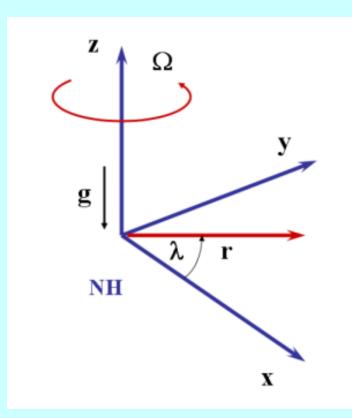
# **Balanced Dynamical Theory** The primary and secondary circulations



## **Axisymmetric Theory**



To a good first approximation, a mature TC consists of a horizontal quasi axisymmetric circulation, on which is superimposed a thermally direct overturning circulation

### **Inviscid equations of motion**

in a rotating coordinate system in cylindrical polar coordinates

$$\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial r} + \frac{v}{r}\frac{\partial u}{\partial \lambda} + w\frac{\partial u}{\partial z} - \frac{v^2}{r} - fv = -\frac{1}{\rho}\frac{\partial p}{\partial r},$$
(3.1)

$$\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial r} + \frac{v}{r}\frac{\partial v}{\partial \lambda} + w\frac{\partial v}{\partial z} + \frac{uv}{r} + fu = -\frac{1}{\rho r}\frac{\partial p}{\partial \lambda},\tag{3.2}$$

$$\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial r} + \frac{v}{r}\frac{\partial w}{\partial \lambda} + w\frac{\partial w}{\partial z} = -\frac{1}{\rho}\frac{\partial p}{\partial z} - g, \qquad (3.3)$$

$$\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial \rho r u}{\partial r} + \frac{1}{r} \frac{\partial \rho v}{\partial \lambda} + \frac{\partial \rho w}{\partial z} = 0, \qquad (3.4)$$

$$\frac{\partial\theta}{\partial t} + u\frac{\partial\theta}{\partial r} + \frac{v}{r}\frac{\partial\theta}{\partial\lambda} + w\frac{\partial\theta}{\partial z} = \dot{\theta}$$
(3.5)

$$\rho = p_* \pi^{\frac{1}{\kappa} - 1} / (R_d \theta) \tag{3.6}$$

 $\dot{\theta}$  is the diabatic heating rate  $(1/c_p\pi)Dh/Dt$  (see Eq. 1.13), and  $\pi = (p/p_*)^{\kappa}$  is the Exner function. The temperature is defined by  $T = \pi\theta$ .

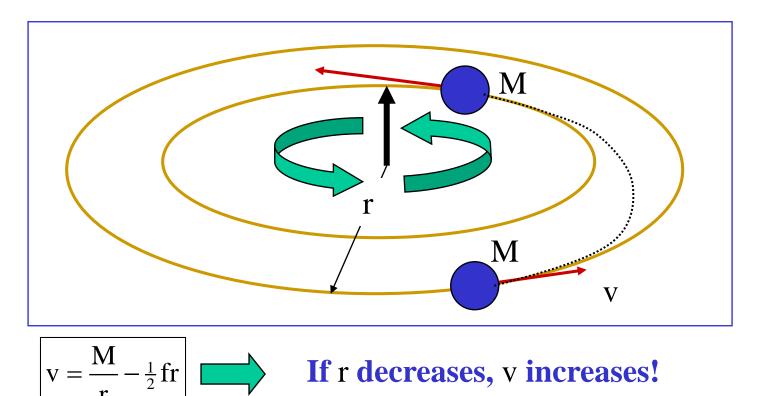
## Absolute angular momentum

$$\frac{\partial M}{\partial t} + u \frac{\partial M}{\partial r} + \frac{v}{r} \frac{\partial M}{\partial \lambda} + w \frac{\partial M}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial \lambda}, \qquad (3.7)$$
$$M = rv + \frac{1}{2} fr^2, \qquad (3.8)$$

Eq. (3.7) follows from r times Eq. (3.2)

