has a particular simple
Fourier transform and this simplifies the calculations considerably. For this
reason also, we assume as before a uniform basic flow, U = constant.

Since the ridge is symmetrical about x = 0, it may be expressed as a
Fourier cosine integral, i.e.

h(x) =

∫ ∞

0

h cos kx dk = Re

∫ ∞

0

h (k)eikxdk, (3.26)

where

h(k) =
2

π

∫ ∞

0

h(x) cos kx dx

=
2hm
π

Re

∫ ∞

0

eikxdx

1 +
(
x
b

)2
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Figure 3.12: Schematic representation of flow over an isolated ridge with
h(x) = hm/[1 + (x/b)2]; the maximum height of the ridge is hm and its
characteristic width, the width at which h(x) = 1

2
hm, is b.

=
2hmb

π

∫ ∞

0

eikbudu

1 + u2
= hmbe

−kb. (3.27)

But the solution ζ(x, z; k) for each Fourier component of the spectrum in
(3.26) is simply that given by either (3.24) or (3.25); hence the solution for
flow over the ridge is just the Fourier synthesis of these solutions, i.e.

ζ(x, z) = Re

[∫ l

0

h(k)ei[kx+(l2−k2)1/2z] dk +

∫ ∞

l

h(k) eikx−(k2−l2)1/2zdk

]
.

Using (3.27) and making the substitution kb = u, this becomes

ζ(x, z) = I1 + I2,

where

I1 = hmRe

∫ lb

lb

exp

[
−u
(

1 − ix

b

)
+
(
l2b2 − u2

)1/2 z
b

]
du

and

I2 = hmRe

∫ lb

lb

exp

[
−u
(

1 − ix

b

)
− (u2 − l2b2

)1/2 z
b

]
du. (3.28)

Before considering the full solution for lb ∼ 1, we examine two limiting cases.

Narrow ridge, lb << 1

Then I1 << I2 and
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ζ(x, z) ≈ hmRe

∫ ∞

0

exp

[
−u
(

1 − ix

b
+
z

b

)]
du

=

(
b

b+ z

)
hm

[1 + x2/(b+ z)2]
. (3.29)

Written in this form, we see that each streamline has the same general shape
as the ridge, but the width of the disturbed portion of a streamline increases
linearly with z, whereas its maximum displacement decreases in proportion
to 1/(1+z/b), becoming relatively small for heights a few times greater than
the barrier width. Note that this limit corresponds with small Nb/U , i.e.,
with small static stability and/or high wind speeds, and gravity waves are
not excited. Indeed, the flow is irrotational. As noted by Smith (1979, p101),
the same flow field could have been constructed from potential flow theory
by placing a doublet slightly below the ground. The streamline pattern is
shown in Fig. 3.13.

Figure 3.13: The steady flow of a homogeneous fluid over an isolated two-
dimensional ridge, given by (3.29). From the spacing of the streamlines, it
is evident that the highest wind speed and the lowest pressure occurs at the
top of the ridge.

Broad ridge, lb >> 1

In this limit, I1 >> I2 and

ζ(x, z) ≈ hmRe { eilz
∫ ∞

0

exp [−u (1 − ix/b) ] du} = hmRe

[
beilz

b− ix

]

= hm

[
cos lz − (x/b) sin lz

1 + (x/b)2

]
. (3.30)
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Figure 3.14: Buoyancy-dominated hydrostatic flow over an isolated-two-
dimensional ridge, given by (3.30). The disturbance is composed of vertically-
propagating, internal gravity waves of the sort shown in Fig. 3.11a. The
evident upstream tilt of the phase lines indicates that disturbance energy is
propagating upward away from the mountain. The maximum wind speed
and minimum pressure occur on the leep slope of the ridge. The mountain
height hm = 1 km, the half-width b = 10 km, the mean wind speed U = 10
m/sec, the Brunt-Väisälä frequency N = 0.01/sec, and the vertical wave-
length Ls = 2πU/N = 6.28 km. (After Queney, 1948 and taken from Smith,
op. cit..)

Now all Fourier components propagate vertically. A typical case is shown
in Fig. 3.14. Note that the flow is periodic in the vertical, whereupon at
z = π/l, the streamline shape looks like the ridge inverted and at z = 2π/l,
the pattern is the ridge shape once again. The upstream tilt of the phase
lines required of each Fourier component is still a prominent feature of the
composite flow. Smith op. cit. (p103) notes that “This asymmetry to the
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flow, which is associated with the vertical propagation of wave energy, has a
number of implications. From the distance between the streamlines in Fig.
3.14 it is apparent that the wind speed is low on the windward slope of
the ridge and faster on the leeward slope. From Bernoulli’s equation, this
requires a pressure difference across the ridge; higher pressure upwind and
lower pressure downwind. The primary reason for the windward-side high
pressure is the thickened layer of dense cool air just above the mountain,
but this in turn is related to the radiation condition aloft.” The pressure
difference results in a net drag on the mountain. It can be computed either
as the horizontal pressure force on the mountain

D =

∫ ∞

−∞
p(x, 0)

dh

dx
dx, (3.31)

or, alternatively, as the vertical flux of horizontal momentum in the wave
motion

D = −ρ0(z)

∫ ∞

−∞
uw dx, (3.32)

where, of course, with the Boussinesq approximation, ρ0(z) = ρ∗. The in-
crease in wind speed on the slope has been suggested as an explanation for
severe downslope winds found occasionally in the lee of mountain ranges.
Frequently the strong lee-side winds are warm and dry, replacing colder air,
and are referred to as föhn-winds; in the US Rockies, the local name is “chi-
nook” and in southern California, the term “Santa Ana” is used.

Moderate ridge, lb ∼ 1

In the general case, the integrals in (3.28) are too difficult to evaluate analyt-
ically, but their asymptotic expansions at large distances from the mountain
(compared with l−1) are revealing. We consider first I1. Let u = lb cos α,
where 0 ≤ α ≤ π/2, and x = r cos θ, z = rsinθ, where 0 ≤ θ ≤ π. Then

I1 = hmlbRe

∫ π
2

0

(sin α e−lb cos α) eirl cos (θ−α) dα, (3.33)

which has the form,

I1 = Re

∫ π
2

0

h(α ) eirl g (α) dα.
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The asymptotic expansion of such integrals for large r may be obtained by
the method of stationary phase (see e.g., Jeffreys and Jeffreys, Methods of
Mathematical Physics, Chapter 17).

If x > 0 (i.e. 0 ≤ θ ≤ π
2

), the phase lr cos (α− θ) is stationary for α = θ
and therefore the asymptotic value of the integral is O((rl)−1/2), provided z
is not too small, i.e. provided that α = θ is not too close to the lower limit
of the integral.

If x < 0 (i.e. π
2
< θ ≤ π), the phase is monotonic because 0 < α < π

2

implies that −π < α− θ < 0. Thus I1 ∼ (lr)−1, except in the vicinity of the
zenith (θ = π

2
). In the latter case, the phase is stationary near α = π

2
, the

upper limit of the integral, and I1 ∼ (lr)−1/2. The behaviour is summarized
in Fig. 3.15.

Figure 3.15: Asymptotic behaviour of I1 (Eq. 3.33).

Now consider I2. Since (u2 − l2b2)1/2 > u− lb for u > lb,

|I2| ≤ hm max
lb≤u≤∞

∣∣∣∣ exp

[
−u
(

1 − ix

b

)] ∣∣∣∣
∫ ∞

lb

e−(u−lb)z/b du

= hmb exp (−lb)/z .

Hence I2 is at most O(hm/z) when z/hm is large. Also, by the Riemann-
Lebesgue theorem, I2 is at most O(b/x) for large |x/b|. Hence I2 is at most
O(b/r) and, since lb ∼ O(1), I1+I2 is always the same order as I1. This is not
surprising since I1 contains all the vertically propagating wave components.
Therefore, if we exclude the vicinities of θ = π/2 and θ = 0, the asymptotic
expression for (3.28) is the same to leading order as that for (3.33) and hence

ζ(x, z) ∼ hmlb sin θe−lb cos θ

(
2π

lr

)1/2

cos
(
lr − π

4

)
(3.34)
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for x > 0 and θ not too close to 0 or π. It follows that successive extrema
of ζ are located on circles lr = (n + 1/4)π, n being a positive integer. On a
given circle,

ζ(θ)/hm = lb

[
8

4n+ 1

]1
2
e−lb cos θ sin θ (3.35)

Thus, ζ(θ)/hm is a maximum for lb ∼ 1 and negligible for lb << 1 as well as
lb >> 1 (because of the exponential factor). Hence the amplitude of the lee
waves is appreciable when compared with the height of the mountain only if
the width of the mountain is comparable with the (radial) wavelength 2π/l
of the waves. The latter quantity depends only on the characteristics of the
airstream, N and U . Note that the decay of wave amplitude away from the
mountain is due to the dispersion of wave energy. An example of airflow over
a ridge with lb ∼ 1 is shown in Fig. 3.16.

Figure 3.16: Lee waves in the case where lb ∼ 1.

3.6 Trapped lee waves

It was pointed out by Scorer (1949) that, on occasion, a long train of lee waves
may exist downstream of a mountain range, quite unlike the waves portrayed

47



in Figs. 3.14 and 3.16. Scorer showed that a long wave train is theoretically
possible if the parameter l2(z) in (3.14) decreases sufficiently rapidly with
height. Since eigensolutions of (3.13) are difficult to obtain when l2 varies
with z, Scorer studied situations in which l2 is a different constant in each of
two atmospheric layers, the difference being due to different static stabilities,
U being the same constant value in each layer.

We denote quantities in the upper and lower layers by subscripts ‘1 ’ and
‘2 ’ respectively, and work in terms of the perturbation streamfunction ψ,
defined in footnote 2 on p 38. In the Boussinesq approximation ψ̃(z) satisfies
the same differential equation as w̃, i.e.

d2ψ̃

dz2
+ (l2 − k2)ψ̃ = 0, (3.36)

assuming stationary wave solutions so that c = 0 where l2 = N2/U2 as
before. Hence ψ̃ ∝ exp(imz), where m2 = l2 − k2. We assume that m2

2 > 0,
so that vertical wave propagation is possible in the lower layer.

Case (a): upper layer more stable (l1 > l2).

We consider an upward-propagating wave in the lower layer impinging on
the discontinuity level as shown in Fig. 3.17. Since m2

l > m2
2, vertical

propagation is possible in the upper layer and we may anticipate that there
will be a transmitted wave and a reflected wave. The streamfunctions for the
transmitted wave ψ1, and the incident plus reflected wave ψ2, are given by

ψ1 = αei(kx+m1z), (3.37)

and

ψ2 = a ei(kx+m2z) + βei(kx−m2z), (3.38)

where a is the amplitude of the incident wave, assumed given, and α and
β are the amplitudes of the transmitted and reflected waves to be found.
It is assumed that m1, m2 > 0. The solutions are coupled by conditions
expressing the continuity of interface displacement and pressure at z = 0.
The former condition, ζ̂1 = ζ̂2 at z = 0, implies that ŵ1 = ŵ2 and ψ̂1 = ψ̂2

provided, as here, that U1 = U2. When the density is continuous across the
interface, continuity of pressure implies that ψ̂1z = ψ̂2z at z = 0 (see Ex.
3.6). Applying these conditions to (3.37) and (3.38), it follows readily that

α =
2m2a

m1 +m2

and β =

(
m2 −m1

m1 +m2

)
a. (3.39)
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The expression for α shows that there is always a transmitted wave and
therefore trapped “resonant” solutions in the lower layer are impossible in
this case. Note also that when N1

∼= N2, little energy is reflected.

Case (b): upper layer less stable (l1 < l2).

This situation is depicted in Fig. 3.18 assuming that m2
1 < 0. Then the

appropriate solution in the upper layer is the one which decays exponentially
with height, i.e.

ψ1 = αeikx−|m1|z. (3.40)

Figure 3.17: Wave transmission in the case l1 > l2.

For algebraic convenience we assume that α is given and obtain expres-
sions for a and β in terms of this by requiring that ψ̂ and ψ̂z are continuous
at z = 0 as before. After a little algebra, it follows that ψ2 can be written in
the form

ψ1 = αeikx−|m1|z. (3.41)

Observe that the x and z dependence are decoupled in (3.41) and hence the
incident and reflected waves sum to give a horizontally-propagating wave.
Such a wave is called trapped; it cannot propagate into the upper region,
but decays therein on a scale 1/|m1|.
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Figure 3.18: Total wave reflection in the case l1 < l2.

If the lower layer is bounded by a rigid boundary at z = −h, then
2ŵ(−h) = 0, implying that m2(−h) = 0. Thus from (3.41), m2 must satisfy
the condition

tan m2h = − m2h

|m1|h. (3.42)

It follows that there is an infinite set of values for m2h corresponding
with the abscissa of points of intersection of the curves y = tan θ with the
line y = −θ/|m1|h. The smallest value is such that π

2
< m2h < π, whence

l22 − k2 > π2/4h2. Since it is assumed that m2
1 < 0, l21 < k2 and therefore, for

this mode,

l21 < k2 < l22 − π2/4h2, (3.43)

To illustrate the principles involved in obtaining solutions for trapped
lee waves, we assume that the upper layer behaves as a rigid lid for some
appropriate range of wavelengths; i.e. we take ŵ = 0 at the lid, which we
now assume to be at z = H . A solution of (3.36) satisfying this condition is

ψ = Ae−ikx sin m(H − z), (3.44)

where m2 = l2 − k2 and A is a constant. The general solution may be
expressed as a Fourier integral of (3.44):

ψ(x, z) =
1√
2π

∫ ∞

−∞
A(k)e−ikx sin m(H − z)dk. (3.45)
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Since w = ψx, the linearized surface condition (3.18) integrates to give ψ =
−Uh(x)+G(z), where G(z) is an arbitrary function. But as x→ −∞, h→ 0
and ψ → 0 (i.e., the perturbation tends to zero) implying that G(z) ≡ 0.
Hence, for the Witch-of-Agnesi ridge profile,

− Uhm
1 + (x/b)2

=
1√
2π

∫ ∞

−∞
A(k)e−ikx sin mH dk,

whereupon

A(k) sin mH = − 1√
2π

∫ ∞

−∞

Uhm
1 + (x/b)2

eikx dx = −Uhmb
(π

2

)1/2

e−|k|b,

and therefore

ψ(x, z) = −1
2
Uhmb

∫ ∞

−∞
e−| k|b−ikx sin m(H − z) dk

sin mH
. (3.46)

To evaluate this integral, consider

I =

∫
C

e−| k|b−ikx sin m(H − z)

sin mH
dk, (3.47)

in the complex k-plane, where C is a semi-circular contour of radius R, see
Fig. 3.19. The integrand has only simple pole singularities where sin mH =
0, or (l2 − k2)1/2H = nπ, (n = 1, 2, ...); i.e. where k2 = l2 − (nπ/H)2 = k2

n,
say. Of these, 2N lie on the real axis for Nπ < lH < (N + 1)π, and the
remainder lie on the imaginary axis. For x > 0, we choose the contour in
the lower half k-plane so that the contribution from the semi-circular part
of C tends to zero as R → ∞, [see Ex. (3.11)], and for x < 0 we choose
the contour in the upper half plane for the same reason. In each case, we
deform the part of the contour along the real axis so that it passes above the
poles on that axis and we regard these poles as lying wholly inside the lower
contour for reasons discussed below.

The residue at the pole with k = kn is

e−| kn|b−iknx
sin (nπ(1 − z/H) )

H cos (nπ)1
2
(l2 − k2

n)
−1/2 (−2kn)

= e−| kn|b−iknx
nπ sin (nπz/H)

H2kn
.

When k2
n > 0, assume that kn > 0 and when k2

n < 0, set kn = i with
kn

∗ > 0, then summing the residues, and remembering that the lower contour
is taken clockwise, we obtain the solution:
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Figure 3.19: Contours for evaluating the integral in (3.47).

I = −4π2

H2

N∑
n=1

ne−knb
sin knx

kn
sin

nπz

H

For x ≥ 0

+
2π2

H2

∞∑
n=N+1

ne−k
∗
n(b+x) 1

k∗n
sin

nπz

H
,

and

for x ≤ 0I =
2π2

H2

∞∑
n=N+1

ne−k
∗
n(b−x) 1

k∗n
sin

nπz

H
.

Hence, finally

ψ(x, z) = ψ1(x, z) + ψ2(x, z) for x ≥ 0
ψ(x, z) = ψ2(x, z) for x ≤ 0

}
(3.48)

where

ψ1(x, z) =
2Uhmbπ

2

H2

N∑
n=1

ne−knb

[
sin knx

kn

]
sin

nπz

H
,

and

ψ2(x, z) = −Uhmbπ
2

H2

∞∑
n=N+1

ne−k
∗
n(b+|x|)

k∗n
sin

nπz

H
.

It is evident from (3.48) that the solution downstream of the mountain
consists of two parts: a wavy part represented by ψ1(x, z), and a part rep-
resented by ψ2(x, z) which decays downstream from mountain. The latter
part describes essentially the local distortion of the airstream as it crosses
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the mountain, whereas the former, which does not decay downstream, con-
sists of a discrete spectrum of lee waves. As in the previous problem, the
lee waves have significant amplitudes only if knb ∼ O(1). Upstream of the
mountain, there is only a local distortion of the flow described by the term
ψ2(x, z). Note that the lee waves arise from the residue contributions at the
poles on the real axis and it emerges, therefore, why we chose the contours
so as to exclude the contributions from these poles in the upper contour, but
include them in the lower contour. Had we done the reverse, the lee wave
would have appeared upstream of the mountain. The choice that they be
positioned downstream is essentially a radiation condition appropriate for
the present problem (see Ex. 3.12). That the Fourier transforms should be
interpreted as they have been, with the contributions from the poles counting
as if the poles were wholly inside the lower semi-circle and not on the axis,
follows from a consideration of the slightly viscous problem. With a small
amount of viscosity, the poles move off the axis a finite distance into the
region Im(k) < 0. The inviscid solution (3.47) emerges as the correct limit
to the viscous problem as the viscosity tends to zero.

Although the foregoing analysis applies to a Boussinesq fluid, accurate
solutions for a deep atmosphere with the anelastic approximation are ob-
tained simply by multiplying the Boussinesq solutions by [ρo(0)/ρo(z)]

1/2 as
indicated on page 25.

Figure 3.20 shows an example of the flow over a ridge where the back-
ground wind speed and stability vary with height. High above the mountain,
the disturbance is composed of vertically-propagating waves with tilted phase
lines as in Fig. 3.16. In the lower atmosphere, trapped lee waves are evident
extending well downstream. These waves have no phase line tilt. This figure
is reproduced from Sawyer (1960).

An observational case study of large amplitude mountain waves over the
Rocky mountains near Denver using research aircraft to determine the flow
led to the construction of Fig. 3.21. This shows the cross-section of potential
temperature normal to the mountain range. Since potential temperature is
approximately conserved in the absence of moist processes, the isentropes
should correspond with the streamlines, assuming that the flow is steady.

Exercises

(3.1) Obtain the possible phase speeds c(k) and corresponding eigensolutions
ŵ(z) of Eq. (3.13) for the flow defined in Fig. 3.1 when U and N are
constants and 1/Hs ≡ 0.

53



Figure 3.20: A solution showing trapped lee waves.

Figure 3.21: Cross-section of potential temperature field (K) during a se-
vere downslope wind situation in the Colorado Rockies on 11 Januray 1972.
Surface gusts exceeded 100 knots. The dotted lines are flight tracks. Heavy
dashed lines separate measurements taken six hours apart. After Klemp and
Lilly, 1975.

(3.2) Obtain the possible phase speeds and corresponding eigensolutions of
Eq. (3.13) for the flow defined in Fig. 3.2 when U ≡ 0 and N is a
constant for 0 ≤ z ≤ H . Calculate the largest wave speed for a wave
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of 10 km wavelength when H = 600 m and the buoyancy period is 5
min. [Hint: you will need to consider solutions to Eq. (3.13) in the
subregions 0 ≤ z ≤ H and H ≤ z and match these using suitable
boundary conditions].

(3.3) Show that when Uz = 0 and Hs = constant, Eqs. (3.5) - (3.8) have
solutions with û(z) ∝ exp(z/2Hs) × exp(imz) etc., which satisfy the
dispersion relation (ω − Uk)2 = N2k2/(k2 +m2 + 1/4H2

s ).

(3.4) Show that for a Boussinesq fluid (with 1/Hs = 0), the energy equation
obtained from Eqs. (3.1)-(3.4), analogous to Eq. (2.49), is

∂E

∂t
= −∂F

∂z
− ρ∗uwUz. (3.49)

(3.5) Calculate the mean rate of working of pressure forces pw at the bound-
ary z = 0 for the two solutions (3.24) and (3.25) and show that in the
former case, the boundary exerts a drag on the airstream, whereas in
the latter case it does not. Show also that, in the former case, there ex-
ists a mean downward flux of horizontal momentum ρuw and that this
is independent of height and equal to the drag exerted at the boundary.

