====== Benchmark results ===== The results in this section are well established benchmark results to be used for validation of newly developed codes. ==== Rayleigh scattering ==== * Comprehensive tables for Rayleigh scattering: \\ //K. L. Coulson, J. V. Dave, and Z. Sekera. Tables Related to Radiation Emerging from a Planetary Atmosphere with Rayleigh Scattering. University of California Press, 1960.// * Correction for the Coulson's et al. Rayleigh tables: \\ //Nataraj V., Li K.-F., and Young Y.I., 2009: Rayleigh scattering in planetary atmospheres: corrected tables through accurate computation of X and Y functions. Astrophysical Journal, 691, pp. 1909-1920.//\\ Tables can be downloaded at [[http://web.gps.caltech.edu/~vijay/Rayleigh_Scattering_Tables/|]]. * Rayleigh scattering (single scattering albedo as a function of optical depth):\\ //Mishchenko, M.I., 1990: The fast invariant imbedding method for polarized light: computational aspects and numerical results for Rayleigh scattering. J. Quant. Spectrosc. Radiat. Transfer 43, No 2, 163-171.// * Internal radiation field of a planetary atmosphere:\\ //Stammes P., de Haan JF, and Hovenier JW, 1989: The polarized internal radiation field of a planetary atmosphere. Astron.Astroph, 225, pp.239-259.// ==== Aerosol scattering ==== * Results for aerosol scattering (aspherical particles) can be found in the following publication: \\ //Wauben, W. M. F. and Hovenier, J. W.: Polarized radiation of an atmosphere containing randomly-oriented spheroids, J. Quant. Spectrosc. Radiat. Transfer, 47, 491–504, doi:10.1016/0022-4073(92)90108-G, 1992.// * Two homogeneous layers above a Lambertian surface. Non-zero depolarization factor is assumed for the top (Rayleigh) layer: \\ //Wauben, W.M.F., J.F. de Haan, and J.W. Hovenier, 1994: A method for computing visible and infrared polarized monochromatic radiation in planetary atmospheres. Astron. Astrophys. 282, 277-290.// * Some results for I and Q for low orders of scattering, as well as sum of all scatterings are given in:\\ //Wauben WMF, de Haan JF, and Hovenier JW, 1993: Low orders of scattering in plane-parallel homogeneous atmosphere. Astron.Astroph., 276, pp.589-602.// * Two homegeneous layers (aerosol+Rayleigh) \\ //Haan, J.F. de, P.B. Bosma, and J.W. Hovenier, 1987: The adding method for multiple scattering calcualtions of polarized light. Astron. Astrophys. 183, 371-391.// * Reflected, transmitted and internal light field: Two types of aerosols with L=13 and 60 moments are considered in\\ //Garcia, R.D.M., C.E. Siewert, 1989: The FN method for radiative transfer models that include polarization effects, . J. Quant. Spectrosc. Radiat. Transfer 41, No 2, 117-145.// * Results for similar scenarios but with smaller number of significant digits are tabulated in: \\ //Garcia, R.D.M., C.E. Siewert, 1986: A generalized spherical harmonics solution for radiative transfer models that include polarization effects, . J. Quant. Spectrosc. Radiat. Transfer 36, No 5, 401-423.// * One of the two scenarios mentioned above, the L=13 case, is tabulated in:\\ // Siewert, C. E., 2000: A discrete-ordinates solution for radiative-transfer models that include polarization effects. J. Quant. Spectrosc. Radiat. Transfer 64, 227-254.// * Those working with Fourier decomposition of the light field, might find useful the following paper where results are given for several first Fourier moments separately: \\ // Vestrucci, P., C.E. Siewert, 1984: A numerical evaluation of analytical representation of the components in a Fourier decomposition of the phase matrix for the scattering of polarized light. J. Quant. Spectrosc. Radiat. Transfer, 31, No 2, 177-183.// ==== Cloud and aerosol scattering (realistic phase matrix) ==== * Realistic phase matrices with sharp forward scattering peak: \\ //A. A. Kokhanovsky, V. P. Budak, C. Cornet, M. Duan, C. Emde, I. L. Katsev, D. A. Klyukov, S. V. Korkin, L. C-Labonnote, B. Mayer, Q. Min, T. Nakajima, Y. Ota, A. S. Prikhach, V. V. Rozanov, T. Yokota, and E. P. Zege. Benchmark results in vector atmospheric radiative transfer. J. Quant. Spectrosc. Radiat. Transfer, 111(12-13):1931 - 1946, 2010.// \\ Benchmark results available at [[http://www.iup.uni-bremen.de/~alexk/| A. Kokhanovsky's homepage]]. ==== Coupled atmosphere-ocean models ==== * //Jacek Chowdhary, Peng-Wang Zhai, Feng Xu, Robert Frouin, Didier Ramon, Testbed results for scalar and vector radiative transfer computations of light in atmosphere-ocean systems, JQSRT, Volume 242, 2020.// [[https://www.sciencedirect.com/science/article/abs/pii/S002240731930370X|link]] ==== More benchmark results ==== * Scattering of a completely linear polarized beam, Fo=[1 1 0 0]:\\ //Mishchenko M.I., 1991: Reflection of polarized light by plane-parallel slabs containig randomly-oriented, nonspherical particles. JQSRT, 46(3), pp.171-181. // * Results for different total optical thicknesses of a layer, different phase matrices, and two types of incident beams, natural Fo=[1 0 0 0] and elliptically polarized Fo=[1 0 0 1]:\\ //Garcia RDM, Siewert CE, 2011: A simplified implementation of the discrete -ordinates method for a class of problems in radiative transfer with polarization. JQSRT, 112, pp.2801-2813.// * //Garcia R, Siewert CE, 1985: Benchmark results in raditive transfer. Transport Theory and Statistical Physics, 14, pp.437-484.// * //Maiorino J.R., Siewert C.E., 1980: The FN method for poalrization studies - II.Numerical Results. JQSRT, 24, pp.159-165.//