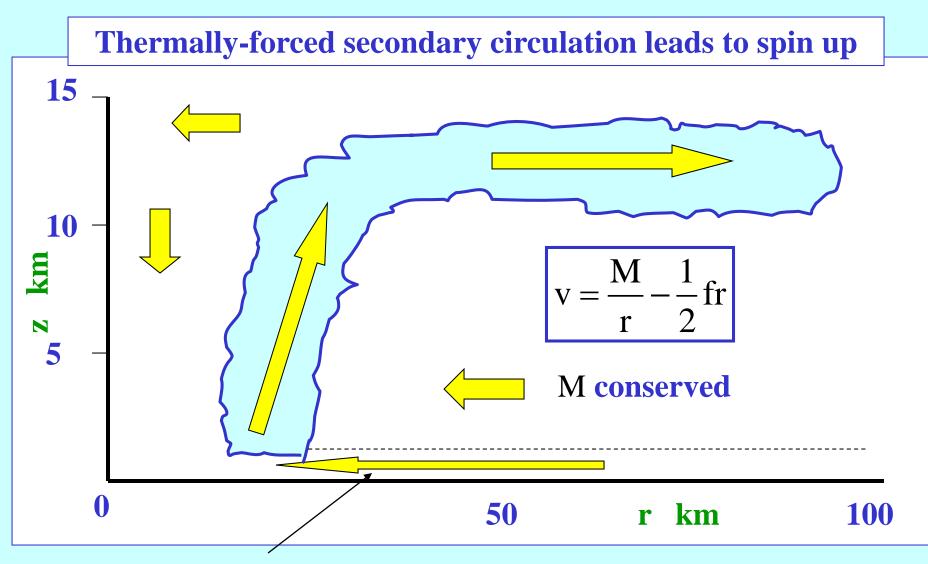
**Basic principle: conservation of absolute angular momentum:** 