(3.6) In a two-layer model, a homogeneous fluid with density ρ1 and moving
with uniform speed U1 overlies a second homogeneous fluid with density
ρ2 and moving with uniform speed U2. A small amplitude disturbance
in the flow is associated with a sinusoidal displacement of the interface

ζ(x, t) = Re
[
ζ̂eik(x−ct)

]
, where ζ̂ is a constant. If the perturbation

streamfunction has structure ψ̂(z), show that continuity of interface
displacement and total pressure at the mean position of the interface
z = 0 requires that ψ̂/(U−c) and −ρgζ̂+ρ(c−U)ψ̂z both be continuous
at z = 0.

(3.7) Obtain the relationship between a and β in (3.38) when the surface
z = 0 is a rigid boundary. Hence show that the upper layer in the
situation depicted in Fig. 3.18 behaves more and more like a rigid lid
as |m1|/m2 increases.

(3.8) Taking Brunt-Väisälä periods 2π/N1 = 10 min, 2π/N2 = 5 min; U =
20 ms−1 and h = 2 km, find bounds on the wavelength of the lee wave
satisfying the criterion (3.43).
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(3.9) Show that the contribution to the integral (3.47) from the appropriate
semi-circular part of the contour C tends to zero as the semi-circle
radius R tends to infinity.

(3.10) The dispersion relation for internal gravity waves on a uniform flow
U(> 0) in a Boussinesq Fluid is (ω−Uk)2 = N2k2/(k2+m2). Calculate
the x-component ug of the group velocity, and show that for stationary
waves, ug = U(kU/N)2. Observe that for k2 > 0, this is positive. It
follows that energy is carried downstream by the waves.

(3.11) The linearized Boussinesq equations for stationary-wave motions in a
fluid with Rayleigh friction (coefficient > 0) moving with uniform speed
U in the x-direction are

Uux + Px = −µu,

Uwx + Pz = σ − µw,

Uσx +N2w = 0,

ux + wz = 0.

Show that the streamfunction ψ satisfies the equation

∂

∂x

[
∇2ψ +

N2

U2
ψ

]
=
µ

U
∇2ψ,

and repeat the analysis given above for trapped lee waves, showing that
the solution (3.48) is recovered in the limit as µ→ 0. Observe that, for
finite µ, no radiation condition is required as the poles of the integral
corresponding with (3.47) lie in the lower half k-plane.
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Chapter 4

ENERGETICS OF WAVES ON
STRATIFIED SHEAR FLOWS

For a shear flow U(z) in a Boussinesq fluid, the wave-energy equation takes
the form (see Ex. 3.4),

∂E

∂t
= −∂F

∂z
− ρuw Uz, (4.1)

where E and F are the mean wave energy density and the mean rate of
working of the disturbance pressure force pw in the vertical, respectively. In
the case of a non-moving medium (U ≡ 0), F is interpreted as a mean flux
of wave energy and equals Ewg (Ex. 2.11). On account of this result, it is
tempting to retain this interpretation of F for a moving fluid and to regard
the term −ρuwUz in (4.1) as a ‘source’ of mean wave energy associated with
the interaction of the wave with the basic shear, Uz. However, we shall
see that this interpretation, which appears in the early literature, can be
misleading. Accordingly, it is necessary to re-examine what is meant by
‘energy flux’ in a moving medium. The following discussion is based on
unpublished lecture notes of M. E. McIntyre.

To see why −ρuwUz ought not to be interpreted as an energy source, we
consider the equation for the mean flow to second-order in wave amplitude.
The full horizontal momentum equation in flux form is1:

ρ
∂u∗

∂t
+

∂

∂x

(
ρu∗2

)
+

∂

∂z
(ρu∗w) = −∂p

∂x
, (4.2)

where u∗ represents here the total horizontal wind speed. If we replace u∗

1Using the continuity equation (ρu)x + (ρw)z = 0, this readily reduces to the more
familiar form.
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by u(z, t) + u(x, z, t), where u is now the deviation from the mean wind2 u,
then (4.2) gives on substitution for u∗ and averaging,

ρ
∂u

∂t
+

∂

∂z
(ρuw) = 0

ρut + (ρuw)z = 0. (4.3)

This is the mean flow momentum equation. Assuming that the wave am-
plitude is sufficiently small, then v = U(z) and w = 0 and the interaction
between the basic flow can be ignored. However, the waves have a second-
order effect in amplitude on the mean flow governed by Eq. (4.3)3. The
mean flow kinetic energy equation is obtained by taking u times (4.3) to get

∂

∂t

(
1
2
ρu2
)

= −u (ρuw)z . (4.4)

It follows from (4.4) that local second-order changes in the mean flow are
associated with nonzero values of the quantity and it is then appropriate
that this term appears also as the “source term” in (4.1)4. This suggests
that (4.1) should be written in the equivalent form

∂E

∂t
= − ∂

∂z
(pw + Uρuw) + U (ρuw)z , (4.5)

and that the quantity F = (pw + Uρuw) should be interpreted as the total
“energy flux” in this problem. We shall refer to it here as the net energy
flux, whilst retaining the term wave energy flux for F . Additional insight is
obtained by combining (4.4) and (4.5) to give to O(ε2) (see footnote 3),

∂

∂t
(E + ρUu2) = − ∂

∂z
(p1w1 + Uρu1w1) . (4.6)

The term on the left hand side is the net rate of change of wave energy
plus mean flow energy, the latter changing because of second-order wave-
induced changes in the mean flow u2 (the change in mean flow energy being

2In problem (2.54), mean refers to an average over a wavelength; i.e. ( ) = 1
λ

∫ λ
0

( ) dx;
in some circumstances, other definitions for mean quantities may be more appropriate;
e.g. for an non-periodic disturbance which vanishes as x → ±∞ we might define ( ) =∫∞
−∞ ( ) dx.

3If u = εu1 + e2u2+.... etc., and u = U(z) + ε−2u2(z, t)+...., where ε << 1 and
the ui are O(1), then the mean flow correction due to the presence of the waves satisfies
ρu2t = −(ρu1w1z , assuming that the wave induced mean vertical motion iw is zero to
O(ε2).

4Recall that in this particular problem, there is no mean pressure gradient, i.e. px = 0.
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1
2
ρ(U + ε2u2 + . . .)2 − 1

2
ρU2 = ρUu2 to O(ε2)). The second term on the right

hand side of (4.6) is the divergence of the vertical advective flux of total
kinetic energy, 1

2
ρ(U + εu1)

2 at O(ε2), i.e. the divergence of the first nonzero
term in the expression 1

2
ρ(U + εu1 + . . .)2εw1. Note that F is not invariant

under Galilean coordinate transformation.

Exercises

(4.1) Show that the perturbation and mean flow equations (4.1) and (4.4)
form an energetically closed system in the sense that, for a free wave
with F (0) = 0 and F → 0 as z → ∞,

∫ ∞

0

(
E + 1

2
ρu2
)
dz is a constant

(4.2) Verify that in the problem represented in Fig. 3.17, the fluxes of trans-
mitted and reflected mean wave energy sum to equal the flux associated
with the incident wave.

(4.3) Verify that in the problem represented in Fig. 3.18, the amplitude and
hence the mean energy flux of the reflected wave is equal to that of
the incident wave. Check directly by computing w1p1 that the mean
energy flux associated with the wave in the upper layer is identically
zero at all heights.

The perturbation equations for waves in a Boussinesq fluid are:

ut + Uux + wUz = −Px, (4.7)

wt + Uwx = −Pz + σ, (4.8)

σt + Uσx +N2w = 0, (4.9)

and

ux + wz = 0. (4.10)

We look for steady travelling wave solutions of the form
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(u, w, P, σ) = Re
[
(û(z), ....) eik(x−ct)

]
. (4.11)

Then Eqs. (4.7)-(4.10) reduce to

ik(U − c)û+ Uzŵ = −ikP̂ , (4.12)

ik(U − c)ŵ = −P̂z + σ̂, (4.13)

ik(U − c)σ̂ +N2ŵ = 0, (4.14)

and

ikû+ ŵz = 0. (4.15)

Setting V = U − c, then (4.12) and (4.15) give

P̂ =
i

k
(V ŵz − Vzŵ), (4.16)

Equation (4.14) gives

σ̂ =
iN2

kV
ŵ, (4.17)

and Eq. (4.13) then gives

P̂z =

[
−ikV +

iN2

kV

]
ŵ. (4.18)

Finally, eliminating P from (4.16) and (4.18) gives

ŵzz +

[
N2

V 2
− Vzz

V
− k2

]
ŵ = 0. (4.19)

This is identical with (3.13) when Hs → ∞. Now, writing the components
of (4.11) in the form

u =
1

2
û(z) eik(x−ct) + ( )∗,

where � denotes a complex conjugate, it follows that for any two quantities
a and b, selected from the dependent variables,

ab =
1

4

(
âb̂∗ + â∗b̂

)
. (4.20)
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Multiplying (4.9a) by ρŵ∗/ik and using (4.15) gives

(U − c) ρuw = −pw. (4.21)

Adding this equation to its complex conjugate and using (4.20) gives

(U − c)ρuw = −pw. (4.22)

Also, for wave perturbations such as (4.11)

F = pw + Uρuw =
cF

c− U
= cρuw. (4.23)

Now, for a steady (in amplitude) sinusoidal wave, ∂E/∂t = 0 and from (4.1)
and (4.21),

∂F

∂z
= −ρuwUz, (4.24)

and

(U − c)ρuw = −F. (4.25)

Eliminating F , it follows that

(U − c)
d

dz
(ρuw) = 0,

and therefore

U = c or
d

dz
(ρuw) = 0. (4.26)

In the latter circumstances, it follows from (4.23) that

dF

dz
= 0,

and from (4.3) that the waves do not force any second-order acceleration of
the mean flow. The last result is now known as the nonacceleration theorem.
It was first obtained in a slightly less general form by Eliassen and Palm
(1960) and has been shown to be a quite general result by Andrews and
McIntyre (1978). The quantity F is the total vertical flux of wave energy.
At this point we return to the problem of flow over sinusoidal topography
depicted in Fig. 3.6. For waves that radiate vertically (0 < |k| < l), there
exists a downward flux of mean horizontal momentum (ρuw < 0). This is
independent of height (consistent with 4.26) and equal to the drag per unit
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wavelength exerted by the boundary on the airstream (see Ex. 3.5), namely
−ρU2 mk h2

m, where sgn(mk) > 0 for upward propagation. Evidently, the
momentum flux originates at infinity, where, presumably, the drag exerted
by the boundary on the airstream acts. We return to this at first sight
puzzling result shortly.

When a general airstream U(z) flows over mountain ridge and produces
upward radiating waves, a forward wave drag is exerted on the mountain;
in other words, the mountain exerts a drag on the airstream. This raises
the important question: how is the stress on the airstream distributed, or,
put another way, at what level(s) does the drag act on the mean airstream?
For steady waves, the nonacceleration theorem rules out the possibility of
interaction except at a critical level where U = c, a level where the intrinsic
frequency of the waves vanishes (see Eq. 3.4). In the case of stationary
mountain waves, c = 0. Linear theory suggests that at such a level, the wave
is almost completely absorbed, leading to a deceleration of the mean flow at
that level. However, nonlinear and viscous effects may be important near the
critical level. We shall not address the critical-layer problem in this course
and for further details, the interested reader is referred to the important
paper by Booker and Bretherton (1967).

For a propagating wave packet with a spectrum of horizontal phase speeds,
there may be a range of critical levels. Then absorption by the mean flow
takes place in a finite layer. However, for stationary mountain waves, c = 0
for all Fourier components.

4.1 Slowly varying wave trains or wave pack-

ets

The analysis of unsteady wave development and of wave propagation in arbi-
trary shear flows poses severe mathematical difficulties. For example, in the
former case, Laplace transform techniques for initial-value problems usually
lead to uninvertible transforms5 and in the latter case, typical eigenvalue
problems are analytically intractable, or at best, very complicated. However
some analytical progress and further physical insight may be obtained by
studying slowly-modulated wavetrains or wave packets, in which the waves
are locally plane, with wavelength and amplitude varying significantly only
over a space scale of many wavelengths. We sketch here a calculation of

5An example given by Booker and Bretherton (1967).
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this type6 performed by Acheson (1976, pp 452 - 455). Acheson investigates
waves whose frequency ω and horizontal wavenumber k are constant, but
whose amplitude varies with height and time on scales very long compared
with one wavelength and one period, respectively. Accordingly, he introduces
the ‘slow’ variables

Z ≡ az and T ≡ αt,

where α << 1 is a dimensionless measure of how slowly the wavetrain is
modulated in the sense that at any given height/time its amplitude varies
by a factor O(1) over a height/time scale of O(α−1) wavelengths/periods.
His analysis is for a basic shear (U(Z), 0, 0) in a Boussinesq fluid with N
constant. Acheson considers linear wave perturbations with streamfunction

ψ = ψ1 + αψ2 + . . . , (4.27)

where

ψn = Re
[
ψ̂n(Z, T )ei(kx+θ(z)−ωt)

]
. (4.28)

Similar expansions are taken for other flow quantities. A local vertical
wavenumber defined in terms of the phase function θ(z) is

m(Z) =
dθ

dz
. (4.29)

The multiple-scaling technique applied to the present problem involves re-
placing time and height derivatives by ∂/∂t + α∂/∂T and ∂/∂z + α∂/∂Z,
respectively, whereupon Eqs. (4.7) - (4.10) become

ut + Uux + Px = −α(uT + wUZ), (4.30)

wt + Uwx + Pz − σ = −σ(wT + PZ), (4.31)

σt+ Uσx +N2w = −ασT, (4.32)

ux + wz = −αwZ . (4.33)

Note that the term describing the effect of vertical shear appears only at
order α. As expected, substitution of the expansions for u, w, P, σ in Eqs.

6Acheson’s calculations are for mixed hydromagnetic-gravity waves, but setting the
electrodynamical quantities f and h equal to zero gives the result for pure internal gravity
waves.
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(4.30)- (4.33) gives to O(α0) a locally-plane wave solution, identical with that
which would be obtained if U were a constant. For this solution, it follows
readily that

ω�2 =
N2k2

k2 +m2
, (4.34)

where the intrinsic frequency, given by

w�(Z) = w − kU(Z), (4.35)

is a function of Z by virtue of its dependence on m(Z) and U(Z).
At O(α) in the expansion, the equations for subscript ‘2’ quantities be-

come7

i(w�û2 − kP̂2) = û1T + UZŵ1, (4.36)

i(w�ŵ2 −mP̂2) + σ̂2 = ŵ1T + P̂1Z , (4.37)

iωσ̂2 −N2ŵ2 = σ̂1T , (4.38)

i(kû2 +mŵ2) = −ŵ1T . (4.39)

Eliminating û2, P̂2, σ̂2, say, we obtain an expression of the form

( )ŵ2 = expression involving T and Z derivatives of

subscript ‘1’ quantities, (4.40)

where using (4.34), the coefficient of ŵz is zero. Thus, the expression on the
right-hand-side of (4.40), when set equal to zero, gives a solvability condition
for the O(α) problem. After some algebraic manipulation (see Appendix),
the solvability condition may be written in the form

∂A

∂T
+

∂

∂Z
(wgA) = 0 (4.41)

where

A = E/ω∗, (4.42)

7This 4 × 4 set of linear equations has the general form Ax = b, where A is a 4 × 4
matrix with det A = 0 and x and b are column vectors. It has a nonunique solution, but
only if b is orthogonal to the solution y of the adjoint homogenous problem A′y = 0.
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wg =
∂ω

∂m
, (4.43)

and

E = 1
2
(ρ0(1 +m2/k2) |ŵ1|2 . (4.44)

The quantity A is called the wave action and, of course, wg(Z) is simply
the local vertical component of the group velocity. Thus (4.41) expresses the
conservation of wave action.

Exercise

(4.4) Assuming that the mean second-order perturbation to the basic flow
forced by the foregoing slowly-varying wave varies only with Z and T ,
the mean horizontal momentum equation (corresponding with (4.3))
may be written (c/f Acheson, 1976, p.455)

α (∂u2/∂t+ UZw) = − (u1w1)z , (4.45)

where, from continuity (4.33),

wz = 0. (4.46)

Show that

ρ
∂u2

∂T
= −k ∂

∂Z
(wgA). (4.47)

Moreover, using (4.41), show that if u2 = 0 in the absence of waves
(i.e., when A = 0), then

pu2 =
E

c− U
. (4.48)

From (4.41), when the amplitude of the wave is independent of time,
it follows that Awg is independent of height, and using the result of Ex.
(4.2), this means that is independent of height. We have seen already that
this is true when the amplitude is steady (c/f 4.19 with 4.25), even when
no restriction is placed on how fast U varies over a vertical wavelength.
Following Acheson we consider now a wave train of the above type set up by
the horizontal translation with speed c of a corrugated boundary at z = 0.
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The corrugations are assumed to increase gradually in amplitude (from zero
at time t = 0) on the slow time scale T as governed by the formula

z(x, t;T ) = A(T ) cos k(x− ct). (4.49)

It follows readily from (4.49) that w = 0 at z = 0, whence, by (4.33), w ≡
0. As the slowly-modulated wave train propagates upwards past any given
level, the local wave energy density, E, will slowly increase to a maximum and
(in the absence of dissipation) then diminish again to zero as the wave train
passes. According (4.48) the local modification |u2| to the mean flow varies
similarly, the mean flow being accelerated (decelerated) if c > U(c < U).

Acheson notes that if the forcing (4.49) slowly attains a constant ampli-
tude A0 on the time scale T and persists at that amplitude thereafter, the
wavetrain will consist of a precursor (which contains O(α−1) wavelengths and
whose amplitude increases with depth from effectively zero to that amplitude
A0 which the source ultimately attains) and a lower part of constant ampli-
tude A0 extending all the way down to the source. When U is a constant,
so are m and wg and (4.41) simply reduces to the statement that amplitude
modulations propagate upwards at the group velocity; in particular, what
we call for convenience the ‘front’ of the wave train (i.e. the tolerably well-
defined highest point at which the amplitude is A0) moves upwards at this
speed. The above situation is depicted in Fig. 4.1.

Figure 4.1: Wave energy density as a function of height for a wave source
switched on at z = 0 at time t = 0 (left panel). The mean flow changes are
indicated in the right panel. See text for discussion.

We are now in a position to understand the result outlined in the second
paragraph on page 54 that for steady flow over sinusoidal topography there is
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a downward flux of mean horizontal momentum from infinity. If we imagine
such a flow to be established by the gradual evolution of the topography as
described by (4.49) with c = 0, it is evident from the foregoing discussion
that the source of the downward momentum flux in the steady wave regime
(i.e. at heights below z = wgt) is the deceleration of the mean flow in the
region constituting the front of the wave train. At no finite time is there a
momentum flux at infinity.
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Chapter 5

SHEARING INSTABILITY

In Chapter 3 we studied stable gravity waves, including those modified by
shear. The relative effects of stratification and shear are characterized by the
Scorer parameter l(z) given by

l2(z) =
N2

(U − c)2
−
[
d2U

dz2
+

1

Hs

dU

dz

]
1

(U − c)
− 1

4H2
s

. (5.1)

We consider now the other extreme of sheared motion, possibly modified by
stratification. Again, for simplicity, we make the Boussinesq approximation.
Cross-differentiating (3.1) and (3.2) and introducing a streamfunction y such
that the horizontal vorticity component, uz − wx = ∇2ψ, gives[

∂

∂t
+ U

∂

∂x

]
∇2ψ − ∂ψ

∂x

d2U

dz2
= −∂σ

∂x
. (5.2)

5.1 Helmholtz instability

To begin with let us assume that buoyancy effects are unimportant (σ ≈ 0)
and suppose that U(z) changes from one relatively uniform value to another
in a small height interval. This situation may be idealized by the uniform
flow of inviscid fluid with speed U1 above z = 0 past fluid of the same
density moving uniformly at speed U2 below z = 0, as shown in Fig. 5.1.
The interface z = 0 may be regarded as a vortex sheet. We consider small-
amplitude perturbations to this basic flow of the form

ψ = ψ̂(z)eik(x−ct), (5.3)

where ψ̂ and c are constants. The quantity c is determined as a function of
k from an eigenvalue problem and turns out to be complex. Thus, the phase
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speed of the wave is Re[c]. Substitution of (5.3) into the vorticity Eq. (5.2)
gives

Figure 5.1: Vortex sheet model for Helmholtz instability.

∂2ψ̂

∂x2
− k2ψ̂ = 0, (5.4)

except at z = 0 where Uzz is unbounded. Bounded solutions of (5.4) in the
two regions z > 0 and z < 0 are:

ψ̂1 = A1e
−kz z > 0,

ψ̂2 = A2e
kz, z < 0. (5.5)

These are related at z = 0 by boundary conditions expressing the require-
ments that the pressure along the vortex sheet and displacement of the sheet,
z = ξ(x, t), are continuous (as usual the condition is linearized to z = 0). It
follows from the result of Ex. (3.6) that ψ/(c− U) and (c− U)dψ/dz must
be continuous at z = 0. From these conditions it is easily deduced that

c = 1
2
(U1 + U2) ± 1

2
(U1 − U2). (5.6)

Thus, from (5.3) we see that a perturbation of wavelength 2π/k travels with
the average flow speed 1

2
(U1 + U2) and grows (or decays) exponentially with

time. The growth rate kci is proportional to k(U1 − U2), i.e. short waves
grow faster than long waves and that the degree of instability increases as
|U1 − U2| increases. In practice, viscosity inhibits rapid growth of the very
short waves and there exists a finite wavelength at which the growth rate is
a maximum.
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5.2 Kelvin-Helmholtz instability

It happens frequently in the atmosphere that the region of strong shear co-
incides with a sharp, stable density gradient. We model this situation by
supposing that the fluid densities in Fig. 5.1 are ρ1 and ρ2 with ρ1 < ρ2, a
statically-stable configuration.

