Balanced Dynamical Theory
The primary and secondary

circulations

Chapter 2



Axisymmetric Theory
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To a good first approximation, a mature TC consists of a
horizontal quasi axisymmetric circulation, on which is
superimposed a thermally direct overturning circulation




Inviscid equations of motion

In a rotating coordinate system in cylindrical polar coordinates
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0 is the diabatic heating rate (1/ cpﬁ')Dh/_Dt (see Eq. 1.13), and 7 = (p/p.)" is the
Exner function. The temperature is defined by 7" = 7.




Absolute angular momentum
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Eq. (3.7) follows from r times Eq. (3.2)




Tropical cyclone intensification

Basic principle: conservation of absolute angular momentum:

M =rv +1fr’

M .
v=——1fr ‘ If r decreases, v increases!

‘ Spin up requires radial convergence




Conventional view of intensification: axisymmetric

Thermally-forced secondary circulation leads to spin up
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M not conserved, inflow feeds the clouds with moisture

Is that it? See later for a surprise
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FiG. 9. Trajectories formed by particles released at various radii and pressure levels at ¢ = (. Most particles
that reach the outflow level are transported outward by the outflow jet. Most particles released at radii of

20 km (A) and 100 km (B) are “trapped” inside the radius of the maximum wind and only rise slowly and
drift toward the NW,



A typical vortex

Tangential wind speed, Pressure
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AAM In a typical vortex
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Primary circulation

- - 0.
Gradient wind 1@ =~ 4 fu, (3.9)
p Or Y
Hydrostatic %% — (3.10)
Thermal wind equation
dlnp dlmp  9oC
95, +C B (3.11)
02 ‘

C'=—+ f1 (3.12)

r




Gradient wind balance
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Thermal wind equation

Gradient wind balance Hydrostatic balance
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Thermal wind equation




Physical interpretation

Thermal wind equation
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Thermal wind equation
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Mathematical solution
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Characteristics are 1sobaric surfaces
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Inferences
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Summary

» A barotropic vortex is cold cored if temperature contrasts
are measured at constant height.

» A baroclinic vortex is warm cored If temperature contrasts
are measured at constant height and If —ov/oz Is large
enough.




A typical vortex

Tangential wind speed, Pressure
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The secondary circulation

Thermal wind equation
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Exercise 3.2  Show that Eq. (3.12) may be reformulated as
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Generalized buoyancy

p = constant
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A scale analysis

continuity
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A scale analysis
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A scale analysis
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A scale analysis

w-momentum
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The secondary circulation

A balanced theory: The Sawyer-Eliassen equation

ContinUity > U = —i()—L w = ic)_a (3.57)
rp 0z rp o

(&5 ¢
=l

Thermal wind =
gc")(ln X) 2 Cé)(ln X) aC

= = (3.17)
Prognostic equations
v . . )
g +u((+ fl+wS="V (3.58)

Jx , 5% ‘ I\ C i il 9
E =+ U-E + IL-E = —x“6 (339)




A balanced theory: The Sawyer-Eliassen equation

olot (thermal wind equation)
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A balanced theory: The Sawyer-Eliassen equation

olot (thermal wind equation)
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The Sawyer-Eliassen equation
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The Sawyer-Eliassen equation
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Figure 3.11: Streamfunction responses to point sources of: (a) Heat in a barotropic
vortex with weak inertial stability, (b) heat in a barotropic vortex with strong inertial
stability, (c¢) heat in a baroclinic vortex, (d) momentum in a barotropic vortex with
weak inertial stability, (e) momentum in a barotropic vortex with strong inertial
stability, and (f) momentum in a baroclinic vortex. (Based on Figs. 8, 9, 11, and 12




The Sawyer-Eliassen equation
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Figure 3.12: Secondary circulation induced in a balanced vortex by (a) a heat source
and (b) a cyclonic momentum source showing the distortion induced by variation
in inertial stability, 7? and thermodynamic stability. N2, and baroclinicity S?. The
strong motions through the source follow lines of constant angular momentum for a
heat source and of constant potential temperature for a momentum source. From

Willoughby (1995)




A balance theory for the evolution of an axisymmetric vortex

1. Solve for the initial balanced density |
and pressure fields corresponding to d(In y) L C Ad(In x) aC'
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Issues

s As tropical cyclones intensify, the boundary layer and upper-
tropospheric outflow region generally develop regions of zero or
negative discriminant (D < 0) implying symmetric instability. Then the
global balance solution breaks down.
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If the regions of D < 0 remain localized, one may apply a regularization
procedure to keep the Sawyer-Eliassen equation elliptic and thus solvable.

s How to formulate the forcing terms in the Sawyer-Eliassen equation,
I.e. the diabatic heating rate and the near-surface frictional force?

The representation of diabatic heating in terms of the evolving flow
constitutes the cumulus parameterization problem. Typically, this requires
the inclusion of a prediction equation for water vapour and, in more
sophisticated representations, for various species of water condensate.

*» The boundary layer IS NOT balanced!




Barotropic stability

The parcel at A conserves its
angular momentum
during its radial displacement to B
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Net radial force on a displaced air parcel

Radial pressure gradient at B
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Net force on parcel at B

F = centrifugal + Coriolis force — radial pressure gradient
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Net radial force on a displaced air parcel

1 1 5, R
F == |(r+511f) = (v + 513 f)| (3.19)
2

In the special case of solid body rotation, v = €r, and for a small displacement
from radius ry = r to ro = r+1’, (3.19) gives
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