$$\mathbf{M} = \mathbf{r}\mathbf{v} + \frac{1}{2}\mathbf{f}\mathbf{r}^2$$



**Spin up requires radial convergence** 

#### **Conventional view of intensification: axisymmetric**



M not conserved, inflow feeds the clouds with moisture

Is that it? See later for a surprise

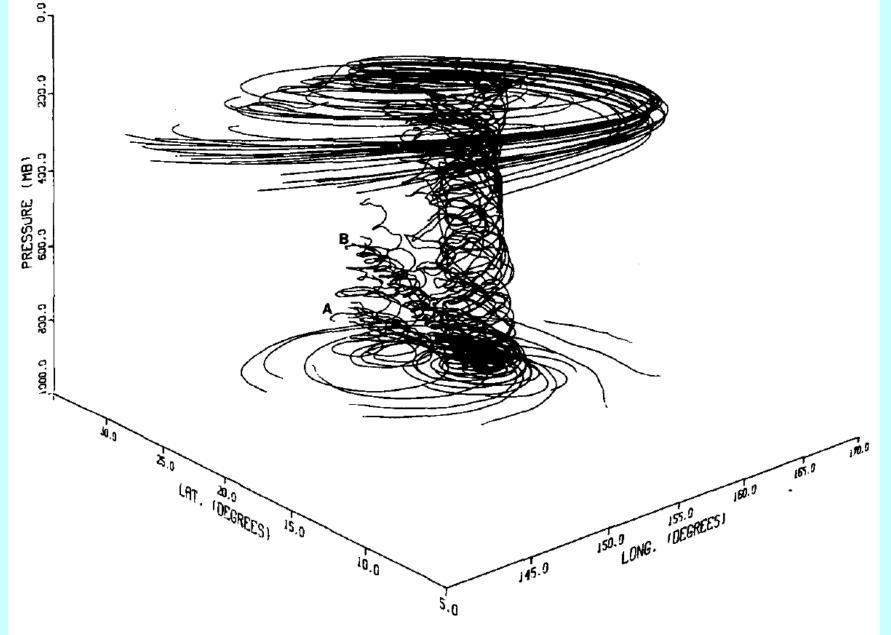
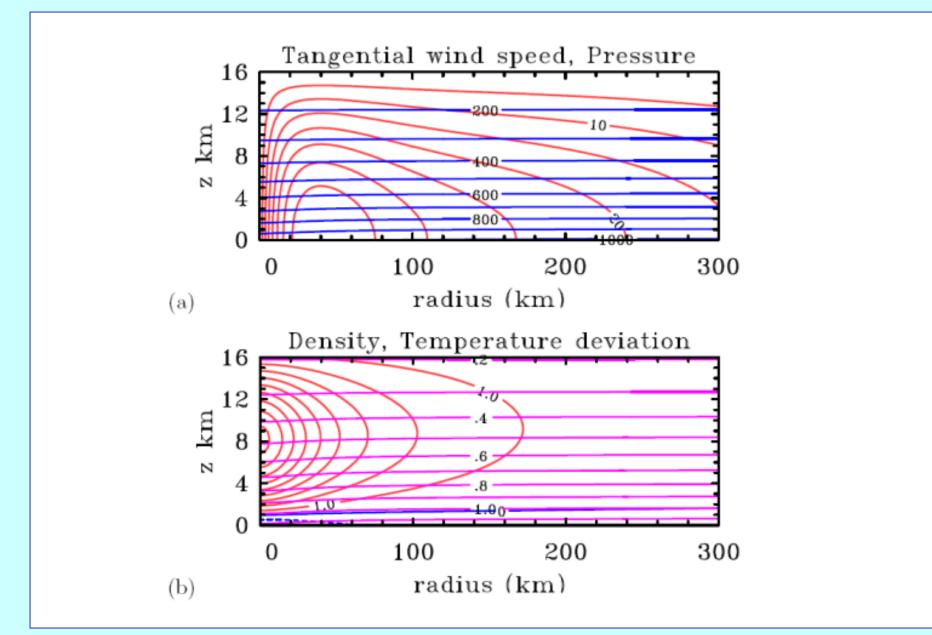
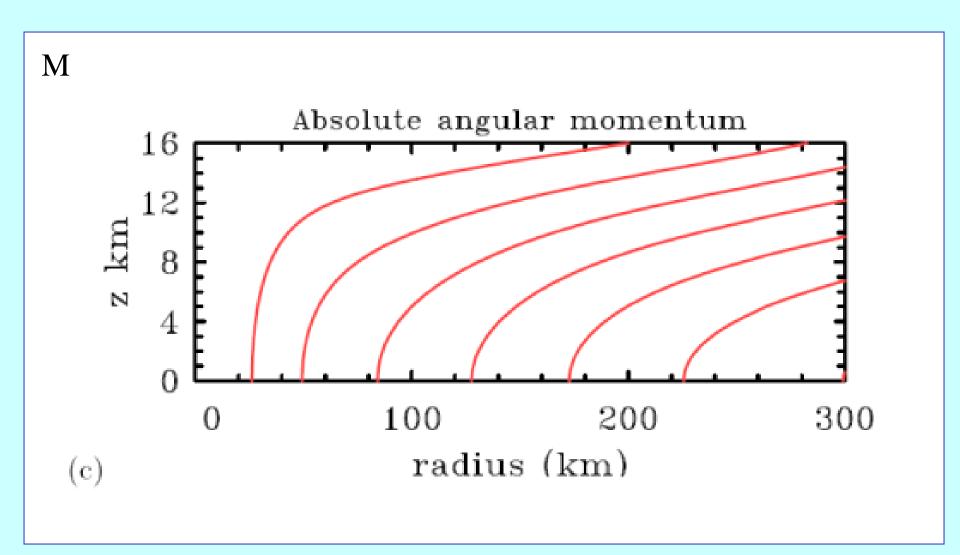


FIG. 9. Trajectories formed by particles released at various radii and pressure levels at t = 0. Most particles that reach the outflow level are transported outward by the outflow jet. Most particles released at radii of 20 km (A) and 100 km (B) are "trapped" inside the radius of the maximum wind and only rise slowly and drift toward the NW.