Exercise

(5.1) Using the interfacial boundary condition in Ex. (3.6), show that the
complex phase speed in the case of Kelvin-Helmholz perturbations is

c =
ρ1U1 + ρ2U2

ρ1 + ρ2
±
[
c20 − ρ1ρ2

[
U1 − U2

ρ1 + ρ2

]2
]1

2

, (5.7)

where

c20 =
g

k

[
ρ2 − ρ1

ρ2 + ρ1

]
(5.8)

is the speed of interfacial waves in the absence of mean currents (i.e. when
U1 and U2 are both zero).

It is evident from (5.7) that Kelvin-Helmholz flow is unstable to small-
amplitude perturbations [with Im(c) > 0] when

ρ1ρ2

[
U1 − U2

ρ1 + ρ2

]2

> c20. (5.9)

The occurrence of Helmholtz- and Kelvin-Helmholz instability may be
attributed to a redistribution of vorticity in the vortex sheet by the distur-
bance. Let us view the perturbation in the frame of reference in which it
is stationary. Then, assuming that (ρ2 − ρ1) << (ρ2 + ρ1), the upper and
lower fluids move in opposite directions with equal magnitude U. Suppose
the vortex sheet is instantaneously distorted into a sinusoidal shape without
there being a change in vorticity distribution in the x-direction (Fig. 5.2).
Consider the velocities induced at various places on the sheet, indicated by
straight arrows. Note that the vorticity, indicated by curved arrows, is ev-
erywhere clockwise. At a wave crest (e.g. at B) there is no component of
induced velocity in the z-direction (by symmetry), but there is a net com-
ponent in the x-direction, arising from the induced effects of neighbouring
elements. Similarly at a wave trough (e.g. at D), there is a net component in
the negative x-direction. Now a positive net component of induced x-velocity
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in the parts of the sheet for which the vertical displacement is upward results
in a drift of vorticity to the right while the reverse is true for parts of the
sheet displaced downwards; see Fig. 5.3. The vorticity redistribution induces
continued displacements of the troughs and ridges in a “runaway process” as
illustrated.

Figure 5.2: Vortex-sheet model illustrating Helmholtz and Kelvin-Helmholtz
instability. See text for discussion.

Figure 5.3: Vorticity evolution in Helmholtz and Kelvin-Helmholtz instabil-
ity.

The existence of a regime of stable wavelengths in the case of Kelvin-
Helmholtz (KH-) instability, as implied by (5.9) with (5.8), can be attributed
to the stabilizing effect of the density contrast. An alternative interpretation
of this instability which incorporates the role of static stability is as follows
(see Fig. 5.4). We may regard the stability criterion (5.9) as a measure
of the pressure suction or Bernoulli effect (the second term in brackets in
Eq.(5.7)), compared with the gravitational restoring effect (the first term in
brackets in Eq.(5.7)). When the former exceeds the latter, a stable gravity
wave is not possible. Note that c2o increases with decreasing wavenumber
(increasing wavelength) and so, therefore, must the effective gravitational
stability. Hence there is a long wave “cut-off”, a wavelength above which all
waves are stable. Of course, this follows from (5.8) and (5.9).
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Figure 5.4: Force balance in Kelvin-Helmholz instability.

A sequence of diagrams illustrating the development of a Kelvin-Helmholz
wave to finite amplitude is shown in Fig. 5.6. The figure is adapted from
Scorer’s book Clouds of the World (see especially Chapter 6 therein), which
contains also some fine photographs of atmospheric manifestations of Kelvin-
Helmholz instability as well as photographs of related laboratory experiments
by Thorpe (1971). As described in Scorer op cit., the Kelvin-Helmholz mech-
anism is probably the reason for the occurrence of ‘billow clouds’ in the
atmosphere and is thought to be an important mechanism for the genera-
tion of clear air turbulence (CAT) in the middle and upper troposphere (see
Bretherton, 1971). Figure 5.5 shows an example of clouds associated with
Kelvin-Helmholz instability.

Figure 5.5: Clouds associated with Kelvin-Helmholz instability.
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Figure 5.6: Sequence illustrating the growth of finite amplitude Kelvin-
Helmholz waves. The following commentary is adapted from Scorer. (i)
When the layer is undisturbed the upper and lower layers move in opposite
directions with uniform speeds. (ii) The crests and troughs of any transverse
corrugations are transported in the direction of the layer into which they
penetrate. (iii) The vorticity is accumulated by the thickening of the layer
at alternate nodes of the original wave form. The layer is thinned at the
other nodes. (iv) The layer becomes rolled up into traverse billows. If the
bottom fluid only is visible the appearance is rather like ‘breaking’ waves
(but the mechanism is actually quite different from the breaking of waves
on a sloping beach). (v) If the instability is checked by a reduction in the
velocity difference between the fluids, the vortex layer does not roll up, but
may have cusped waves on it from which thin filaments of the lower layer are
carried embedded in the upper layer. These waves are not symmetrical and
no material of the upper layer penetrates into the lower. For this to happen
the upper fluid must usually be mixed up by turbulence while the flow in the
lower fluid is laminar.

5.3 The Richardson number criterion for Kelvin-

Helmholz instability

To better understand the criterion (5.9) for instability, suppose that the
vortex sheet and density contrast have a finite depth scale h (Fig. 5.7). Then
the velocity shear U ′ = (U1 − U2)/h, the density gradient ρ′ = (ρ2 − ρ1)/h,
and the static stability parameter analogous to N2 is −g(ρ1 − ρ2)/h, where
is the mean density (ρ2 + ρ1). Assuming (ρ2 − ρ1), the criterion (5.9) takes
the form

1
4
(U1 − U2)

2 > 1
2
g(ρ2 − ρ1)/ρk,

or
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Ri =
N2

U ′2 <
1

2
kh. (5.10)

The nondimensional quantity Ri is called the Richardson number. It is a
measure of the stabilizing effect of the stratification compared with the desta-
bilizing effect of the shear.

Figure 5.7: A uniform shear-layer model for Kelvin-Helmholz instability.

Exercise

(5.2) Show that the phase speed c for small-amplitude Helmholtz waves with
wavenumber k on the finite shear layer with

U(z) =




U1 , h ≤ z ,
U2 + (U1 − U2)z/h, 0 ≤ z ≤ h ,
U2 , z ≤ 0 ,

where U1, U2, and h are constants, is given by

[
c− 1

2
(U1 + U2)

]2

=
(U1 − U2)

2

4k2h2

[
(1 − kh)2 − e−2kh

]
.

Show that the threshold for instability occurs when kh is about 1.3.

With the threshold value of 1.3 for kh as obtained in problem (5.3) for
the case of no stratification, the Richardson number criterion (5.10) gives
Ri < 0.65 for instability.
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5.4 An energy criterion

Consider a shallow layer of fluid of depth 2H in which the shear and static
stability may be assumed to be constant (see Fig. 5.8). We suppose that the
layer is completely mixed by some process and pose the question: does the
total energy (kinetic + potential) increase or decrease? Assume that no net
work is done by the pressure field as a consequence of the mixing process.
Then the momentum and sensible energy must be the same as before the
mixing, whereupon U = 0 and θ = Θ in the final state. It follows that:

Change inKE = ∆KE =

∫ H

−H
1
2
ρ
[
U2 − (U + αz)2] dz = −1

3
ρH3α2

Change inPE = ∆PE =

∫ H

−H
g(ρF − ρI)zdz,

where ρI and ρF are the initial and final densities. At a given height z, there
is no pressure change (to lowest order) so that

∆ρ

ρ
= (1 − κ)

∆p

p
− ∆θ

θ
or

∆ρ

ρ
=
ρF − ρI

ρ
=
θI − θF

Θ
=
βz

Θ

whereupon ∆PE = (ρ̄gβ/Θ)
∫ H
−H z2dz = 2

3
ρgβH3/Θ. Hence, the total en-

ergy is decreased if ∆ (KE + PE) < 0, i.e. if 1
3
ρH3 (2gβ/Θ− α2) < 0,

implying that Ri < 1
2
.

Figure 5.8: Before and after states in the complete mixing of a uniform shear
layer with a uniform potential-temperature gradient.

Most analytic investigations suggest that Ri = 1
4

is the critical Richardson
number for instability (see below). According to J.S.A. Green (unpublished
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lecture notes), the discrepancy between this value and the value obtained
from energy arguments may be associated with the fact that such theories
assume laminar flow; in these, momentum is transferred (‘mixed’) by pressure
forces, but potential temperature is not.

5.5 Instability of stratified shear flows

The starting point for the inviscid theory is the Boussinesq system of Eqs.
(4.7) - (4.10). We introduce the quantity h(x, z, t) to represent the vertical
displacement of a fluid parcel. Then, for small displacements, h satisfies the
linearized equation

∂η

∂t
+ U

∂η

∂x
= w. (5.11)

Assuming, as before, a disturbance of the form

η(x, z, t) = η̂(z)eik(x−ct), etc . . . , (5.12)

Eq. (5.11) gives

ŵ = ikV η̂. (5.13)

Substitution (5.13) into (4.19) gives, after a little algebra,

d

dz

[
V 2dη̂

dz

]
+ [N2 − k2V 2]η̂ = 0. (5.14)

Let us consider a flow between horizontal rigid boundaries at z = 0 and
z = d. Then

η̂(0) = η̂(d) = 0. (5.15)

Alternative boundary conditions for a free surface or interface are easily
formulated. We shall prove the following result:

Miles Theorem

If the Richardson number Ri = N2

(dU/dz)2
≥ 1

4
everywhere, then the flow is

stable.
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Proof

Put G(z) = V 1/2(z). Then V 1/2(dη̂/dz) = dG/dz − (1/2V )(dV/dz)G. Now
Eq. (5.14) may be manipulated to give

V 1/2(d/dz)[V 3/2dη̂/dz] + 1
2
(dV/dz)/V 1/2)[V 3/2η̂] + [N2 − k2V 2]η̂ = 0,

and substitution for dη̂/dz and η̂ gives, with a little more algebra,

d

dz

[
V
dG

dz

]
−
[

1

2

d2U

dz2
+ k2V +

1

V

(
1

4

(
dU

dz

)2

−N2

)]
G = 0. (5.16)

Multiply this equation by the complex conjugate G∗ of G and integrate with
respect to z from 0 to d, noting that∫ d

0

G∗ d
dz

∣∣∣∣V dGdz
∣∣∣∣ dz =

∫ d

0

G∗d

∣∣∣∣
(
V
dG

dz

)∣∣∣∣−
∫ d

0

V
dG

dz

dG∗

dz
dz using 5.15.

Then

∫ d

0

[V

(∣∣∣∣dGdz
∣∣∣∣2 + k2 |G|2

)
+1

2

G

V

d2U

dz2
|G|2+

[
1

4

(
dU

dz

)2

−N2

]
V ∗
∣∣∣∣GV
∣∣∣∣2 dz = 0.

(5.17)
If ci �= 0, the imaginary part of (5.17) gives

∫ d

0

(∣∣∣∣dGdz
∣∣∣∣2 + k2 |G|2

)
dz +

∫ d

0

[
N2 − 1

4

(
dU

dz

)2
] ∣∣∣∣GV

∣∣∣∣2 dz = 0. (5.18)

If N2 > 1
4
(dU/dz)2 i.e. if Ri > 1

4
, Eq. (5.18) implies that k and dG/dz are

identically zero. This, in turn, implies that G = constant = 0 using (5.15)
or (5.18). Hence, if Ri ≥ 1

4
everywhere, the flow is stable. q.e.d.

5.6 Howard’s semi-circle theorem

The complex wave speed c of any unstable mode must lie inside the semi-
circle in the upper half of the c-plane with the range of U as its diameter.
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Proof

Assume that ci �= 0, multiply (5.14) by η̂	 and integrate, using (5.15), to
obtain

∫ d

0

(U − c)2

(∣∣∣∣dη̂dz
∣∣∣∣2 + k2 |η̂|2

)
dz =

∫ d

0

N2 |η̂|2 dz. (5.19)

With Q = |dη̂/dz|2 + k2|η̂|2, the real part of this equation gives∫ d

0

(U − cr)
2 − c2i ]Qdz =

∫ d

0

(N 2|η̂|2dz, (5.20)

and the imaginary part gives∫ d

0

UQdz = cr

∫ d

0

Qdz. (5.21)

Using (5.21), Eq. (5.20) gives∫ d

0

[U2 − (c2r + c2i )]Q dz −
∫ d

0

N2 |η̂| dz = 0 (5.22)

Now

0 ≥
∫ d

0

(U − Umin)(U − Umax)Qdz

=

∫ d

0

[U2 − U)(Umin + Umax)UminUmax]Qdz

=

∫ d

0

[c2r + c2i − (Umin + Umax) cr + UminUmax]Qdz +

∫ d

0

N2|η̂|2dz︸ ︷︷ ︸
positive definite

It follows that

c2r + c2i − (Umin + Umax)cr + UminUmax ≤ 0,

or

[cr − 1
2
(Umin + Umax)]

2 + c2i ≤ [1
2
(Umax − Umin)]

2. (5.23)

Hence in the complex plane, a point representing c lies in the circle with
diameter along the real axis, extending from (Umin, 0) to (Umax, 0). Only
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Figure 5.9: Semi-circle in Howard’s theorem.

values ci > 0 are significant. Hence all eigenvalues c of unstable modes lie in
the semi-circle (see Fig. 5.9).

From (5.18) we can obtain a bound on the growth rate of an unstable
wave. Since |U − cr − ici|2 ≥ c2i , |V |−2 ≤ c−2

i and hence from (5.18),

k2

∫ d

0

|G|2dz =

∫ d

0

(1
4
U2
z −N2)|G/V |2dz −

∫ d

0

|Gz|2dz

≤ c−2
i max (1

4
U2
z −N2)

∫ d

0

|G|2dz
k2c2i ≤ max (1

4
U2
z −N2)

Note that this result contains Miles’ theorem for if N2 > 1
4
U2
z , k

2c2i ≤ 0
and the flow is stable.
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Chapter 6

QUASI-GEOSTROPHIC
WAVES

Both here and in DM we have studied a variety of wave motions in rotating
and/or stratified fluid system. Table 6 summarizes the important types.

In this chapter we shall be concerned with quasi-geostrophic waves, of
which ‘extra-tropical’ Rossby waves are a special type. The culmination of
the chapter is a unified treatment of baroclinic instability. The chapter is
based on unpublished lecture notes kindly provided by M. McIntyre.

The quasi-geostrophic equations for a Boussinesq fluid with constant
Brunt-Väisälä frequency (DM, Chapter 8) may be written as(

∂

∂t
+ u · ∇

)
q = 0, (6.1)

and (
∂

∂t
+ u · ∇

)
∂ψ

∂z
+
N2

f
w = 0, (6.2)

Table 6.1: Types of wave motion in the atmosphere and oceans
balanced
state

elastostatic
(compress-
ible)

hydrostatic geostrophic Sverdrup

result of dis-
turbing it

acoustic oscil-
lations

inertial
gravity
waves
w >> f

inertia or
inertia-
gravity waves
w ∼ f

Rossby
waves
w << f
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where

u = k ∧∇ψ, (6.3)

and

q = ∇2ψ + f + f 2 ∂

∂z

(
1

N2

∂ψ

∂z

)
. (6.4)

Here u is the horizontal velocity vector, ψ is the geostrophic streamfunction
(proportional to the pressure), w the vertical velocity component, q the quasi-
geostrophic potential vorticity, N the Brunt-Väisälä frequency and f = f0 +
βy is the Coriolis parameter.

Equation (6.1) expresses the conservation of q for parcels moving with the
geostrophic wind u, while Eq. (6.2) relates the buoyancy changes following
a parcel due to its vertical motion in the presence of density stratification,
characterized by N . Henceforth we shall take N2 to be a constant and define
ε = f 2/N2.

Recall (DM, Chapter 8) that an important scaling assumption in the
derivation of (6.1) and (6.2) is that the Burger number, B = f 2L2/N2H2,
is of order unity, H and L being vertical and horizontal length scales for
the motion. Indeed, it can be shown that this ratio characterizes the relative
magnitude of the final term in (6.2) compared with the advective term. Thus
B ∼ 1 implies that there is significant coupling between the buoyancy field
and the vertical motion field. A further implication is that L ∼ LR = NH/f ,
the Rossby radius of deformation.

The principle behind the method of solution of the quasi-geostrophic
equations is outlined in DM, Chapter 8. The steps are briefly as follows:

1. Calculate q and u from (6.4) and (6.3), respectively, from initial data
on ψ at time t.

2. Predict q at time t+ δt using (6.1).

3. Solve for ψ at time t+ δt using (6.4).

4. Solve for u at time t+ δt using (6.3).

Equation (6.2) can be used to evaluate w, and to provide a horizontal
boundary condition on ψ. The latter is required when (6.4) is solved as a
Poisson equation for ψ, given q. An example of the use of (6.2) is provided
by the Eady baroclinic instability calculation in DM, Chapter 9; see Eq.
(9.6). The ability to calculate ψ from (6.4) from a knowledge of q (step 3)
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is sometimes referred to as the invertibility principle. The foregoing steps
will be invoked in the discussion that follows shortly. We shall show that
perturbations of a horizontal basic potential vorticity gradient lead to waves.

We study only quasi-geostrophic perturbations described by (6.1) - (6.4);
these should not be confused with the much more rapidly oscillating inertia-
gravity waves that result from disturbing the geostrophic-hydrostatic bal-
ance. This balance is built into the quasi-geostrophic theory; in other words,
inertia-gravity waves are filtered out by the quasi-geostrophic approximation.

Consider a perturbation to the basic zonal flow u(y, z). The perturbation
forms of (6.1) and (6.2) may be written as

(∂t + u(y, z)∂x)q + qyψx = 0, (6.5)

and

(∂t + u(y, z)∂x)ψz − uzψx + (f/ε)w = 0, (6.6)

where q and ψ represent perturbation quantities and ∂t, ∂x are a shorthand
notation for ∂/∂t and ∂/∂x, respectively. Assuming that N is constant, q
and ψ are governed by the diagnostic equation:

ψxx + ψyy + εψzz = q, (6.7)

and the basic potential vorticity gradient in (6.5) is given by

qy(y, z) = β − uyy − εuzz. (6.8)

Example 1. Rossby waves [let u ≡ 0, qy = β(>

0)].

The physical picture is based on the conservation of total potential vorticity
(here q + q ) for each particle, expressed by Eq. (6.5); c/f the discussion
in DM, Chapter 6. Then qy > 0 implies that for a positive northwards
displacement ξ > 0, q < 0; and for a southwards displacement ξ < 0, q > 0.

As in DM, we consider for simplicity motions for which ∂x >> ∂y, ∂z,
although the arguments can be extended more generally. Then (6.7) becomes

ψxx = q. (6.9)

This is, in effect, a one-dimensional Poisson equation, and the structure of
solution can be deduced by using the stretched string analogy [the lateral
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displacement ψ of a stretched string in equilibrium under the lateral force
distribution −q(x) is solved by (6.9); see Exercise (6.1).]

Suppose each string of particles along lines of latitude (y = constant)
is given a sinusoidal meridional (north-south) displacement ξ(x), as shown
in Fig, 6.1a. Then the corresponding perturbation in potential vorticity for
each string, q(x), is as shown in Fig. 6.1b. From this, and using the string
analogy (keeping in mind that a positive force is analogous to a negative q) we
deduce the streamfunction distribution shown in Fig. 6.1c and finally, using
the second component of (6.3), v = ψx, we infer the meridional velocity
component to have the variation shown in Fig. 6.1d. Comparison of the
meridional displacement (Fig. 6.1a) with the meridional velocity (Fig, 6.1d)
shows that:

Figure 6.1:

(i) that the disturbance propagates westwards, and

(ii) since the longitudes of displacement maxima are places of zero velocity,
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the wave amplitude does not vary with time; in particular, the wave is
stable.

Example 2. Topographic waves u ≡ 0; qy = β =

0 (but see later!).

.
We assume now a slightly sloping lower boundary. The configuration is

sketched in Fig. 6.2. Equation (6.5) reduces in this case to

∂tq = 0. (6.10)

Figure 6.2:

The boundary condition at the (lower) sloping boundary is

w = tan αψx at z = αy.

Now α must be no larger than O(RoH/L), otherwise the implied w for
a given v would be too large to be accommodated within quasi-geostrophic
theory. But if α << 1 we can approximate tan α by α and can apply the
foregoing boundary condition at z = 0 with sufficient accuracy; i.e.,

w = αψx at z = 0. (6.11)
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It may be easily verified that there exist plane wave solutions for ψ of the
form

ψ = a exp
[
i(kx+ ly − ωt) − (N/f)(k2 + l2)1/2z

]
, (6.12)

where, to satisfy (6.6)together with (6.11),

ω =
−α Nk

(k2 + l2)1/2
. (6.13)

This is the dispersion relation. It follows that the wave propagates to the left
of upslope (towards negative x). Note that ω does not depend on f . This
does not mean that f is unimportant; in fact for a horizontal wavelength
2π/κ, where κ2 = k2 + l2, the e-folding vertical scale of the wave is f/(Nk)
as can be seen from (6.12).

In this example, changes in relative vorticity ξ arise from stretching and
shrinking of vortex lines at the rate fwz, associated with the differences
between the slope of the boundary and those of the density isopleths. Above
the boundary, qy ≡ 0, but we can say that there is a potential vorticity
gradient at the boundary if we make the following generalization of the notion
of potential vorticity. The foregoing problem can be written as

∂(ψxx + ψyy + εψzz) = 0, (6.14)

with

(f/N2)ψzt + αψx = 0 at z = 0. (6.15)

It is mathematically equivalent to the problem:

∂t(ψxx + ψyy + εψzz) + qyψx = 0 (6.16)

with

qy = fαδ(z), (6.17)

and

ψz = 0, continuous at z = 0−, (6.18)

where δ(z) is the Dirac delta function. This is because δ(z) ≡ 0 for z > 0;
hence (6.14) and (6.16) are identical for z > 0. Moreover, integrating (6.16)
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with respect to z from 0− to 0+ (i.e., taking
∫ τ
−τ ( ) and letting τ → 0, we

obtain1 (6.15).
The alternative formulation expressed by Eqs. (6.16) - (6.18) involves a

potential vorticity gradient qy confined to a “sheet” at z = 0, and the wave
motion can be attributed to this. Note that it is of no formal consequence
in the quasi-geostrophic theory whether the boundary is considered to be
exactly at z = 0, or only approximately at z = 0. What matters dynamically
is the slope of the isopleths relative to the boundary.

Example 3. Waves on vertical shear

Let β = 0 and u = Λz, Λ constant. Then again qy ≡ 0, but now we assume
a horizontal lower boundary.

Figure 6.3:

In the case Λ < 0, the slopes of the density isopleths relative to the
boundary are the same as in Example 2; see Fig. 6.3. Since qy = 0 for
z > 0, the dynamics is the same as before within the quasi-geostrophic
theory. Equation (6.5) gives

(∂t + u∂x)q = 0 for z > 0, (6.19)

and q = 0 is a solution thereof as in Example 2. Thus one has the same
solution as in Example 2 if α is identified with −fΛ/N2, since the slope of
the density isopleths is a

1 ∫ τ

−τ
∂t [ψxx + ψyy︸ ︷︷ ︸

≤2τ max
−τ<z<τ

(ψxxt+ψyyt)

→0 as τ→0

+ εψzz] dz︸ ︷︷ ︸
[εψzt]

τ
−τ

→τψzt|z=0+

+
∫ τ

−τ
fαδ(z)ψxdz = 0︸ ︷︷ ︸
fαψx|z=0

as τ→0 using (6.18)
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α =
ρy
ρz

=
(g/ρ) ρy
(g/ρ) ρz

=
σy
N2

= −fuz
N2

= −fΛ

N2
, in the usual notation.

Figure 6.4:

Example 4. Waves at a boundary of discontin-

uous vertical shear

β = 0, u = ΛzH(z) where H(z) = 1 for z > 0, H(z) = 0 for z < 0, and the
flow unbounded above and below; see Fig. 6.4.

In this case2 ,

uz = Λzδ(z) + ΛH(z),

uzz = Λδ(z), whereupon

qy = −Λ(f 2/N2)δ(z) (6.20)

Hence there is a thin layer of negative qy concentrated at z = 0. The bound-
ary conditions are ψ → 0 as z → ±∞ and ψ continuous at z = 0, the latter
implying continuity of pressure.

Again, lim
τ→0

∫ τ
−τ (Eq.(6.5))dz gives

2Note that (d/dz)H(z) = δ(z) and zδ(z) = 0. For these and other results on δ-
functions, see e.g., Friedmann, Principles and Techniques of Applied Mathematics, Chap-
ter III.
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lim
τ→0

∫ τ

−τ
[(∂t + ΛzH(z)∂x)(ψxx + ψyy + εψzz) − Λ(ε)δ(z)ψx]dz = 0,

which reduces as before to

[εψzt]
0+
0− = 2Λεψx |z=0 (6.21)

By inspection, the solution of the perturbation vorticity equation

(∂t + ΛzH(z)∂x)q − Λεδ(z)ψx = 0,

subject to ψ → 0 as z → ±∞ together with (6.21) is

ψ = a exp[i(kx+ ly − ωt) − zsgn(z)(N/f)(k2 + l2)1/2], (6.22)

where

ω = 1
2
kΛf/N/(k2 + l2)1/2. (6.23)

The dispersion relation (6.23) should be compared with that in Example
3. Note that the wave is stable and has the vertical scale given again by
f/(kN). McIntyre (1972) extends this analysis to the case where a beta effect
is included and where allowance is made for the effect of variable density with
height. Then

qy = β − f 2
0ρ0(z)

−1∂z(ρ0(z)uz/N
2)

= β + (f 2
0 /N

2)[(Λ/Hs)H(z) − Λδ(z)],

where Hs = [−ρ0(z)
−1(d/dz)ρ0(z)]

−1, and f0 is the value of f at y = 0.
Interest centres on parameter regimes in which qy changes sign in the flow
region. McIntyre shows that unstable modes are then possible, for reasons
which will transpire in the following section, but growth rates are insufficient
to explain the breakdown of the polar night jet in the stratosphere, the
problem which motivated his study. A further reference on the polar night
jet is Simmons (1974).

Exercises

(6.1) Show that the lateral displacement ξ(x) of a stretched string in equi-
librium under the lateral force distribution F (x) per unit length is
governed by the differential equation
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ξxx = −F/T, (6.24)

where T is the tension in the string. Assume that the displacement is
small in the sense that |dξ/dx| << 1.

(6.2) Show that the Green’s function for Eq.(6.24) on the interval (0, 1) and
satisfying boundary conditions G(0) = 0, G(1) = 0 is:

G(x; x′) =

{
x(1 − x′) 0 ≤ x < x′

x′(1 − x) x′ < x ≤ 1 .
(6.25)

[Hint: the Green’s function satisfies the equation Gxx = δ(x − x′),
which reduces to Gxx = 0 for 0 ≤ x < x′ and x′ < x ≤ 1]. You will
need to obtain a “jump condition” on Gx at x = x′ by integrating the
differential equation across the discontinuity.

(6.3) Use the Green’s function to find the solution of (6.24) for the function

F (x) =




0, 0 < x < 1
2
− a ,

F0

(
1
2
− x
) (

1
2

+ x
)
, 1

2
− a < x < 1

2
+ a ,

0, 1
2

+ a < x < 1 .

Show that for fixed F0, the maximum value of ξ, ξ
(

1
2

)
, increases with

a and interpret this result in terms of the string analogy.

(6.4) Verify that (6.12) is a solution of (6.10) satisfying the boundary condi-
tion (6.11), provided that w satisfies (6.13). Show that in this problem,
the parcel trajectories lie in a plane parallel to the boundary, irrespec-
tive of their distance from the boundary.

(6.5) Solve the problem in Example 3 directly using the appropriate lin-
earized forms of (6.1) - (6.4). Assume that Λ > 0. Show that the
steering level for these waves, zc = Nk/f . Show that the slope of the
particle trajectories in the y−z plane is less than the slope of the basic
isentropes for z < zc and steeper for z > zc.

6.1 A Unified Theory

The generalization of the definition of potential vorticity gradient to include
isolated sheets of qy, either internal or at a boundary, enable a unified de-
scription of “potential vorticity gradient waves” to be given. The description
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is similar to that given for Example 1, but requires the motion to be viewed
in two planes; a horizontal x − y plane and a vertical x − z plane. To be
specific, consider the qy defined by the shear flow u(z) shown in Fig. 6.5.
The curvature of the velocity profile, and hence qy, are non-zero only in the

Figure 6.5: A curved profile of vertical velocity u(z) (left) and the corre-
sponding distribution of potential vorticity gradient qy (right).

height range (z1, z2). Consider now a perturbation in the form of a sinusoidal
displacement in the north-south direction. This leads to a potential vortic-
ity perturbation in horizontal planes as shown in Fig. 6.6. The description
parallels that in Example 1, but now the q perturbation is confined to the
height range (z1, z2). The membrane analogy (see Appendix to Chapter 6)
allows us to infer the distribution of ψ(x, y) in the x − z plane sketched in
Fig. 6.6(b). It does not matter whether the boundary condition is ψ → 0
as z → ∞ and/or −∞ in an unbounded fluid, or ψz = 0 at a particular
horizontal boundary. From this distribution of ψ we can infer the meridional
velocity v = ψx and note that, as in Example 1, this is exactly π/2 out of
phase with η. Thus the whole pattern is a propagating one; to the left (west)
if qy > 0 as in the picture, or to the east if qy < 0.

6.2 The baroclinic instability mechanism

The foregoing ideas may be extended to provide a qualitative description of
the baroclinic instability mechanism. We shall use the fact that a velocity
field in phase with a displacement field corresponds to growth of amplitude,
just as quadrature corresponds to phase propagation. Suppose that the dis-
placement of a particle is
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Figure 6.6: Upper panel: Horizontal view of the PV distribution associated
with a sinusoidal displacement of fluid parcels in the meridional direction with
the layer of positive PV gradient shown in Fig 6.5. Lower panel: Contours
of perturbation streamfunctions in the vertical plane corresponding with the
sinusoidal disturbance.

η = A(t) sin nt (A, n > 0),

and that we know (by some independent means) that the velocity of the
particle is

v = B(t)(cos nt+ µ sin nt).

It follows that

B = nA and
1

A

dA

dt
= µn.

In particular, if µ > 0 (i.e., the phase lag between the velocity and displace-
ment is less than π/2) then the amplitude must be growing. In other words,
the velocity perturbation is positive when the displacement is a maximum.
Let us consider now a ‘double-decker’ distribution of qy as shown in Fig. 6.7.
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We shall try to describe the most important parts of what the equations say
using similar ideas to those employed earlier, together with the criterion for
growth just presented. The entire dynamics (as opposed to kinematics) is
expressed in the simple relationship between displacement and disturbance
potential vorticity q that holds at each level where qy �= 0.

Figure 6.7:

It is plausible from the examples studied so far that we can choose a
wavelength L, and a frame of reference, such that a perturbation to the
flow, like that illustrated in Fig. 6.5, can be stationary. The perturbation is
assumed to be sinusoidal in x. Note that the sign of qy in the top part is such
as to make the pattern tend to propagate to the left, against the local stream;
likewise the bottom part of the pattern tends to propagate to the right, also
against the local stream. If L is small, the phase velocities are small (see e.g.
Example 1-4) and the stream will win; if L is large enough, the propagation
will win; therefore there ought to be some intermediate value of L such that
each pattern is held stationary in some reference frame.

Now suppose not only that this value of L exists, but also that it is such
that

H < fL/N.

Then the perturbation velocities v attributable to the bottom q-distribution
are noticeable at the top, and vice versa; see Fig. 6.8. This configuration
has three consequences:

1. In as much as the q patterns are nearly in phase, each half ‘helps’ the
other to propagate against the local stream. That is, the contributions
to v attributable to each q pattern are of such a sign as to reinforce each
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Figure 6.8:

other almost everywhere. This means that the local stream, against
which each pattern is holding itself stationary, must actually be faster
than would be the case if the other pattern were not present.

2. If the bottom q pattern were shifted to the left so as to be more nearly in
phase with the top, then each half would help the other propagate even
more strongly against the stream: this would move the patterns back
towards their original relative position. If the bottom pattern were
shifted to the right, the basic flow advection would become stronger
than the propagation and shift the pattern back. That is, granted that
the pattern shown above can be stationary at all, the relative phase
will tend to stay ‘locked in’ if H < fL/N .

3. Now, as we have shown, the contribution to v from the bottom q pat-
tern is exactly 1

2
π out of phase with the bottom η pattern. But it

must therefore be less than 1
2
π out of phase with the top η pattern

and hence the top pattern must consequently be growing in amplitude.
Likewise, the induced v from the top q distribution causes the bottom
displacements to increase. See Fig. 6.8.

It is now plausible that the growth rates of the top and the bottom dis-
placements will become equal, since neither can grow without the other. The
whole pattern then has a single growth rate proportional to its amplitude;
the growth rate is therefore exponential.

The main gap in the foregoing is its lack of attention to what happens
at the critical level zc at which u(z) = 0 in the frame of reference in which
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the wave pattern is stationary. If qy = 0 near z = zc, no further discussion
is required. However, if qy �= 0 near z = zc, the resulting q distribution can
be important if the growth rate predicted without considering it is small.
Then the particle displacements near z = zc are much larger than at the top
and bottom, so that q can become significant even if qy at z = zc is small
compared to qy at top and bottom. However the pattern can often adjust
itself so that it still grows exponentially - see Bretherton (1966).

A few examples of stable and unstable flow configurations are shown in
Fig. 6.9. Examples (a) and (b) follow from the corresponding Rayleigh prob-
lems for homogeneous non-rotating shear instability; the eigenvalue problem
happens to be the same, although the physical meaning of the variables is dif-
ferent. Example (c) has the original model solved by Charney in the ‘forties’
as its prototype; it has no finite vertical distance H separating the regions of
positive and negative qy and remains unstable, but with decreasing growth
rate as the wavelength tends to zero. Example (d) is similar. Instability can
be demonstrated mathematically for (c) and (d) for general forms of u(y, z)
and qy(y, z) (vqy > 0), provided that LNqy/fuz is sufficiently small, using
perturbation theory about the Eady problem (McIntyre, 1970).

The stability of examples (a) and (b) is due to lack of sign change in qy
(including boundary delta-function contributions) in the flow domain (see a
very general theorem by Blumen, 1968).

6.3 Perturbation energy equation for quasi-

geostrophic waves

An energy equation for quasi-geostrophic wave perturbations can be obtained
by multiplying Eq. (6.5) by the perturbation streamfunction ψ to obtain

ψ(∂t + u∂x)(ψxx + ψyy + εψzz) + qyψψx = 0. (6.26)

Note that, for example,

ψ∂tψxx = ψ∂x(ψxt) = ∂x(ψψxt) − ψxψxt

= ∂x(ψψxt) − ∂t(
1
2
ψ2
x). (6.27)

We define the zonal average of any quantity by ( ) = 1
λ

λ∫
0

( ) dx, where

λ denotes the zonal wavelength. It follows immediately that for any zonally-
periodic quantity, ∂x ( ) = 0. Now we take the zonal average of (6.26),
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Figure 6.9:

making use of (6.27) and similar expressions when x is replaced by y or z
and/or t is replaced by x. After a few lines of algebra we obtain

∂t[
1
2
(ψ2

x + ψ2
y + εψ2

z)] = ∂y(ψψyt) + u ∂y(ψψyx)

+ ε(∂z(ψψzt) + u ∂z(ψψzx)) . (6.28)

The second term on the right hand side of (6.28) may be written ∂y[u (ψψxy)]−
uy[∂x(ψψy)−ψxψy]. Note that ψψxy = [∂x(ψψy)−ψxψy] and ∂x(ψψy) is zero.

The term in ε in (6.28) may be written ∂z [ψ(∂t + u∂x)ψz]−uz[∂x(ψψz)−ψxψz].
The first term of this may be reduced to ∂z[uzψψx − (f/ε)ψw], the first
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term of which is zero. Using these results, we now take the double integral∫ y2
y1
dy
∫ H

0
dz of (6.28) and obtain

dE

dt
=

∫ H

0

[
ψψyt

]y2
y1
dz −

∫ H

0

[
u (ψxψy)

]y2
y1
dz

+

∫ H

0

∫ y2

y1

uy
(
ψxψy

)
dy dz − f

∫ y2

y1

[
ψw
]H
0
dy

+ ε

∫ H

0

∫ y2

y1

uzψxψz dy dz,

where

E = 1
2

∫ H

0

∫ y2

y1

(ψ2
x + ψ2

y + εψ2
z) dy dz (6.29)

is the total perturbation wave energy. With the assumption of channel
boundary conditions v = 0 at y = y1, y2 (or less restrictively, that the
Reynold’s stress uv = 0 at these boundaries) and that w = 0 at z = 0, H ,
this expression may be written

dE

dt
=

ε

f

∫ H

0

∫ y2

y1

uzvσ dy dz−
∫ H

0

∫ y2

y1

uy (uv) dy dz

+

∫ H

0

[
ψψyt

]y2
y1
dz . (6.30)

This is the perturbation wave-energy equation. The term on the left-hand
side is simply the rate-of-change of total wave energy. The first term on the
right-hand side represents the conversion of basic state available potential
energy, characterized by the vertical shear, to perturbation energy when the
poleward eddy heat flux vσ has the same sign as uz (i.e. the opposite sign to
the meridional temperature gradient). The third term represents the conver-
sion of basic state kinetic energy to perturbation energy when the Reynold’s
stress term −uv has the same sign as the horizontal shear uy; otherwise it
represents a loss of energy to the basic state. The last term on the right-hand
side is proportional to − ∫ H

0
[put]

y2
y1
dz. If ψx = 0 at y = y1, y2, then ψ is a

function only of y, z and t at these boundaries, whereupon ψψyt equals ψ ψyt,
which is proportional to −put. This term is zero as long as ut can be regarded
as zero at the meridional boundaries. In linear problems, u is assumed to be
independent of t, but in nonlinear problems, if ut is nonzero, the foregoing
term may represent an energy source or sink (see e.g. Smith, 1974; 1977).
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Exercises

(6.6) Define the pseudo-potential vorticity for quasi-geostrophic motion on a
beta plane in a compressible atmosphere with density ρ0(z) and Brunt-
Väisälä frequency N2(z) as

q = f0 + βy +
∂2ψ

∂x2
+
∂2ψ

∂y2
+

f 2
0

ρ0(z)

∂

∂z

[
ρ0(z)

N2

∂ψ

∂z

]
.

Show that

ρ0q
∂ψ

∂x
=

∂

∂y

{
ρ0
∂ψ

∂y

∂ψ

∂x

}
+

∂

∂z

[
f 2

0

N2
ρ0
∂ψ

∂x

∂ψ

∂y

]

+
∂

∂x

[
ρ0

{
(f0 + βy)ψ + 1

2

(
∂ψ

∂x

)2

− 1
2

(
∂ψ

∂y

)2

− f 2
0

N2

(
∂ψ

∂z

)2
}]

.

Show further that, if ∂ψ
∂x

= 0 on y = y1, y2 and ∂ψ
∂x

= constant on
z = 0, h, then

∫ h

0

∫ y2

y1

ρ0q
∂ψ

∂x
dy dz = 0, (6.31)

where ( ) denotes a zonal mean such that ∂ ( ) /∂x = 0.

(6.7) Under the same boundary conditions used to derive Eq.(6.31), show
that ∫ h

0

∫ y2

y1

E dy dz = −
∫ h

0

∫ y2

y1

qψ dy dz,

where ψ is the perturbation stream function. Equation (6.31) states
that the mean northward geostrophic eddy flux of potential vorticity
integrated over the whole volume of fluid vanishes. This important
result is due to Charney and Stern (1962); see also Bretherton (1966).

6.4 The omega equation in terms of PV

Equation (6.4) can be written

q = f + Lψ (6.32)
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where L is the elliptic operator

L =∇2
h + ε

∂2

∂z2
. (6.33)

Then (6.1) can be written

L

(
∂ψ

∂t

)
= −u · ∇q. (6.34)

The thermodynamic equation (6.2) can be written alternatively as

f
∂

∂z

(
∂ψ

∂t

)
= −u · ∇σ −N2w. (6.35)

Taking f(∂/∂z) (6.34) - L (6.35) gives

L

[
w +

u · ∇σ
N2

]
=

f

N2

∂

∂z
(u · ∇q) . (6.36)

This is an alternative form of the omega equation [DM, Eq.(10.6)], which can
be solved diagnostically for the vertical velocity w given suitable boundary
conditions on it.

Let us write w = w1 + w2 such that

Lw1 =
f

N2

∂

∂z
(u · ∇q) , (6.37)

with boundary conditions w1 = 0 everywhere, and

L

[
w2 +

u · ∇σ
N2

]
= 0, (6.38)

with the same boundary conditions relevant to (6.36). It follows that w1 is
the contribution to w forced by the vertical gradient of potential vorticity
advection, while w2 is forced by temperature advection.
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Chapter 7

FRONTOGENESIS,
SEMI-GEOSTROPHIC
THEORY

7.1 Frontogenesis in a horizontal deformation

field.

We consider now a specific problem in which a pure horizontal deformation
field u = −αx, V = αy, acts on an initially diffuse potential temperature
field θi(x). By ‘initially diffuse’ is meant that the thermal wind component
associated with ∂θi/∂x can be ignored. We assume that α is a constant and
that geostrophic balance exists the x-direction, an assumption that is not
strictly valid for large |x|. The flow configuration is sketched Fig. 7.1.