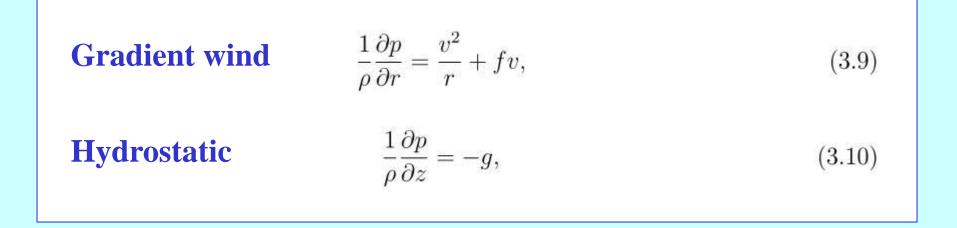
### A typical vortex



## AAM in a typical vortex



## **Primary circulation**

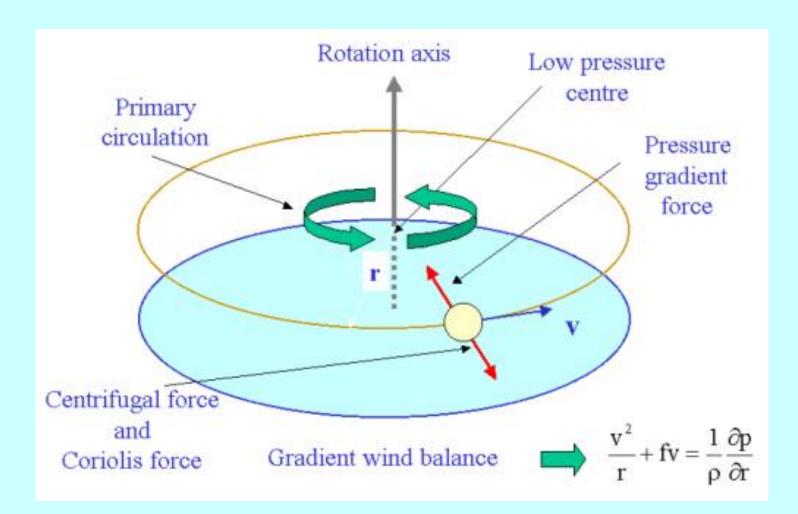


#### **Thermal wind equation**

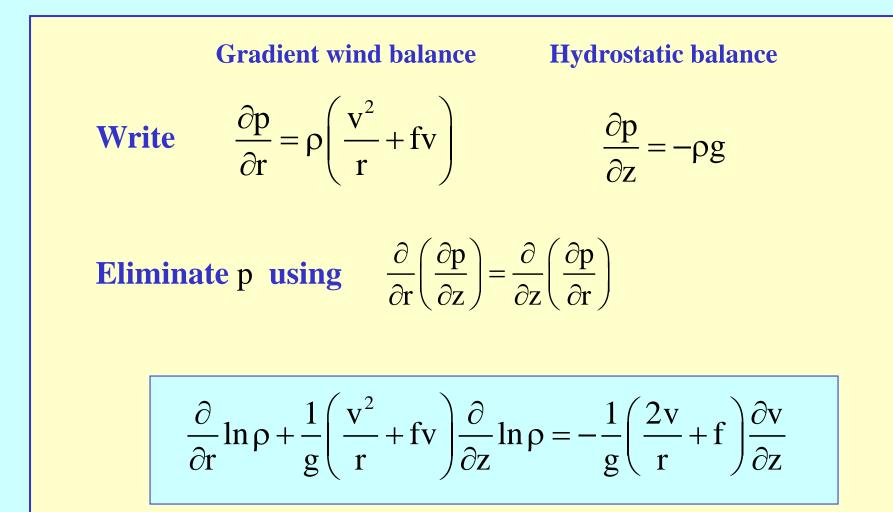
$$g\frac{\partial\ln\rho}{\partial r} + C\frac{\partial\ln\rho}{\partial z} = -\frac{\partial C}{\partial z}.$$
(3.11)