We follow Hoskins and Bretherton (1972) and use the ‘pseudo-height’
coordinate system with z = [1 − (p/po)(

(γ−1)/γ ]γHs/(γ − 1), where Hs =
po/(ρog) and the subscript ′o′ denotes surface values. The pseudo-height is
equal to physical height in an adiabatic atmosphere, but differs only slightly
from it in the troposphere for typical θ(z) profiles. In this coordinate system,
the so-called semi-geostrophic equations, DM (14.27) - (14.31), take the form

−fv = −∂φ
∂x
, (7.1)

Dv

Dt
+ fu = −∂φ

∂y
, (7.2)

0 = −∂φ
∂z

+ g
θ

θ0
, (7.3)
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Figure 7.1: Frontogenesis in a pure horizontal deformation field.

Dθ

Dt
= 0, (7.4)

and

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (7.5)

Here, φ is the geopotential (analogous to P ) and w = Dz/Dt is the ‘pseudo-
vertical velocity’, which we shall refer to as the ‘vertical velocity’. We express
now the total flow as the basic initial flow plus a deviation therefrom; i.e.,

u = −αx+ u′(x, y, t), (7.6)

v = αy + v′(x, y, t), (7.7)

w = w(x, y, t), (7.8)

φ = fαxy − 1
2
α2y2 + φ′(x, y, z), (7.9)

and

θ = θ(x, y, t). (7.10)

Substitution of Eqs. (7.6) - (7.10) into (7.1) - (7.5) gives

fv′ =
∂φ′

∂x
, (7.11)
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∂v′

∂t
+ (−αx+ u′)

∂v′

∂x
+ w

∂v′

∂z
+ fu′ + αv′ = 0, (7.12)

g
θ

θ0
=
∂φ′

∂z
, (7.13)

∂θ

∂t
+ (−αx+ u′)

∂θ

∂x
+ w

∂θ

∂z
= 0, (7.14)

and

∂u′

∂x
+
∂w

∂z
= 0. (7.15)

Equations (7.11) - (7.15) include conservation of potential temperature,
and of a form of Ertel’s potential vorticity:

q =
g

θ0

[
−∂v

′

∂z

∂θ

∂x
+

(
f +

∂v′

∂x

)
∂θ

∂z

]
. (7.16)

The latter follows from the result of Exercise (14.5) in DM since g/θ0 is a
constant. Note the slightly different definition for q used in (7.16). A third
conservation property can be obtained as follows. Let X = x+ v′/f . Then

DX

Dt
=

Dx

Dt
+

1

f

Dv′

Dt

= u+
1

f
[−fu′ − αv′] , using (7.12) (7.17)

= −αX.

Hence, following a fluid parcel, X = Xoe
−αt, where Xo is the value of X

for the parcel at the initial instant. Thus the quantity Xeαt is conserved
following fluid parcels. Note that conservation of this quantity is equivalent
to the conservation of absolute momentum fX, and is a direct result of Eq.
(7.12).

Further progress towards a solution of Eqs. (7.11) - (7.15) is facilitated
by a transformation of coordinates to so-called geostrophic coordinates:

(X,Z, T ) = (x+ v′/f, z, t). (7.18)
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Exercises

(7.1) Show that the Jacobian, J , of the transformation (7.18) can be written
variously as

J =
∂ (X,Z)

∂(x, z)
= 1 +

1

f

∂v′

∂x
=
ζa
f

=

[
1 − 1

f

∂v′

∂X

]−1

, (7.19)

where ζa is the absolute vorticity.

(7.2) Establish the following results, based on the transformation of Eqs.
(7.11) - (7.14):

q =
g

θo

∂ (fX, θ)

∂(x, z)
= f J

g

θo

∂θ

∂Z
, (7.20)

(
fv′,

gθ

θ0

)
=

(
∂φ′

∂x
,
∂φ′

∂z

)
=

(
∂φ

∂X
,
∂φ

∂Z

)
, (7.21)

where

φ = φ′ + 1
2
v′2, (7.22)

q = f
∂2φ

∂Z2

(
1 − 1

f 2

∂2φ

∂X2

)−1

, (7.23)

D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ w

∂

∂z
≡ ∂

∂T
− αX

∂

∂X
+ w

∂

∂Z
. (7.24)

From Eq. (7.23) it follows at once that

1

f 2

∂2φ

∂X2
+
f

q

∂2φ

∂Z2
= 1. (7.25)

7.2 Uniform potential vorticity model, q =

constant.

Suppose that:

• q/f = N2, a constant;

• the fluid is contained between horizontal boundaries at z = 0, H ,
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• θ = θi(x) (i = 1, 2 for z = 0, H) is specified initially on these bound-
aries.

• at zero time, the temperature gradient is everywhere weak enough so
that x ≈ X (i.e. v′/(xf) << 1, for all x).

Then q/f = N2 everywhere for all t and (7.25) gives

1

f 2

∂2φ

∂X2
+

1

N2

∂2φ

∂Z2
= 1. (7.26)

On the boundaries z = Z = 0, H ,

∂φ

∂Z
=

g

θo
θi (Xo) =

g

θo
θi
(
XeαT

)
. (7.27)

With suitable boundary conditions on f for large |X|, the mathematical
problem for φ is easily solved at any time T . Then v′ and θ can be obtained
from Eq. (7.21). Note that T occurs only as a parameter through (7.27).

The meridional circulation is found in a similar way to that described
earlier. The form of the continuity equation (7.15) permits the introduction
of a streamfunction ψ for the ageostrophic circulation, i.e.

u′ =
∂ψ

∂z
, w = −∂ψ

∂x
(7.28)

or in transformed form,

u′ =
1

f
J
∂v′

∂Z

∂ψ

∂X
+
∂ψ

∂Z
, w = −J ∂ψ

∂X
. (7.29)

Using (7.24) and (7.29), the transformed forms of (7.12) and (7.14) are

∂v′

∂T
− αX

∂v′

∂X
+ w

∂v′

∂Z
+ f

∂ψ

∂Z
+ αv′ = 0, (7.30)

and

∂θ

∂T
− αX

∂θ

∂X
+ w

∂θ

∂Z
= 0. (7.31)

Then, taking f(/Z) (7.30) − (g/θo)(∂∂/X) (7.31) and using cross-front
thermal wind balance expressed by f(∂v′/∂Z) = (g/θo)(θ/X), we obtain,

f 2 ∂
2ψ

∂Z2
+

∂

∂X

[
q

f

∂ψ

∂X

]
= −Q, (7.32)

where
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Q = 2α
g

θo

∂θ

∂X
. (7.33)

This should be compared with DM Eq. (14.42); remember that here, q/f =
N2 = constant. Suitable boundary conditions would be, for example, that
w → 0 for large |X| and w = 0 at Z = 0, H .

Evidently, the solution of the transformed semi-geostrophic equations
leads to the same mathematical problem as that which arises in solving the
analogous quasi-geostrophic problem. The difference between the diagnosed
circulation lies in the transformation back to physical space required in the
semi-geostrophic case. This transformation is easily performed when the
solution for v′(X,Z, T ) has been obtained.

7.3 Zero potential vorticity model, q ≡ 0.

Much can be learned from the special case in which the static stability is
initially zero (i.e. ∂θ/∂z ≡ 0 at t = 0). This simple problem exhibits many
features of frontogenesis and can be solved analytically. Equation (7.25)
reduces in this case to ∂2φ/∂Z2 = 0, implying that φ is a linear function of
Z. Suppose that at t = 0, θ1(x) = θ2(x) = θ(Xo)

1. Then at later times,
θ = θ(XeαT ) = θ(X, T ) say.

It follows from (7.21) that

∂φ

∂Z
=
gθ

θo
, φ =

gθ

θo
Z + F (X), v′ =

gθX
fθo

Z + F ′(X), (7.34)

where F (X) is an arbitrary function of X to be determined. Now the slope
of a line X(x, z) = constant is

−(∂X/∂x)

(∂X/∂z)
= −

[
1 +

1

f

∂v′

∂x

]
/

[
1

f

∂v′

∂z

]
= −J/

[
1

f
J
∂v′

∂Z

]

= −f
2θo
g
θ−1
X = constant.

Hence, in physical space, θ is a constant on the straight line

x = X − g

f 2θ0
θXz − F ′(X)

f

This line represents also the position of particles which were initially vertical
as indicated in Fig. 7.2. In the Boussinesq formulation, conservation of mass

1Note that N2 = 0 ⇒ θ1(x, 0, 0) = θ2(x,H, 0) for consistency.
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Figure 7.2:

implies conservation of volume, which in turn implies that the line of particles
move in such a way that the displacement is zero at z = 1

2
H . It follows that

F ′(X) = −gHθX/(2fθo), whereupon

x = X − g

f 2θo
θXz

′, (7.35)

where z′ = z − 1
2
H . On such a line,

x = X − g

f 2θo
θXz

′, (7.36)

and

ζa =
∂X

∂x
= f

[
1 − g

f 2θo
θXXz

′
]−1

. (7.37)

Exercise

(7.3) Starting from u = Dx
Dt

= DX
Dt

− 1
f

Dv′
Dt

, show that

u = − αX − g

f 2θo
(αz′+w) θX , (7.38)

and using the continuity equation, show that

w = − αg

f 2θo
θXX

1/4 H2 − z′2

1 − (g/f 2θo)θXXz′
. (7.39)

Hint: first show that J = 1/(1−aZ ′) where a = (g/f 2θo)θXX and Z ′ =
z′; then show that w satisfies the equation ∂w

∂Z′−aJw = −α [1 − J(1 + aZ ′)] .
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Some features of the solution are as follows:

(i) The frontogenesis problem of determining v′ and θ at time t has sepa-
rated from the problem of finding u and w.

(ii) Consider the initial distribution of θ sketched in Fig. 7.3. The cor-
responding values of θx and θxx are shown also. Since θxx ∝ e2αt, it
follows from (7.37) that infinite vorticity and associated discontinuities
in velocity and temperature in Fig. 7.3 occur in a finite time. This “col-
lapse” of the solution occurs first on the boundaries: at z = 0, where
θXX is most negative, and at z = H , where θXX is most positive. The
singularities do not occur in the problem as viewed using X,Z, but in
the transformation X = X(x, z) .

Figure 7.3: For discussion, see text.

(iii) Below z = 1
2
H , the largest vertical velocity at any time is on the line

on which ∂2θ/∂X2 is a minimum; this is the line on which ∂2θ/∂x2 is a
minimum. However note that the surface position of (θx)max and ζmax
are not the same.

(iv) There is upward motion when ∂2θ/∂X2 is negative and downward mo-
tion when it is positive.

(v) Frontogenesis tends to occur on the lower boundary towards the warm
side of a temperature contrast.

(vi) At a boundary, (7.38) may be rewritten as

u = −αx− 2α∂v′/∂x,
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which on differentiation becomes

−∂u/∂x = α + 2α∂v′/∂x

The first term on the right-hand side is the basic horizontal deforma-
tion, while the second is the vertical circulation associated with the in-
duced ageostrophic circulation. For vertical vorticities large compared
with f , the latter dominates. Moreover, the position of maximum hor-
izontal convergence (−ux)max is coincident with that of the maximum
relative vorticity.

Figure 7.4 shows a typical solution for the zero potential vorticity model,
for a case in which the initial potential temperature distribution is propor-
tional to tan−1x. Notice the surface jet in the along-front velocity component
with maximum speed on the cold side of the surface front

Figure 7.4: Deformation model with zero potential vorticity (lower half do-
main). Continuous and broken lines are isolines of potential temperature
and along-front velocity, respectively. Arrowed lines are the velocity vectors
drawn on the same scale as the basic deformation velocity shown beneath
the lower surface. (From Hoskins and Bretherton, 1972).

7.4 The geostrophic momentum approxima-

tion

A generalization of the quasi-geostrophic system of equations may be made
on the assumption that the Lagrangian time scale t, i.e., the time scale for
changes following a fluid parcel, is much larger than f−1 (≈ 3 hours). It may
often happen that this is the case, even when the Eulerian time scale, i.e.,
the time scale for changes at a fixed point in space, is not much less than f .
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Now the horizontal momentum equation in a rotating fluid may be written

u = ug + k ∧ 1

f

Du

Dt
, (7.40)

where D/Dt is the total derivative following a fluid parcel. Then2

u = ug + k ∧ 1

f

D

Dt

[
ug + k ∧ 1

f

Du

Dt

]

= ug + k ∧ 1

f

Dug
Dt

− 1

f 2

D2u

Dt2
. (7.41)

Let t = τt∗, and define the Lagrangian Rossby number to be Ro = 1/(ft).
Then (7.41) becomes

u = ug +Rok ∧ Dug
Dt∗

− Ro2D
2u

Dt∗2
.

Neglecting the term of order Ro2 and taking k∧ gives, in dimensional form,

Dug
Dt

+ fk ∧ u = fk ∧ ug. (7.42)

This is called the geostrophic momentum approximation because the mo-
mentum u in Du/Dt is computed geostrophically. Further insight into this
approximation comes from writing the horizontal momentum equation in
natural coordinates (ξ, η): see Fig. 7.5. In these coordinates, the velocity
vector is (V, 0); i.e., u = V cos χi + V sinχj. Then

∂u

∂t
=
∂V

∂t
(cos χi + sin χj ) + V

∂χ

∂t
(− sinχi + cos χj ) .

It follows readily that (∂u/∂t) · i′ = ∂V/∂t and (∂u/∂t) · j′ = V ∂χ/∂t,
and similarly for the x and y derivatives, so that in (ξ, η) coordinates, the
acceleration vector is:

Du

Dt
=

(
DV

Dt
, V

Dχ

Dt
, 0

)
,

and the momentum equations take the form

DV

Dt
= −∂φ

∂ξ
and V

Dχ

Dt
+ fV = −∂φ

∂η
. (7.43)

2k ∧D(k ∧Du) = (k ·D2u)k − (k · k)D2u = 0.
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Figure 7.5:

Now V can be computed geostrophically from φη if Dχ/Dt << f . If, in
addition, DV/Dt << fV , i.e., the Lagrangian time scale for V is large
compared with f , then |∂φ/∂ξ| << fV and the geostrophic momentum
vector Vg = (−f−1φη, f

−1φξ) is a good approximation to the momentum
vector (V, 0). Hence the geostrophic momentum approximation requires that
the magnitude of the acceleration, DV/Dt, is << fV and that the rate-of-
change of the direction of V with time is << f . The full hydrostatic system
of equations in rectangular coordinates with the geostrophic momentum ap-
proximation included is,

Dug
Dt

− fv = −∂φ
∂x
, (7.44)

Dvg
Dt

+ fu = −∂φ
∂y
, (7.45)

0 = −∂φ
∂z

+ g
θ

θ0
, (7.46)

Dθ

Dt
= 0, (7.47)

and

∇ · u = 0, (7.48)

where

(fug, fvg) = (−φy, φx) (7.49)

and
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D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
; (7.50)

i.e. advection is by the unapproximated velocity vector. Hoskins (1975)
shows that, like the full Boussinesq equations, the approximated set (7.44)-
(7.50) has a full energy equation, a three-dimensional vorticity equation,
and an Ertel potential vorticity conservation equation. The equations form
a balanced system which excludes gravity waves and can describe regions
of large shear vorticity such as jet streams and fronts, provided that the
curvature vorticity is small compared with the Coriolis parameter.

For these equations, the “vorticity” has the form

ω =

(
−∂vg
∂z

,
∂ug
∂z

, f +
∂vg
∂x

− ∂ug
∂y

)
+

1

f

(
∂(ug, vg)

∂(y, z)
,
∂(ug, vg)

∂(z, x)
,
∂(ug, vg)

∂(x, y)

)
, (7.51)

and the vorticity equation is

Dω

Dt
= (ω · ∇)u− k ∧ (g/θ0)∇θ. (7.52)

It is usually the case that the nonlinear term in the expression for vorticity
in (7.51) is small. The potential vorticity is defined as

q = ω · ∇θ, (7.53)

where

Dq

Dt
= 0. (7.54)

Exercises

(7.4) Verify that the third component of (7.51) is satisfied. [Hint: take k∧
Eq. 7.42 and take k · ∇∧ of the result.]

(7.5) Show that (7.54) follows from (7.47) and (7.52). [Hint: use tensor
notation.]

Equations (7.44)-(7.50) are difficult to solve as they stand because the
ageostrophic motion is not predicted, but needs to be diagnosed. As in the
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frontogenesis problem studied earlier, the solution is facilitated by a trans-
formation of coordinates. Thus we set

(X, Y, Z, T ) = (x+ vg/f, y − ug/f, z, t). (7.55)

Then, assuming that f is constant,

DX

Dt
=
Dx

Dt
+

1

f

Dvg
Dt

= u+
1

f
(fug−fu) = ug,

using (7.45). Similarly, DY/Dt = vg. Thus X, Y are the horizontal positions
a fluid parcel would have if it moved with the geostrophic velocity ug =
(ug, vg, 0). The mathematical details of the transformation proceed in the
same way as described earlier. The material derivative (7.50) transforms to

D

Dt
=

∂

∂T
+ ug · ∇X + w

∂

∂Z
, (7.56)

while the Jacobian of the transformation reduces to

J =
∂(X, Y )

∂(x, y)

=
∂

∂x

(
x+

vg
f

)
∂

∂y

(
y − ug

f

)
− ∂

∂x

(
y − ug

f

)
∂

∂y

(
x+

vg
f

)

=
1

f

[
f +

∂vg
∂x

− ∂ug
∂y

]
+

1

f 2

[
∂ug
∂x

∂vg
∂y

− ∂vg
∂x

∂ug
∂y

]
=

1

f
k · ω . (7.57)

Thus the transformation is valid provided that 0 < J <∞.

Exercises

(7.6) Obtain the matrix A such that ∂x = A∂X, for the transformation (7.55),
where ∂x denotes the vector operator (∂/∂x, ∂/∂y, ∂/∂z). Verify that
det A = J and find A−1. Hence show that

J
∂

∂Z
=

1

f
ω · ∇. (7.58)

(7.7) From the expression for A−1 obtained in Exercise (7.6), show that
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J

(
1 − 1

f

∂vg
∂X

)
= 1 − 1

f

∂ug
∂y

, J

(
1 +

1

f

∂ug
∂Y

)
= 1 +

1

f

∂vg
∂x

,

and

J
∂ug
∂X

= −∂ug
∂x

= −J ∂vg
∂Y

.

Hence, using (7.57), show that

J−1 = 1 − 1

f 2
(φXX + φY Y ) +

1

f 4
(φXX φY Y − φ2

XY ), (7.59)

where φ is defined below.

It follows from (7.58) that,

J
∂θ

∂Z
=

1

f
ω · ∇θ =

q

f
. (7.60)

Hence the static stability is proportional to the potential vorticity. Indeed,
geostrophic coordinates, the potential vorticity plays the role of static sta-
bility. If we define now

φ = φ′ + 1
2
(u2

g + v2
g), (7.61)

Eqs. (7.46 and 7.49) become

(
∂φ′

∂X
,
∂φ′

∂Y
,
∂φ′

∂Z

)
=

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
=

(
fvg, −fug, g θ

θ0

)
, (7.62)

and from (7.59, 7.60 and 7.62) it follows easily that

q =
f θ0
g
∂2φ′
∂Z2

1 − 1
f2

(
∂2φ′
∂X2 + ∂2φ′

∂Y 2

)
+ 1

f4

[
∂2φ′
∂X2

∂2φ′
∂Y 2 −

(
∂2φ′
∂X∂Y

)2
] , (7.63)

where, as it turns out, the nonlinear term in the denominator is normally
small. Equations (7.62) and (7.63), the transformed versions of (7.47) and
(7.54) express the conservation of potential temperature and potential vor-
ticity, respectively. These, together with the continuity equation (7.48) con-
stitute the semi-geostrophic equations. Thus the semi-geostrophic system is
the geostrophic momentum approximation in transformed space.
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Suitable boundary conditions on φ at a horizontal boundary are provided
by setting w = 0 in (7.47).

Hoskins and Draghici (1977) show that to within the level of approxi-
mation of the geostrophic momentum approximation, the nonlinear terms in
(7.57) and (7.63) can be neglected (see Appendix). Hence the third compo-
nent of vorticity is

f J = f +
∂vg
∂x

− ∂ug
∂y

=
f 2

f − ∂vg

∂X
+ ∂ug

∂Y

, (7.64)

and φ′ satisfies

1

f 2
[φ′
XX + φ′

Y Y ] +
1

qg
φ′
ZZ = 1, (7.65)

where

qg =
gq

fθo
=

g

fθo
(ω · ∇θ), (7.66)

is the square of the buoyancy frequency that the fluid would have if the
geostrophic velocity were negligible; i.e., qg plays the analogous role in trans-
formed space that the Brunt-Väisälä frequency squared plays in physical
space.

7.5 The Eady problem in semi-geostrophic

theory.

The Eady problem of baroclinic instability considers the stability of a zonal
flow with uniform vertical shear in thermal wind balance with a linear merid-
ional temperature field (DM, Chapter 9), i.e., the basic flow is defined by

(ug, vg) =

(
Uz

H
, 0

)
,

and

θ = θ0 +
N2

g
θ0z − f

θ0
g

Uy

H

where N is constant. The reader should check that this basic state is such
that

f
∂ug
∂z

= f
U

H
= − g

θ0

∂θ

∂y
, and

g

θ0

∂θ

∂z
= N2.

The geostrophic coordinate transformation is
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Figure 7.6: The Eady-model basic state.

X = x, Y = y − ug/f = y − Uz/(fH), Z = z,

so that in physical space, lines Y = constant have the equation z = (fH/U)(y−
Y ). These lines slope towards the pole as shown in Fig. 7.7. For typical val-
ues: U = 30 ms−1, |f | = 10−4 s−1, H = 10 km, the poleward displacement
of the line Y = constant between z = 0 and H is 300 km and the angle α
shown is tan−1(1/30) = 2◦.

Figure 7.7: Lines Y = constant in physical space (x, y).

In transformed space, the basic flow is characterized by

ug =
UZ

H

θ0
g
, θ = θ0 +

θ0
g

[
N2 − U2

H2

]
Z − f

θ0
g

UY

H
,
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φ = gZ + 1
2
(N2 − (U/H)2)Z2 − (fU/H)Y Z, (7.67)

and

qg = N2 − (U/H)2. (7.68)

Using (7.65), and (7.47) in transformed space, the perturbation to the basic
flow characterized by φ′ satisfies

1

f 2
(φ′

XX + φ′
Y Y ) +

1

qg
φ′
ZZ = 0, (7.69)

with [
∂

∂T
+
UZ

H

∂

∂X

]
∂φ′

∂z
− U

H

∂φ′

∂X
= 0 at Z = 0, 1. (7.70)

Equation (7.69) with the boundary condition (7.70) leads to the same eigen-
value problem as for the quasi-geostrophic Eady problem in physical space,
except that N2 is replaced now by qg = N2(1− (U/NH)2). For N = 10−2s−1

and the above values of U and H , qg = 0.91N2.
The solution of (7.69) and (7.70) analogous to (9.18) in DM is

φ′(X,Z, T ) = A(Z ′)ekeiT cos[k(X − 1
2
UT ) − γ(Z ′)], (7.71)

where Z ′ = Z − 1
2
H = z − 1

2
H . For this, u′g = −f−1φ′

Y = 0 and v′ =
v′g + f−1Du′g/Dt = v′g. The structure in physical space becomes distorted
since x = X − v′g/f = X − (∂φ′/∂X)/f 2, although y = Y − u′g/f = Y .
Thus the region of cyclonic vorticity φx = φX > 0 is reduced and the region
of anticyclonic vorticity is increased. Of course, for the linear solution, v′ is
small and x ≈ X so that the distortion would be hardly noticeable. However,
this is not the case when the wave grows to finite amplitude as shown by a
calculation for the fully nonlinear problem after five days (Fig. 7.8). As in
the quasi-geostrophic case, the fastest growing wave perturbation has half-
wavelength πR/1.6 and growth rate kci|max = 0.31u/LR, where now LR =
(H

√
qg/f). Thus the wavelength is slightly reduced and the growth rate

slightly increased (since qg < N2) in comparison with the quasi-geostrophic
case.

In the absence of lateral boundaries, both the quasi-geostrophic and semi-
geostrophic equations admit three-dimensional solutions, the former periodic
in y, the latter in Y . In the former case, such solutions satisfy boundary
conditions appropriate to a zonal channel flow (i.e., v = 0 at y = y0, y1, say),
but in the latter case they do not, since the periodicity is in transformed space
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Figure 7.8: Surface map for the Eady wave independent of y(µ = 0) at day
5. Contours of height field f are dashed and drawn every 75 m (∼ 9 mb) and
those of surface (potential) temperature are continuous and drawn every 6
K. Height field lows and highs are indicated. The domain is 5623 km in both
horizontal directions. This is approximately 1.25 wavelengths in the zonal
direction (from Hoskins and West, 1979).

rather than physical space. In essence, the semi-geostrophic solution includes
a factor cos mY in (7.71) and, as in the quasi-geostrophic case, the stability
criterion is modified by the contribution of m to the total wavelength (DM,
page 133, Eq. (9.20)). Of major significance now is the fact that the patterns
of pressure, geostrophic velocity, and potential temperature are distributed
along lines Y = constant; i.e., y − (Uz/fH) = constant. These are parallel
with the absolute vorticity vector and slope upward and poleward as shown
in Fig. 7.7. Hoskins and West (1979, p1670) argue that the cyclic boundary
condition may, in fact, be rather better than the imposition of v = 0 at
latitudinal walls. They studied the growth of baroclinic wave disturbances to
finite amplitude by integrating the semi-geostrophic equations numerically.
In particular they have studied the growth of fronts in such waves. They
consider the instability of basic zonal jet flows of the type shown in Fig. 7.9,
for which qg = constant. These flows have the form

u =
U

H
Z − 1

2
µ

[
Z

H
+

sinh �Z

sinh �H
cos mY

]
, (7.72)

where �/m = H
√
qg/f , the Rossby radius of deformation. They are periodic
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Figure 7.9: The zonal flow given by (7.53) with µ = 1. Dashed lines are po-
tential temperature contours and continuous lines contours of zonal velocity.
Using the dimensional values specified in the text, the contour intervals are
2. 5 K and 4 m s−1, respectively (from Hoskins and West 1979).

in Y with half-wavelength π/m and tend to the Eady basic flow as µ → 0.
Since qg is a constant initially, it will remain constant for all time according
to (7.54). Then the diagnostic equation (7.65) has constant coefficients and
(7.54) is not needed further. Figure 7.10 shows the normal mode perturbation

Figure 7.10: Normal mode perturbation fields of height field φ and vertical
component of relative vorticity ζ at z = 0 for the most unstable mode for
µ = 1. Contours of φ are dashed and those of ζ continuous except for the
zero contour which is dotted. A distance 2π/� is shown in x, this being more
than one wavelength (from Hoskins and West 1979).

height field f and vertical component of relative vorticity ζ at z = 0 for the
most unstable mode when µ = 1. This solution, obtained by solving the
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linear eigenvalue problem numerically, is used as the initial condition for a
full nonlinear solution of the semi-geostrophic equations.
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Chapter 8

SYMMETRIC BAROCLINIC
INSTABILITY

We consider further the stability of a basic zonal flow U(y, z) in the x di-
rection in thermal wind balance with the basic state potential temperature
field θ(y, z) - see Fig. 8.1. Here z is Hoskins’ pseudo-height coordinate used
earlier. Unlike the classical baroclinic instability problem, we consider distur-
bances with only meridional structure; i.e. roll perturbations, independent
of x.

Figure 8.1: Zonal flow U(y, z) in thermal wind balance with the isentropes
θ(y, z).

An important application of the theory is to the stability of pre- and post-
frontal jets (see e.g. Fig. 8.2), while the analogous axisymmetric problem
is relevant to tropical cyclones. Thermal wind balance of U(y, z) and θ(y, z)
implies that

f
∂U

∂z
= − g

θ0

∂θ

∂y
, (8.1)
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We define the basic frequencies N , S and F by

N2 =
g

θ0

∂θ

∂z
, S2 = − g

θ0

∂θ

∂y
= f

∂U

∂z
, F 2 = f

(
f − ∂U

∂y

)
, (8.2)

all taken to be positive. Typically, N ∼ 10−2s−1, S ∼ 5 × 10−4s−1 and
F ∼ 10−4s−1.

Figure 8.2: A cold front with pre- and post-frontal along-front jets.

The classical work on symmetric instability was carried out under the
name of the stability of a baroclinic vortex. (Fjortoft, 1950; Eliassen, 1957).
We pursue here the normal mode approach of Ooyama (1966) and Hoskins
(1974). We make the Boussinesq approximation, but allow for motions to be
non-hydrostatic. The equation are as formulated by Hoskins and Bretherton
(1972).

The linearized equations for perturbations independent of x are:

∂u′

∂t
+ v′

∂U

∂y
+ w′∂U

∂z
− fv′ = 0, (8.3)

∂v′

∂t
+ fu′ +

∂φ′

∂y
= 0, (8.4)

∂w′

∂t
− g

θ′

θ0
+
∂φ′

∂z
= 0, (8.5)

and

∂v′

∂y
+
∂w′

∂z
= 0. (8.6)

It is convenient to introduce a new dependent variable M = −fy + U ,
which loosely may be called the absolute velocity. Then (8.3) takes the form
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∂u′

∂t
+ v′

∂M

∂y
+ w′∂M

∂z
= 0, (8.7)

and

F 2 = −f ∂M
∂y

. (8.8)

One then observes a symmetry between the pairs of variables (u′, v′) and
(w′, q′), assuming that N2, S2, F 2 and θ0 are constants:

∂u′

∂t
+ v′

∂M

∂y
+ w′∂M

∂z
= 0,

∂θ′

∂t
+ v′

∂θ

∂y
+ w′∂θ

∂z
= 0

∂v′

∂t
+ fu′ +

∂φ′

∂y
= 0,

∂w′

∂t
− g

θ′

θ0
+
∂φ′

∂z
= 0.

When U is proportional to z, ∂θ/∂y = constant, and if ∂θ/∂z = constant,
∇θ and ∇M are constant vectors; i.e.,

∇θ =

(
0,

∂θ

∂y
,
∂θ

∂z

)
and ∇M =

(
0, −f +

∂U

∂y
,
∂U

∂z

)
,

typically < 0, > 0 typically < 0, > 0

and the isentropes and isopleths of M are as shown in Fig. 8.3. Typically,

Figure 8.3: A cold front with pre- and post-frontal along-front jets.

∂U/∂z ∼ 20/104 = 2 × 10−3s−1 and f ∼ 10−4s−1 > |∂U/∂y|, so that
M surfaces normally have a slope << π

4
. Note that, the curl of M i is

ωa = (0, ∂U/∂z, f − ∂U/∂y), which defines the absolute vorticity vector.
Therefore, since ωa · ∇M = 0, M-surfaces lie along the absolute vorticity
vector.
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Exercises

(8.1) Show that M surfaces have slope χ given by tan χ = F 2/S2, while θ
surfaces have slope Λ given by tan Λ = S2/N2. Hence show that ∂u′/∂t
and ∂θ′/∂t are proportional respectively to sin (χ−α) and sin(Λ−α),
where α is the trajectory slope (tan α = w′/v′), and find the constant
of proportionality. A consequence is that the generation of u′ depends
on the slope of trajectories compared with that of M-surfaces, while
the generation of θ′ depends on the slope of trajectories compared with
that of θ surfaces.

(8.2) Derive the zonal component of the perturbation vorticity ξ(= ∂w′/∂y−
∂v′/∂z); i.e.,

∂ξ

∂t
=

g

θ0

∂θ′

∂y
+ f

∂u′

∂z
, (8.9)

and observe that circulation in a meridional plane is generated by the
thermal wind imbalance of the perturbation.

(8.3) Assuming that S2, N2 and F 2 are constants (in other words, that
length scales for the variation of basic flow variables are much larger
than perturbation length scales), deduce from (8.9) that

∂2ξ

∂t2
= −N2∂w

′

∂y
+ S2

(
∂v′

∂y
− ∂w′

∂z

)
+ f 2∂v

′

∂z
, (8.10)

If we introduce a stream function y for the meridional motion such that

v′ = −∂ψ
∂z
, w′ =

∂ψ

∂y
, (8.11)

then (8.6) is automatically satisfied; ξ = ∇2ψ; and (8.10) becomes

∂2

∂t2

[
∂2ψ

∂y2
+
∂2ψ

∂z2

]
= −N2 ∂

2ψ

∂y2
− F 2∂

2ψ

∂z2
− 2S2 ∂

2ψ

∂y∂z
. (8.12)

In an unbounded domain we may seek solutions of the form

ψ = ψ̂eik(−y sinα+ z cosα+ ct), (8.13)

where k, c, α and ψ̂ are constants. These correspond with travelling waves
of frequency ω = ck and total wave number k, travelling in the direction
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Figure 8.4:

(0, − sinα, cosα) as shown. Note that, as for all transverse wave motions,
the particle motions are normal to this direction.

Substitution of (8.13) into (8.12) gives

ω2 = N2 sin2 α− 2S2 sinα cosα + F 2 cos2 α, (8.14)

which is the dispersion relationship. Note that there is no wavelength de-
pendence, there being no intrinsic length scale in the problem. Inertial oscil-
lations in the horizontal (α = 0, ω = F ) and buoyancy oscillations (α = π

2
,

ω = N) are special cases of (8.14). If the right-hand side of (8.14) is negative,
ω is pure imaginary implying instability.

Figure 8.5:
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Exercise

(8.4) Show that (8.14) can be written as

2ω2 = N2 + F 2 − A cos 2(α− α1), (8.15)

where α1 is defined by

sin 2α1 = 2S2/A, cos 2α1 = (N2 − F 2)/A (8.16)

and

A = [(N2 − F 2)2 + 4S4]1/2.

According to (8.15), the minimum frequency, ωmin, corresponds with
α = α1, which is slightly steeper than the θ surfaces (since N2 >> F 2,
implying that tan 2α1 ≈ 2S2/N2 ∼ 10−1). Furthermore, the maxi-
mum frequency, ωmax, corresponds with α = π

2
+ α1, a nearly vertical

trajectory slope.

(8.5) Show that
ω2
maxω

2
min = N2F 2 − S4. (8.17)

The Ertel potential vorticity of the basic flow is

q =
g

fθ0

[
∂U

∂z

∂θ

∂y
+

(
f − ∂U

∂y

)
∂θ

∂z

]

=
g

fθ0

[
∂M

∂z

∂θ

∂y
− ∂M

∂y

∂θ

∂z

]
(8.18)

=
1

f 2

[−S4 + F 2N2
]
,

whereupon

ω2
maxω

2
min = f 2q. (8.19)

We may now construct the graph of ω2 versus φ. Since q is a conserved
quantity, the rearrangement of the basic flow that makes it more stable to
oscillations in the vertical (i.e. larger ω2

max), makes it less stable to motions
along the isentropes (i.e., smaller ω2

min, which corresponds with α = α1).
The basic flow is stable if and only if ω2

min > 0; i.e., q > 0, or equivalently,

124



J(θ,M) > 0. Since1 J(θ,M) = i · (∇θ ∧ ∇M), we have the two situations
shown in Fig. 8.6. Thus the flow is stable if M-surfaces are more vertical
than θ-surfaces, and unstable if the θ-surfaces are more vertical.

Figure 8.6:

Consider a perturbation in which a fluid parcel moves away from a point
0 on an M-surface to a point A or B as shown. Since ∂u′/∂t = −v′ ·
∇M , (∂u′/∂t)A < 0, (∂u′/∂t)B > 0, implying that u′A < 0, u′B > 0. Also,
∂v′/∂t = −fu′ − ∂φ/∂y, so that, in as much as the v′ acceleration is due to
the Coriolis torque, −fu′, then (∂v′/∂t)A > 0 and (∂v′/∂t)B < 0. Hence a
perturbation away from an M-surface leads to a horizontal acceleration back
to it.

In a similar way, we can show that a perturbation away from a θ-surface
leads to a vertical acceleration back towards it (Fig. 8.7).

With these results, we can interpret the instability. In the case q > 0, a
displacement leads to a positive restoring force; when q < 0, the restoring
force is negative and leads to instability.

1i · (∇θ ∧∇M) = (1, 0, 0) · (0, θy, θz) ∧ (0,My,Mz) = (1, 0, 0) · (θyMz − θzMy, 0, 0).
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Figure 8.7:

8.1 Richardson number criterion

We may define a Richardson number, Ri, by

Ri =
g

θ0

∂θ

∂z
/

[
∂U

∂z

]2

=
f 2N2

S4
.

Then q = F 2N2−S4 < 0 is equivalent to F 2N2/S4 < 1 or f 2N2/S4 < f 2/F 2;
i.e.,

Ri <

[
1 − 1

f

∂U

∂y

]−1

. (8.20)

For flows with no horizontal shear, the condition for symmetric instability
becomes

Ri < 1. (8.21)

Stone (1966) showed that for the simple Eady basic state of a constant shear
in the vertical, Eady baroclinic waves dominate for Ri > 0.95 and Kelvin-
Helmholtz waves forRi < 0.25. In the range 0.25 < Ri < 0.95, the symmetric
baroclinic waves have the largest growth rates.
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Exercises

(8.6) Show that with χ, Λ and α defined in exercise (8.1), Eq. (8.14) can be
written as

ω2 = S2

[
sin α

sin Λ
sin (α− Λ) +

cos α

cos χ
sin (χ− α)

]
.

(8.7) Show that if the hydrostatic approximation is made, the dispersion
relation becomes

ω2 = N2 tan2 α− 2S2 tanα + F 2

and that the stability criterion is again q > 0 for stability.

It appears that the instability condition is rarely satisfied in the atmo-
sphere, although there is evidence that symmetric instability modified by
latent heat release may play a role in the generation of frontal rainbands
(Bennetts and Hoskins, 1978; Emanuel, 1983).
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Chapter 9

GEOSTROPHIC
ADJUSTMENT

We have studied geostrophic, quasi-geostrophic, and semi-geostrophic mo-
tions of various types; now we illustrate how the adjustment to geostrophy
takes place by considering one particularly simple flow1. We consider a ho-
mogenous layer of fluid of mean depth H with a free surface. At the initial
time, t = 0, the surface has the form of a small step in height along the y-axis
(x = 0): see Fig. 9.1. The initial fluid depth is represented by the formula:

h(x) = H +Hηosgn(x), (9.1)

where

sgn(x) =

{
1 for x ≥ 0,
−1 for x < 0.

Figure 9.1: The initial surface displacement in Eq. (9.1).

The subsequent motion is assumed to be given by the linearized equations:

1This problem is discussed by Gill (1982; see sections 5.6, 7.2 and 7.3)
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∂u

∂t
− fv = −c2 ∂η

∂x
, (9.2)

∂v

∂t
+ fu = −c2∂η

∂y
, (9.3)

∂η

∂t
+
∂u

∂x
+
∂v

∂y
= 0, (9.4)

where c =
√
gH (see DM, Chapter 11). Taking the divergence of (9.2) and

(9.3) and using (9.4) to eliminate the horizontal divergence gives

∂2η

∂t2
− c2

(
∂2η

∂x2
+
∂2η

∂y2

)
+ fζ = 0, (9.5)

where ζ = ∂v/∂x− ∂u/∂y is the relative vorticity.

9.1 The nonrotating case (f = 0)

In this case the motion remains irrotational (ζ = 0) and Eq. (9.5) reduces
to the wave equation for two-dimensional motion (∂/∂y ≡ 0). The well-
known solution to this equation is η(x, t) = 1

2
[F (x− ct) +G(x+ ct)], where

F and G are arbitrary functions of their arguments. The solution represents
the sum of a pair of disturbances with elevations F (x) and G(x) at t = 0
propagating in opposite directions with uniform speed c. In the case of the
initial step profile with the fluid initially at rest, it is easily verified that

η(x, t) = −1
2
ηo [sgn(x− ct) + sgn(x+ ct)] (9.6)

and
u(x, t) = 1

2
ηo [sgn(x− ct) − sgn(x+ ct)] .

Note that u(x, t) = gηo/c for |x| < ct and is zero for |x| > ct. The
evolution of this solution is illustrated in Fig. 9.2. It consists of a step of
elevation propagating in the positive x-direction and a step of depression
propagating in the negative x-direction. The flow is uniform and from right
to left for |x| < ct and zero elsewhere.

9.2 The rotating case (f �= 0)

In this case the flow between the two moving steps will experience a Coriolis
force acting to the right in the Northern Hemisphere; this will lead to a flow
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Figure 9.2: Solution of the shallow-water wave equation for the initial surface
displacement in Eq. (9.1). Waves of elevation and depression move out from
the initial discontinuity with speed c, leaving behind zero displacement, but
a steady motion from right to left with speed cηo (From Gill, 1982).

in the negative y-direction. In turn this flow will be subject to a Coriolis
force acting in the negative x-direction which will oppose the flow between
the steps. The final adjusted state may be calculated without consideration
of the transients. The (vertical) vorticity equation is obtained by taking the
curl of (9.2) and (9.3) to give:

∂ζ

∂t
+ f

(
∂u

∂x
+
∂v

∂y

)
= 0.

Eliminating the horizontal divergence using (9.4) leads to the equation:

∂

∂t

(
ζ

f
− η

)
= 0. (9.7)

This is just the linearized form of the potential vorticity equation for a ho-
mogeneous rotating fluid (DM, Eq.6.5). The quantity Q′, defined by

Q′ = ζ − fη,

is the perturbation potential vorticity and (9.7) expresses the fact that retains
its initial value at each point for all time, i.e.

Q′(x, y, t) = Q′(x, y, 0).
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One can exploit this infinite memory of an inviscid rotating fluid to find the
final equilibrium solution for a particular initial state without considering
details of the transient motions.

In the present case, at t = 0, u = v = 0 and η = ηo sgn(x), whereupon

ζ/f − η = ηosgn(x).