$$C = \frac{v^2}{r} + fv \tag{3.12}$$

## **Gradient wind balance**

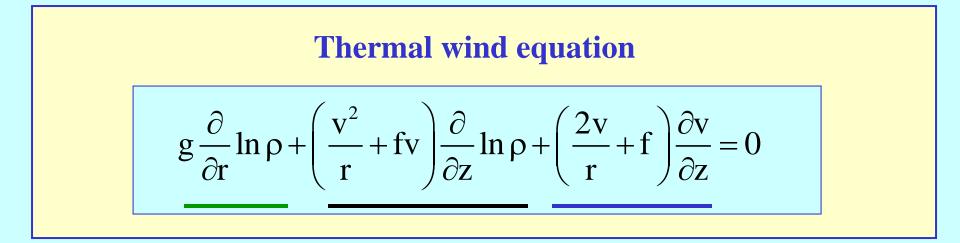


## **Thermal wind equation**

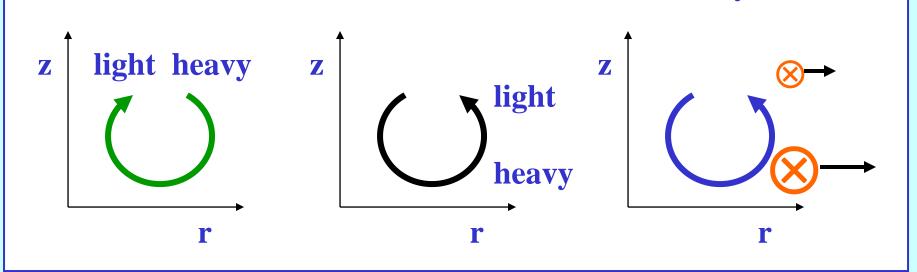


**Thermal wind equation** 

**Physical interpretation** 



**Balance in toroidal circulation tendency** 



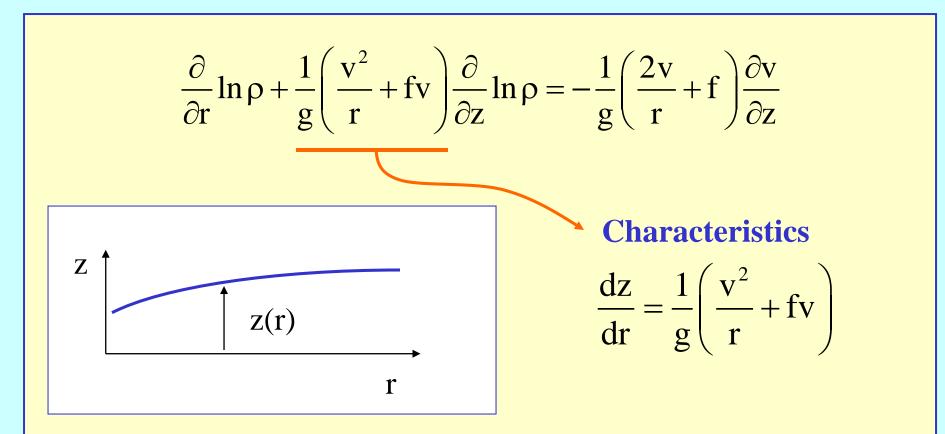
## **Thermal wind equation**

$$g\frac{\partial \ln \rho}{\partial r} + C\frac{\partial \ln \rho}{\partial z} = -\frac{\partial C}{\partial z}.$$
(3.11)  
**Characteristics**  $\frac{dz}{dr} = \frac{C}{g}.$ 

#### **On a characteristic**

$$\frac{d}{dr}\ln\rho = -\frac{1}{g}\frac{\partial C}{\partial z}.$$
(3.14)