Substitution into (9.5) gives:

∂2η

∂t2
− c2

∂2η

∂x2
+ f 2η = −f 2ηosgn(x). (9.8)

In the steady state (∂/∂t = 0) this reduces to

c2
d2η

dx2
− f 2η = f 2ηosgn(x). (9.9)

The solution for η(x) in Eq. (9.9) that is continuous and symmetric about
x = 0 is:

η(x) = ηo ×
{ −1 + exp(−x/LR) for x ≥ 0

1 − exp(x/LR) for x < 0
(9.10)

where LR = c/ |f | =
√
gH/ |f | is the Rossby radius of deformation. The

corresponding velocity field is:

v(x) = −gHηo
fLR

exp(− |x| /LR). (9.11)

Note that the ultimate flow is not in the direction of the pressure gradient,
but at right angles to it. The solution is shown in Fig. 9.3.

9.3 The transient problem

To obtain a complete solution of the adjustment problem, i.e. of (9.8), we put
η1 = η−ηsteady with ηsteady given by (9.10). Then η1 satisfies the homogeneous
equation2

∂2η1

∂t2
− c2

∂2η1

∂x2
+ f 2Hη1 = 0. (9.12)

subject to the initial condition

2Equation (9.12) is sometimes called the Klein-Gordon equation: see Gill (1982, p196).

131



Figure 9.3: The geostrophic equilibrium solution corresponding to adjust-
ment from an initial state that one of rest, but has uniform infinitesimal
surface elevation −ηo for x > 0 and ηo for x < 0. (a) The equilibrium surface
level η, which tends towards the initial level as x→ ±∞. The distance unit is
the Rossby radius of deformation (here denoted by a). (b) The corresponding
equilibrium velocity distribution: there is a “jet” directed along the initial
discontinuity in level with maximum speed equal to cηo (From Gill, 1982).

η1 = −ηosgn(x) − ηsteady

at t = 0. (9.13)

= −ηo exp(− |x| /LR)sgn(x)

The equation has wave-like solutions of the form

η1 ∝ exp[i(kx− ωt)] (9.14)

where ω satisfies the dispersion relation

ω2 = f 2 + k2c2. (9.15)

The solution of the transient problem can be obtained by finding a suit-
able superposition of solutions. The appropriate combination of waves is the
one that gives the initial distribution (9.13) and this can be found from tables
of integral transforms [see e.g. Erdelyi et al. (1954, Vol. 1, p72)]; it is
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η1 = −2ηo
π

∫ ∞

0

k sin kx

k2 + µ2
dk (9.16)

where µ = L−1
R . At later times, η1 will consist of the same superposition of

waves, with due allowance made for their propagation. Thus 2 sin kx in (9.16)
must be replaced by the combination of waves that preserves antisymmetry,
namely:

sin(kx+ ωt) + sin(kx− ωt) = 2 sin kx cosωt,

whereupon the solution at time t is

η1 = −2ηo
π

∫ ∞

0

k sin kx cosωt

k2 + µ2
dk, (9.17)

The solutions for u and v can be obtained by reference to the standing-
wave solutions that follow directly from (9.3) and (9.4) with ∂/∂y = 0, i.e.

η1 = sin kx cosωt

u = −ω
k

cos kx sinωt.

v = −f
k

cos kx cosωt

For example,

u =
2gHηo
πc

∫ ∞

0

cos kx sinωt√
k2 + µ2

dk, (9.18)

where ω is given by Eq. (9.15). It happens that the transform on the right-
hand-side can be evaluated exactly (Erdelyi et al. 1954, Vol. 1, p26); giving

u =

{
(gHηo/c)J0(f(t2 − x2/c2)

1/2) for |x| < ct,
0 for |x| ≥ ct,

(9.19)

where J0 is the Bessel function of order zero. This is a special solution of the
Klein-Gordon equation, corresponding to a point impulse at x = 0 at t = 0
(Morse and Feshbach, 1953, p139). The acceleration ∂u/∂t has the form of
a delta function as a result of the infinite pressure gradient that exists at the
initial instant.

Figures 9.4 - 9.6 show the solutions for η, u and v. Instead of the wave
front having the form of a translating step as in the nonrotating solution,
the step is now followed by a “wake” of waves that trail behind it because of
dispersion. The shorter waves that contribute to the step still travel at speed
c, but longer waves travel more slowly (they have smaller group velocity)
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and lag behind. This is illustrated by the behaviour at a fixed point (Fig.
9.6) where the frequency (the time between wave crests) decreases after the
passage of the wave front, eventually approaching the inertial frequency, f .
Figure 9.6b shows how u varies with time at x = LR.

Figure 9.4: Transient profile of h for adjustment under gravity of a fluid with
an initial infinitesimal discontinuity in level of 2ηo at x = 0. The solution
is shown in the region x > 0, where the surface was initially depressed, at
time intervals of 2/f . The marks on the x-axis are at intervals of a Rossby
radius of deformation. The solutions retain their initial values until the wave
front arrives; this travels out from the position of the initial discontinuity
with speed c. When the front arrives, the surface elevation rises abruptly
to ηo and the u component of velocity jumps to cηo (see Fig. 9.5), just as
in the nonrotating case illustrated in Fig. 9.2. This is because the first
wave components to arrive are the very short waves, which are unaffected
by rotation. Behind the front, however, is a “wake” of waves produced by
dispersion. The width of the front narrows inversely with time. Well behind
the front, the solution adjusts to the geostrophic equilibrium solution shown
in Fig. 9.3 (From Gill, 1982).

Note how the length scale shortens just behind the wave front at x = ct
in Figs. 9.4 - 9.6. To see this put x = ct + x′ where |x′| << |x|. Then the
expression in (9.18) is approximated by

t2 − x2/c2 ≡ (2t+ x′/c)(−x′/c) ≈ 2tx′/c) = −x′/(c/2t)
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Figure 9.5: Transient profiles of (a) u and (b) v corresponding with the
solution for h shown in Fig. 9.4 (From Gill, 1982).

and the length scale c/(2t) diminishes inversely with time. Moreover the
solution approaches the steady solution as time proceeds.
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Figure 9.6: The u velocity as a function of time t (a) at the position of the
initial discontinuity in level and (b) one Rossby radius away. The time is
in units of 1/f . The solutions show oscillations with frequency near f and
decay with time like 1/

√
t at large times (From Gill, 1982).

9.4 Energy considerations

The perturbation energy equation for the shallow-water system is obtained
by multiplying (9.1) by ρuH , (9.2) by ρvH and (9.3) by ρgHη and adding.
It is easy to show that

∂

∂t

[
1
2
ρH(u2 + v2) + 1

2
ρgH2η2

]
+

∂

∂x
(ρgHuη) +

∂

∂y
(ρgHvη) = 0. (9.20)

Note that the Coriolis terms cancel in this procedure and do not appear
explicitly in the energy equations; this is because the Coriolis force is at right
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angles to the velocity vector and therefore does no work. For the special case
in which ∂/∂y = 0, the integral of (9.20) over the region |x| < X gives

∂E/∂t + F (X, t) − F (−X, t) = 0, (9.21)

where

E =

∫ X

−X

[
1
2
ρH(u2 + v2) + 1

2
ρgH2η2

]
dx (9.22)

is the total perturbation energy per unit length in the y-direction in the
region |x| < X and

F (x, t) = ρgHuη (9.23)

is the rate of energy transfer in the x-direction at the position x per unit
length in the y-direction.

The total perturbation wave energy density is the sum of the kinetic en-
ergy 1

2
ρH(u2 + v2) and the potential energy 1

2
ρgH2η2. In the nonrotating

situation shown in Fig. 9.2, the potential energy per unit area in the undis-
turbed region is 1

2
ρgH2η2

o and the kinetic energy is zero. With the passage of
the wave, the potential energy drops to zero while the kinetic energy jumps
to the value 1

2
ρHu2 = 1

2
ρH(cηo)

2. Thus there is no change in total energy,
but there is an instantaneous conversion from potential energy to kinetic
energy as the wave passes. After a sufficient length of time, therefore, all
the perturbation potential energy in a fixed region will be converted into the
kinetic energy associated with the steady current that remains after the wave
front has passed.

Although the Coriolis forces do not directly appear in the energy equa-
tions, the energy changes in the adjustment problem are profoundly affected
by rotation. The change in potential energy per unit area at a particular
value of x between the initial state and the steady equilibrium state is:

∆PE =

∫ X

−X

[
1
2
ρgH2(η2

o − η2
steady)

]
dx = 1

2
ρgH2η2

o

∫ ∞

0

[
1 − (1 − e−x/LR)

]
dx

= 3
2
ρHc2η2

oLR. (9.24)

In the nonrotating case, all the potential energy is converted to kinetic energy.
However, in the present case, the amount of kinetic energy in the equilibrium
state per unit length in the y-direction is
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KE =

∫ X

−X

[
1
2
ρHv2

steady

]
dx

= 2 × 1
2
ρgH2η2

o

∫ ∞

0

[
e−2x/LR)

]
dx (9.25)

= 1
2
ρHc2η2

oLR,

which is only one third of the potential energy released. The remainder is
radiated away as inertia-gravity waves in the transient part of the solution.

9.5 Discussion

The foregoing problem gives a great many insights into the response of a
rotating fluid to gravitational forces:

• The energy analysis indicates that energy is hard to extract from the
available potential energy in a rotating fluid. The reason is that the
geostrophic equilibrium state established retains a certain amount of
the initial available potential energy.

• The steady solution is not one of rest, but is a geostrophically-balanced
flow.

• The steady solution is degenerate in the sense that any velocity field in
geostrophic balance satisfies the continuity equation exactly. Therefore
the steady solution cannot be found by looking for a solution of the
steady-state equations - some other information is needed.

• The required information is supplied by the principle that potential
vorticity is materially conserved (or locally conserved in the linear prob-
lem). With this knowledge, a steady solution can be found.

• The equation for the steady solution contains a length scale, LR =
c/ |f |, where c =

√
(gH) is the wave speed in the absence of rotation. If

f → 0, then LR → ∞, indicating that for length scales small compared
with LR, rotation effects are small, whereas for scales comparable with
or large compared with LR, rotation effects are important.

The geostrophic adjustment problem considered above explains why the
atmosphere and oceans are nearly always close to geostrophic equilibrium on
scales comparable with or larger than the Rossby radius of deformation. This
is because if any force tries to upset such an equilibrium, the gravitational
force acts as described above to restore a near-equilibrium.
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9.6 More on the Rossby radius of deforma-

tion, LR

The Rossby radius of deformation is a fundamental length scale in atmosphere-
ocean dynamics. In essence, it is the horizontal scale at which the gross effects
of rotation are of comparable importance with gravitational (or buoyancy)
effects. To be specific, it is the scale for which the middle and last terms on
the left-hand side of Eq. (9.8) are of the same order.

In the early stages of adjustment from the initial discontinuity in the
transient problem discussed above, the change in level is confined to a small
distance and the horizontal pressure gradient is comparatively large. Accord-
ingly, gravity dominates the flow behaviour. Thus at scales small compared
with the Rossby radius, the adjustment is approximately the same as in a
nonrotating system. Later, as the change in surface elevation is spread over
a distance comparable with the Rossby radius, the Coriolis acceleration be-
comes just as important as the pressure gradient term and thus rotation leads
to a response that is radically different from that in the nonrotating case.

As shown in DM, Chapter 11, the same is true of inertia-gravity waves; the
short waves with wavenumbers much less than LR behave very much like pure
gravity waves. For waves comparable in scale with the radius of deformation,
the buoyancy term k2c2 in the dispersion relation (9.15) is comparable with
the rotation term f 2. In contrast, long waves (1/k >> LR) are dominated
by rotation effects and have frequency close to the inertial frequency f . As
we have seen, the Rossby radius of deformation is also an important scale for
the geostrophic equilibrium solution as well. In the problem analysed above,
the discontinuity did not spread out indefinitely, but only over a distance of
the order of the Rossby radius.

For geostrophic, or quasi-geostrophic flow, the Rossby radius is the scale
for which the two contributing terms to the perturbation potential vorticity
Q′ are of the same order. For a sinusoidal variation of surface elevation with
wavenumber k, the ratio of the vorticity term to the gravitational term in Q′

is ζ/(fη) = L2
Rk

2. Therefore, for short waves (1/k << LR) the vorticity term
dominates while for long waves (1/k >> LR) gravitational effects associated
with the free surface perturbation dominate.

For quasi-geostrophic wave motions, the ratio L2
Rk

2 characterizes not only
the partition of perturbation potential vorticity, but also the partition of
energy. The perturbation potential energy integrated over one wavelength is

PE = 1
2
ρgH2

∫
wavelength

η2dx, (9.26)
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whereas the kinetic energy is

KE = 1
2
ρH

∫
wavelength

(u2 + v2)dx. (9.27)

For quasi-geostrophic waves periodic in x, one can show that (see exercise
9.2) the ratio

KE

PE
= L2

Rk
2. (9.28)

Thus short-wavelength geostrophic flow contains mainly kinetic energy, while
long-wavelength geostrophic flow has most of its energy in the potential form.
The situation is different, however, for inertia-gravity waves (see exercise 9.2).

Note that changes in η are associated with changes in the mass field,
whereas changes in ζ are associated with changes in the velocity field. Thus
for large scales, the potential vorticity perturbation is mainly associated with
perturbations in the mass field and energy changes are mainly a result of
potential energy changes. On the other hand, for small scales, the potential
vorticity perturbation is mainly associated with perturbations in the velocity
field and energy changes are mainly a result of kinetic energy changes. It
follows that a distinction can be made between the adjustment processes at
different scales. At large scales (1/k >> LR), it is the mass field that is
determined by the initial potential vorticity, and the velocity field is merely
that which is in geostrophic equilibrium with the mass field. In other words,
the large-scale velocity field adjusts to be in equilibrium with the large-scale
mass field. In contrast, at small scales (1/k << LR), it is the velocity field
that is determined by the initial potential vorticity, and the mass field is
merely that which is in geostrophic equilibrium with the velocity field. In
other words, the mass field adjusts to be in equilibrium with the velocity
field.

9.7 Balanced adjustment

In some cases, if the forcing evolves slowly on the time-scale of an inertial
period, 2π/f , the response of a rotating stratified fluid to a particular type
of forcing may proceed through a series of quasi-balanced states, with negli-
gible generation of inertia-gravity waves. We consider now some simple flow
examples of this type. Again we consider flows involving a single layer of
homogeneous fluid (Fig. 9.7).

Let h(x, t) be the local fluid depth and let S(x, t) be the mass entering
the fluid layer per unit length in the x- and y-directions. For simplicity, it
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Figure 9.7: Simple flow configuration to illustrate geostrophic adjustment.

is assumed that the fluid entering does not possess horizontal momentum.
The fluid may be driven in the y-direction by a body force distribution F
per unit height and per unit length in the x-direction.

Conservation of mass in the shaded fluid element in Fig. 9.7 requires that

uh− (u+ δu)(h+ δh) + Sδx = (δ/δt)(hδx),

which in the limit as δx→ 0 gives

∂h

∂t
+

∂

∂x
(uh) = S, (9.29)

The momentum equations are

∂u

∂t
+ u

∂u

∂x
− fv = −g∂h

∂x
, (9.30)

and

∂v

∂t
+ u

[
∂v

∂x
+ f

]
= F. (9.31)

For the moment, we assume that any motions are such that the first two
terms in (9.30) are small enough for v to remain geostrophically-balanced,
i.e.

fv = g
∂h

∂x
. (9.32)

Then, differentiating (9.32) with respect to time and using (9.29) and (9.31)
to eliminate time derivatives yield a diagnostic equation for u, namely

∂2

∂x2
(hu) − f

gh

(
f +

∂v

∂x

)
(hu) = −f

g
F +

∂S

∂x
. (9.33)

The solution procedure is then as follows: given F and/or S, Eq. (9.33)
can be solved for u, following which h and v can be predicted at the next
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time level using (9.29) and (9.31). The associated dynamical processes are
brought out by considering special examples.

I. Assume S = 0; F > 0 for −a < x < a and F = 0 for |x| ≥ a; see Fig
9.8(a). Also v(x, 0) = 0 and h(x, 0) = H , a constant

Figure 9.8: Illustration of (a) the initial state, and (b) the adjusted state.
See text for details.

Physically, what happens is as follows. As time increases v increases
accordingly to (9.31). The Coriolis torque acting to the right of v (for f > 0)
generates flow to the right in the region −a < x < a as shown in Fig. 9.8(b).
According to our balance assumption, ∂u/∂t and u∂u/∂x remain small so
that this Coriolis torque is balanced by the negative pressure gradient force
(−g∂h/∂x). Our interest lies in the horizontal extent of the disturbance
outside the forcing region (−a, a).

Let us study the linear problem in which F is a constant in (−a, a) and
zero for |x| > a. If h = H(1 + η), then (9.29), (9.31), (9.32) and (9.33)
become

∂η

∂t
+
∂u

∂x
= 0, (9.34)

∂v

∂t
+ fu = F, (9.35)

fv = gH
∂η

∂x
, (9.36)
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and

∂2u

∂x2
− u

L2
R

=
F

fL2
R

, (9.37)

where

LR =
√
gH/f, (9.38)

is the Rossby radius of deformation. The solution of (9.37) which is contin-
uous and has a continuous x-derivative3 at x = −a and a, and which decays
to zero as |x| → ∞ is (see Ex. 9.1)

u(x) =

(
F

f

)
×



sinh(a/LR) ex/LR , x ≤ −a[
1 − e−a/LR cos h (x/LR)

]
, |x| ≤ a

sinh(a/LR) e−x/LR , x ≥ a
(9.39)

Note that this solution is independent of time. Moreover, the influence of
forcing has an e-folding decay-scale equal to the Rossby radius LR. From
(9.34) it follows that

h(x, t)

H
=




1 − (Ft/LRf) sinh(a/LR) ex/LR x ≤ −a,[
1 + (Ft/LRf)e−a/LR sinh (x/LR)

] |x| ≤ a,
1 + (Ft/LRf) sinh(a/LR) e−x/LR x ≥ a,

(9.40)

and from (9.36) that

v(x, t) = Ft×



− sinh(a/LR) ex/LR x ≤ −a,
e−a/LR cosh (x/LR) |x| ≤ a,
− sinh(a/LR) e−x/LR x ≥ a,

(9.41)

The profiles of u/(F/f), [H−1h(x, t) − 1]/(Ft/af), and v/(Ft), are shown
in Fig. 9.9 for the three values of LR: 1

2
a, a and 2a. Note also that the

disturbance is dispersed further from the forcing region as LR is increased.
Note that u is positive for all values of x. Accordingly, the associated Coriolis
torque implies a negative v velocity component, except in the forcing region
where this torque is outweighed by the body force F . The discontinuity in
∂h/∂x at x = ±a and the corresponding discontinuity in v are consistent
features within the inviscid model, but would be smeared out by viscosity in
a real fluid.

3From (10.6) it is clear that continuity of ux ensures continuity of ht and hence of h,
and finally of pressure.
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Figure 9.9: Nondimensional solutions for u, h and v from Eqs. (9.39) - (9.41)
for different values of LR as indicated.

II. Assume that F ≡ 0, but that S �= 0 in the region −a < x < a. Assume
again that v(x, 0) = 0 and h(x, 0) = H , a constant (see Fig. 9.10).

The physics of the example provides much insight into the adjustment
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Figure 9.10: Geostrophic adjustment in response to the addition of mass.

process. Clearly, the addition of mass will lead to an outward pressure gra-
dient which, if S is symmetric about x = 0, leads to a positive u for x > 0
and a negative u for x < 0. Hence the associated Coriolis torques imply
sgn (v) = −sgn(u) from (9.35). But the Coriolis torques associated with v
oppose the x-component of pressure gradient and this feedback again limits
the spread of the disturbance. To be specific, suppose that

S(x) =




S0 (x+ a)/a if −a ≤ x ≤ 0,
S0 (a− x)/a if 0 ≤ x ≤ a,
0 if |a| ≤ x.

(9.42)

If we assume the disturbance to be of small amplitude so that the governing
equations may be linearized, the problem can be readily solved to give

u(x) =

{
S
[
1 − e−x/LR − e−µ sinh(x/LR)

]
for 0 ≤ x ≤ a,

S [cosh µ− 1] e−x/LR for a ≤ x,
(9.43)

h(x, t) =

{
S tµ

[
e−µ cosh(x/LR) − e−x/LR − µ(x− 1)

]
for 0 ≤ x ≤ a,

S tµ [cosh µ− 1] e−x/LR for a ≤ 0,
(9.44)

v(x, t) =

{
S ft

[
e−x/LR + e−µ sinh(x/LR) − 1

]
for 0 ≤ x ≤ a,

S ft [1 − cosh µ] e−x/LR for a ≤ x,
(9.45)

where S = aS0/m
2H , and µ = a/LR, and where u(x) and v(x, t) are odd

functions of x and h(x, t) is an even function. The curves representing
u(x)/S, h(x, t)/St and v(x, t)/Sft as functions of x/a are shown in Fig.
9.11. Once more, the e-folding decay scale for the disturbance is the Rossby
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radius of deformation and if this is small compared with a, the disturbance is
effectively confined by the Coriolis forces to the neighbourhood of the forcing
region.

Figure 9.11: Nondimensional solutions for u, h and v from Eqs. (9.39) -
(9.41) for different values of HR as indicated.

Evidently, if the Coriolis effects are large (LR << a), the mass field is
unable to redistribute and the wind field adjusts to the mass field. Conversely,
if Coriolis effects are small (LR >> a), the mass disperses and thereby adjusts
to the wind field, in this case zero. Even at this stage of our analysis, there
is the suggestion that this may be a rather general result in the response
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of rotating stratified fluid system to forcing, provided, of course, that the
forcing does not act too quickly to invalidate the assumption of balance in
Eq. (9.36).

Exercise

(9.1) Show that the solution of (9.37) that is continuous and has continuous
x-derivatives at x = −a and a, that decays to zero as |x| → ∞ given
by (9.39).

(9.2) Show that for quasi-geostrophic waves that are periodic in x,

1
2
ρgH2

∫
wave η

2dx = 1
2
ρgH2

∫
wave (u2 + v2)dx.

Using the fact that for such waves, ζ/fη = L2
Rk

2 (see page 86), ver-
ify the result (9.27). [Hint: consider

∫
wave ζηdx with z calculated

geostrophically in terms of η].

Starting from the equations for small-amplitude inertia-gravity waves
propagating in the x-direction, show that

KE

PE
= 1 +

2

L2
Rk

2
,

and contrast the implications of this formula with those from Eq.
(9.27).
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Chapter 10

VERTICAL COORDINATE
TRANSFORMATIONS

Let ε = ε(x, y, z, t) be a new vertical coordinate in place of z. Then, any de-
pendent quantity ψ can be expressed either as ψ(x, y, z, t), or as ψ(x, y, ε, t),
where

ψ(x, y, ε(x, y, z, t), t) = ψ(x, y, z, t) (10.1)

Differentiating with respect to x (or y, or t)

∂ψ

∂x

∣∣∣∣
ε

+
∂ψ

∂ε

∂ε

∂x

∣∣∣∣
z

=
∂ψ

∂x

∣∣∣∣
z

, (10.2)

and with respect to z,

∂ψ

∂ε

∂ε

∂z
=
∂ψ

∂z
. (10.3)

The material derivative at constant z may be transformed thus:

D

Dt

∣∣∣∣
z

=
∂

∂t

∣∣∣∣
z

+ u
∂

∂x

∣∣∣∣
z

+ v
∂

∂y

∣∣∣∣
z

+ w
∂

∂z

=
∂

∂t

∣∣∣∣
ε

+ u
∂

∂x

∣∣∣∣
ε

+ v
∂

∂y

∣∣∣∣
ε

+ ε̇
∂

∂ε
, (10.4)

where

ε̇ =
∂ε

∂t
+ u

∂ε

∂x
+ v

∂ε

∂y
+ w

∂ε

∂z
=
Dε

Dt
. (10.5)

Note that u, v remain horizontal velocity components, but are calculated at
the local value of ε instead of the corresponding value of z. The quantity ε̇
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plays a role in the transformed equations analogous to the vertical velocity
component w in height coordinates.

Equation (10.1) can be written in the alternative form

ψ(x, y, z, t) = ψ(x, y, z(x, y, ε, t), t), (10.6)

from which we can deduce that

∂ψ

∂x

∣∣∣∣
ε

=
∂ψ

∂x

∣∣∣∣
z

+
∂ψ

∂z

∂z

∂x

∣∣∣∣
ε

, (10.7)

and

∂ψ

∂ε
=
∂ψ

∂z

∂z

∂ε
. (10.8)

Define

∇z =

(
∂

∂x
,
∂

∂y
, 0

)
z

. (10.9)

Then using (10.7) we have

∇z =

(
∂

∂x
,
∂

∂y
, 0

)
ε

−
(
∂z

∂x
,
∂z

∂y
, 0

)
ε

∂

∂z
= ∇ε − (∇εz)

∂

∂z
. (10.10)

10.1 Possible choices for ε

Coordinate transformations can be particularly useful when the motions are
of a large enough scale for the hydrostatic approximation to be valid. Possible
choices for ε are then the pressure p, or some function thereof; e.g.

• ε = −Rlnp: this is proportional to height in an isothermal atmosphere
and can be a convenient coordinate to use in the stratosphere;

• ε = (Hs/κ)[1 − (p/p∗)κ]: this is proportional to height in an adiabatic
atmosphere and was introduced by Hoskins and Bretherton (1972):

• ε = p/ps(x, y, t), where ps is the surface pressure: this is the so-called
sigma coordinate introduced by Phillips (1957), and is favoured in op-
erational numerical weather prediction models;

• ε = θ, the potential temperature: this leads to simplifications of the
equations which prove useful in diagnostic interpretations of adiabatic,
frictionless motion.
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• We confine our attention here to the so-called isentropic coordinate
system with ε = θ.

10.2 Isentropic coordinates ε = θ

In isentropic coordinates, the ‘pseudo-vertical velocity’ is identically zero for
adiabatic motion, i.e.

ε̇ =
Dθ

Dt
= 0. (10.11)

In other words, the vertical motion field is implicit in the coordinate trans-
formation and need not be considered directly. However, this can lead to
difficulties at boundaries (see Andrews, 1983).

10.3 The horizontal momentum equation

The horizontal pressure gradient transforms as follows. From Eq. (10.10),

−α∇zp = −α∇θp+ α
∂p

∂z
∇θz

= −RT
p

∇θp− g∇θz, (10.12)

using the hydrostatic equation (α∂p/∂z = −g) and the gas equation (pα =
RT ). Now ln θ = ln T+κ ln p∗−κ ln p, whereupon, at constant θ, R ln p =
cp ln T + constant. It follows that

R

p
∇θp =

cp
T
∇θT

and then from (10.12) that

−α∇zp = −∇θ(cpT + gz). (10.13)

The quantity cpT + gz is called the Montgomery potential, denoted by M .
Using (10.4), (10.11) and (10.13), the horizontal momentum equation for
adiabatic motion can be written as

∂

∂t
uh + uh · ∇θuh + fk ∧ uh = −∇θM. (10.14)

If the motion is geostrophic, then we can solve for uh in the normal way to
obtain
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uh =
1

f
k ∧∇θM. (10.15)

Thus the geostrophic wind blows parallel to the isopleths of constant M on an
isentropic surface. The wind speed is proportional to the gradient of M and
the blows with low values of M to the left (right) in the northern (southern)
hemisphere.

10.4 The vertical momentum equation

When hydrostatic balance is satisfied, the vertical momentum equation is
0 = −α∂p/∂z + g. We wish to express this in terms of M . First note
that θ = T (p∗/p)κ implies that cp ln θ = cp ln T −R ln p + constant, since
κ = R/cp. Then, differentiating gives

cp
θ

=
cp
T

∂T

∂θ
− R

p

∂p

∂θ
,

or

cp
T

θ
=

∂

∂θ
(cpT ) − α

∂p

∂θ
. (10.16)

But in z-coordinates, the hydrostatic equation, α∂p/∂z = −g, transforms to
α(∂p/∂θ)(∂θ/∂z) = −g, or

α
∂p

∂θ
= −g∂z

∂θ
. (10.17)

Combining (10.16) and (10.17) gives

∂M

∂θ
= cp

T

θ
, (10.18)

which is the isentropic-coordinate form of the hydrostatic equation.

10.5 The continuity equation

In height-coordinates the full continuity equation takes in the form(
∂u

∂x
+
∂v

∂y

)
z

+
∂w

∂z
= −1

ρ

Dρ

Dt
, (10.19)

which, using (10.10), transforms to
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(
∂u

∂x
+
∂v

∂y

)
θ

+
∂u

∂θ

∂θ

∂x
+
∂v

∂θ

∂θ

∂y
+
∂w

∂θ

∂θ

∂z
= −1

ρ

Dρ

Dt
. (10.20)

Now

∂θ̇

∂θ
=

∂

∂θ

Dθ

Dt
=

D

Dt

(
∂θ

∂θ

)
+
∂u

∂θ

∂θ

∂x
+
∂v

∂θ

∂θ

∂y
+
∂w

∂θ

∂θ

∂z
. (10.21)

Also, from the hydrostatic equation, ρ = −g−1(∂p/∂θ)(∂θ/∂z), so that

ln ρ = ln(∂θ/∂z) + ln(−∂p/∂θ) − ln g.

Then

D

Dt
ln ρ =

D

Dt
ln

(
∂θ

∂z

)
+
D

Dt
ln

(
∂p

∂θ

)
. (10.22)

Also

D

Dt

(
∂θ

∂z

)
=

∂

∂z

(
Dθ

Dt

)
−
(
∂u

∂θ
· ∇θ

)
∂θ

∂z

=

[
∂θ̇

∂θ
− ∂u

∂θ
· ∇θ

]
∂θ

∂z
≡ 0 , using (10.21) ,

whereupon, using (10.19) to (10.22) we obtain the unapproximated continuity
equation in isentropic coordinates as(

∂u

∂x
+
∂v

∂y

)
θ

+
∂θ̇

∂θ
= −

(
∂p

∂θ

)−1
D

Dt

(
∂p

∂θ

)
.

This is often written in the form:

∂σ

∂t
+

∂

∂x
(σu) +

∂

∂y
(σv) +

∂

∂θ
(σθ̇) = 0, (10.23)

where σ = −(1/g)(∂p/∂θ) = ρ(∂z/∂θ) is called the pseudo-density. The
integral of σ between two isentropic surfaces is just the mass of air between
these surfaces per unit horizontal area.

For adiabatic motion, θ̇ ≡ 0 and (10.23) simplifies further to acquire
a quasi-two-dimensional form. An alternative derivation of the continuity
equation is given by Pichler, (1984, pp. 239-240).
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10.6 The vorticity equation

The horizontal momentum equation in its most general (nonadiabatic) form
can be written as

∂uh
∂t

∣∣∣∣
θ

+ 1
2
∇θu

2
h + (fk + ∇θ ∧ uh) ∧ uh + θ̇

∂uh
∂θ

= −∇θM.

Taking k ×∇θ∧ of this equation gives

∂ηθ
∂t

∣∣∣∣
θ

+ ∇θ · (uhηθ) = −k · ∇θ ∧
(
θ̇
∂uh
∂θ

)
, (10.24)

where

ηθ = ζθ + f = k · ∇θ ∧ uh + f, (10.25)

is the vertical component of absolute vorticity in isentropic coordinates. Equa-
tion (10.24) is the vorticity equation in isentropic coordinates. The term on
the right-hand side of (10.24) is analogous to the tilting term in height coor-
dinates and here it vanishes for adiabatic motion when θ̇ ≡ 0. In this case,
the vorticity equation becomes

∂ηθ
∂t

+ uh · ∇ηθ = −ηθ∇ · uh. (10.26)

Combining this with the continuity equation, i.e., Eq.(10.23), we obtain

1

η

Dη

Dt
=

(
∂p

∂θ

)−1
D

Dt

(
∂p

∂θ

)
or

D

Dt

[
(ζθ + f)

∂θ

∂p

]
= 0. (10.27)

The quantity −g(ζθ + f)(∂θ/∂p) is called the potential vorticity (PV). It is
equal to the Ertel Potential Vorticity, ρ−1(ω + f) · ∇θ, defined in a height
coordinate system. Equation (10.27) shows that the PV is conserved for
frictionless, adiabatic motion.

Exercises

(10.1) Show that
uh · ∇uh = 1

2
∇hu

2
h − uh ∧ (∇h ∧ uh).
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(10.2) Show that

∇z · uh = ∇θ · uh +
∂θ

∂p

[
∂uh
∂θ

· ∇θφ

]
.

(10.3) Show that

∇z ∧ uh = ∇θ ∧ uh + ρ
∂θ

∂p

[
∇θφ ∧ ∂uh

∂θ

]
.

(10.4) Show that the mass per unit horizontal area between two isobaric sur-
faces with pressures p1 and p2 (< p1) is (p1−p2)/g. Show that the same
quantity between two isobaric surfaces with potential temperatures θ1
and θ2 can be written∫ θ2

θ1

σdθ, where σ = −1

g

∂p

∂θ
.

(10.5) By cross differentiating the two components of Eq. (10.14) for the case
in which a body force F = (F,G,O) acts on the right-hand-side, show
that

∂

∂t
(σQ) +

∂

∂x

(
uσQ+ θ̇

∂v

∂θ
−G

)
+

∂

∂y

(
vσQ− θ̇

∂u

∂θ
+ F

)
= 0,

(10.28)
where Q = ∂v/∂x − ∂u/∂y + f , is the vertical component of absolute
vorticity in isentropic coordinates.

Show that the corresponding equation in pressure coordinates takes the
form

∂

∂t
ζap +

∂

∂x

[
uζap + ω

∂v

∂p
−G

]
+

∂

∂y

[
vζap − ω

∂v

∂x
+ F

]
= 0, (10.29)

where ζap is equivalent to Q in (10.28).
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Appendix A

Derivation of Eq. (4.41)

Equations (4.39), (4.38), (4.36) may be rearranged to give, respectively,

ikû2 = −imŵ2 − ŵ1Z (A.1)

iω∗σ̂2 = N2ŵ2 + σ̂1T , (A.2)

ikP̂2 = iω�û2 − û1T − UZŵ1

=
ω�

k
(−imŵ2 − ŵ1Z) − û1T − UZŵ1, (A.3)

where (A.1) was used in deriving (A.3). Then substitution into (4.37) gives

−iω�ŵ2 +
m

k

[
ω�

k
(−imŵ2 − ŵ1Z) − û1T − UZŵ1

]
− 1

iω�
[
N2ŵ2 + σ̂1T

]
= −ŵ1T − P̂1Z

or

ŵ2

[
ω∗2

+ ω∗2m2

k2
−N2

]
− iω∗2

(m/k2)ŵ1Z − (û1T + UZŵ1) (iω∗m/k) − σ̂1T

= −iω∗ŵ1T − iω∗P̂1Z . (A.4)

The coefficient of ŵ2 is zero on account of (4.34). Now, using expressions
connecting û1, P̂1 and σ̂1 with ŵ1 from the formulae: kû1 = −mŵ1, iω

∗σ̂1 =
N2ŵ1, and kP̂1 = ω∗û1 = −(ω∗m/k)ŵ1, obtained from the linear problem,
(A.4) reduces to
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2(m2 + k2)ŵ1T − 2mω∗
1Z − ω∗mZŵ1 = 0. (A.5)

Multiplication by the complex conjugate1 of ŵ1 and adding the resulting
equation to its complex conjugate gives[

(m2 + k2)|ŵ1|2/ω∗]
T
− [m|ŵ1|2

]
Z

= 0. (A.6)

The mean wave-energy density E, is given by

E = 1
2
ρ∗
∣∣û2 + ŵ2

∣∣ = 1
2
ρ∗|ŵ|2

[
m2

k2
+ 1

]
(A.7)

so that (A.6) becomes

∂

∂T

[
E

ω∗

]
− ∂

∂Z

[
1
2
ρ∗
m

k2
|ŵ|2
]

= 0, (A.8)

assuming that the mean density ρ∗ is a constant (the Boussinesq approxima-
tion). Finally, differentiating (4.34) with respect to m gives

ω∗∂ω
∗

∂m
=

−mω∗2

k2 +m2
,

whereupon the second term in (A.8) becomes −(E/ω∗)wg, where wg =
∂ω∗/∂m = ∂ω/∂m, and (A.8) is just (4.41) as required.

1Note that ω∗ denotes the intrinsic frequency: it is a REAL quantity. Note also that
z̄zT + zz̄T = |z|2T , where a bar denotes the complex conjugate.
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Appendix B

Poisson Equation

Poisson’s equation is the second-order, elliptic, partial differential equation

∂2h

∂2x
+
∂2h

∂2y
= −F (x, y). (B.1)

Figure B.1: Equilibrium displacement of a stretched membrane over a square
under the force distribution F (x, y).

Consider the solution in the square region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
subject to the (Dirichlet) boundary condition h = 0 on the boundary of the
square. The equation with this boundary condition solves the problem of the
equilibrium displacement of a stretched membrane over the square boundary
when subjected to a force distribution per unit area proportional to F (x, y)
in a direction normal to the (x, y) plane. Of course, the boundary condition
specifies zero displacement along the square boundary and the equation itself
holds for small displacements of the membrane. The membrane analogy is
useful as it allows us to use our intuition on how such a membrane would
deform under a given force distribution (e.g., maximum displacement where
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the force is a maximum) to anticipate the form of solution without having
to solve the equation (Fig. B.1).

As a specific example, suppose there is a point force at the centre (1
2
, 1

2
)

of the unit square represented by delta-functions,

F (x, y) = δ(x− 1
2
)δ(y − 1

2
). (B.2)

We expect the solution to be symmetric about the diagonals of the square
as shown in Fig. (B.2).

Figure B.2: Isopleths of membrane displacement subject to a point force at
the centre point (1

2
, 1

2
), giving rise to unit displacement at that point.

In fact, the isopleths of membrane displacement are determined analyti-
cally by the Green’s function for the centre point, i.e.

2
∞∑
1

sinh (nπx) sinh (nπ/2) sin (nπy) sin (nπ/2)

nπ sinh nπ
0 ≤ x ≤ 1

2

h(x, y) = (B.3)

2

∞∑
1

sinh (nπ/2) sinh (nπ(1 − x)) sin (nπy) sin (nπ/2)

nπ sinh nπ
0 ≤ x ≤ 1

see Friedman, (1956; p. 262, Eq. 12.19), although Fig. B.2 was obtained
by solving (B.1) numerically subject to an approximation to (B.2). Note
especially that, although the force acts at a point, the response is distributed
over the region. Now consider the response of the rectangular membrane
0 ≤ x ≤ 3, 0 ≤ y ≤ 1 due to a point force at the intersection of the diagonals
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(3
2
, 1

2
). The isopleths of membrane displacement, again normalized so that

the maximum diaplacement is unity, are shown in Fig. B.3. Note that in

Figure B.3:

this case, the scales of response are set by the smallest rectangle length, in
this case 1

2
.

Suppose, that we wish to infer the response of a membrane with nonuni-
form extension properties, as described for example by the equation

N2∂
2h

∂x2
+ f 2∂

2h

∂z2
= −F (x, z), (B.4)

in the rectangular region 0 ≤ x ≤ L, 0 ≤ z ≤ H , again with F (x, z) given
by a point force proportional to δ(x − 1

2
L)δ(z − 1

2
H). We consider the case

H << L and assume that N and f are constants. The equation may be
transformed to one with unit coefficients by dividing both sides by N2 and
making the substitution z = (f/N)Z, whereupon

∂2h

∂x2
+
∂2h

∂Z2
= − 1

N2
δ
[
x− 1

2
L
]
δ
[
Z − 1

2
LR
]
, (B.5)

where LR = HN/f . The equation is valid for the region 0 ≤ x ≤ L, 0 ≤
Z ≤ LR. In the case L > LR, as exemplified in Fig. B.3, the response scale
is the same, LR, in both the x and Z directions. The latter corresponds with
scale H for z. This last result is important in geophysical applications, for
in a strably-stratified rotating fluid characterized by constant Brunt-Väisälä
frequency N and constant Coriolis parameter f , we encounter equations of
the type (B.4) for the streamfunction ψ(x, z), usually in configurations where
the aspect ratio of the flow domain, say H/L, is small. Typically, in the
atmosphere, f/N ∼ 10−2. According to the foregoing results, provided L >
LR, then the horizontal length scale of the response is LR = HN/f , which
is just the Rossby radius of deformation. Since H is typically 10 km, the
criterion L > LR requires that L > 1000 km. If L < LR, the horizontal scale
of response will be set by L and the vertical scale of response is then Lf/N ,
sometimes referred to as the Rossby depth scale. The former situation, which
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is usually the case for geophysical flows, is illustrated in Fig. B.4 by numerical
solutions of (B.4) in the region where L = 2000 km, H = 10 km, for four
different values of LR. Again a localized “force” F (x, y) is applied at the point
(1

2
L, 1

2
H) and the isopleths of “membrane displacement” are normalized so

that the maximum displacement is unity. In all cases, L > LR, but note
how the horizontal scale of response decreases as LR decreases. If other
boundary conditions are imposed along all or part of the domain boundary,
the foregoing ideas may have to be revised.

Figure B.4:
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& Sohn, Braunschweig/Wiesbaden, 318pp.

[6] Gill, A. E., 1982: Atmosphere - Ocean Dynamics. Academic Press,
662pp.

[7] Haltiner, G. J., 1980: Numerical Weather Prediction (2nd Edition).
Wiley, 477pp.

[8] Holton, J. R., 1992: An Introduction to Dynamic Meteorology (3rd
Edition) Academic Press, 507pp.

[9] Holton, J. R., 1975: The Dynamic Meteorology of the Stratosphere and
Mesosphere. Amer. Met. Soc. Monograph, 216pp.

[10] James, I. N., 1994: Introduction to Circulating Atmospheres. Cambridge
University Press, 422pp.

[11] Pedlosky, J., 1979: Geophysical Fluid Dynamics. Springer, 624pp.

[12] Pichler, H., 1986: Dynamik der Atmosphäre. Bibliographisches Institut,
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