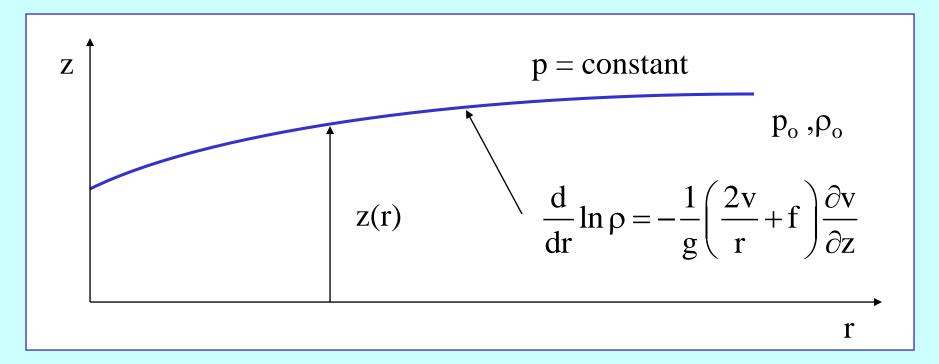
## **Mathematical solution**



$$\frac{\mathrm{d}}{\mathrm{d}r}\ln\rho = -\frac{1}{\mathrm{g}}\left(\frac{2\mathrm{v}}{\mathrm{r}} + \mathrm{f}\right)\frac{\partial\mathrm{v}}{\partial\mathrm{z}}$$

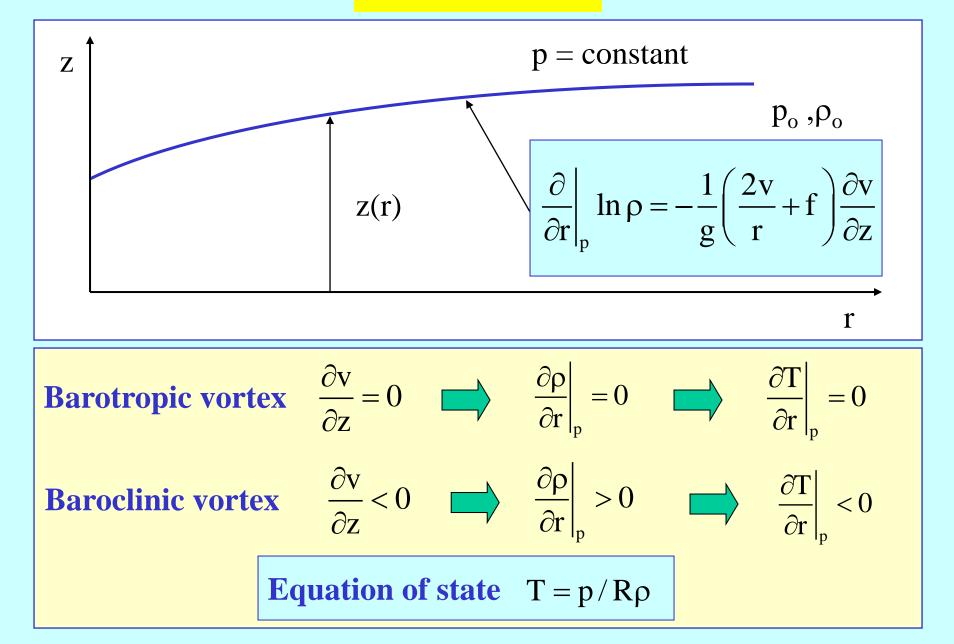
Governs the variation of ρ along characteristics

### **Characteristics are isobaric surfaces**



Along a characteristic 
$$gdz = \left(\frac{v^2}{r} + fv\right)dr$$
  
 $dp = \frac{\partial p}{\partial r}dr + \frac{\partial p}{\partial z}dz = \rho\left(\frac{v^2}{r} + fv\right)dr - \rho gdz = 0$ 

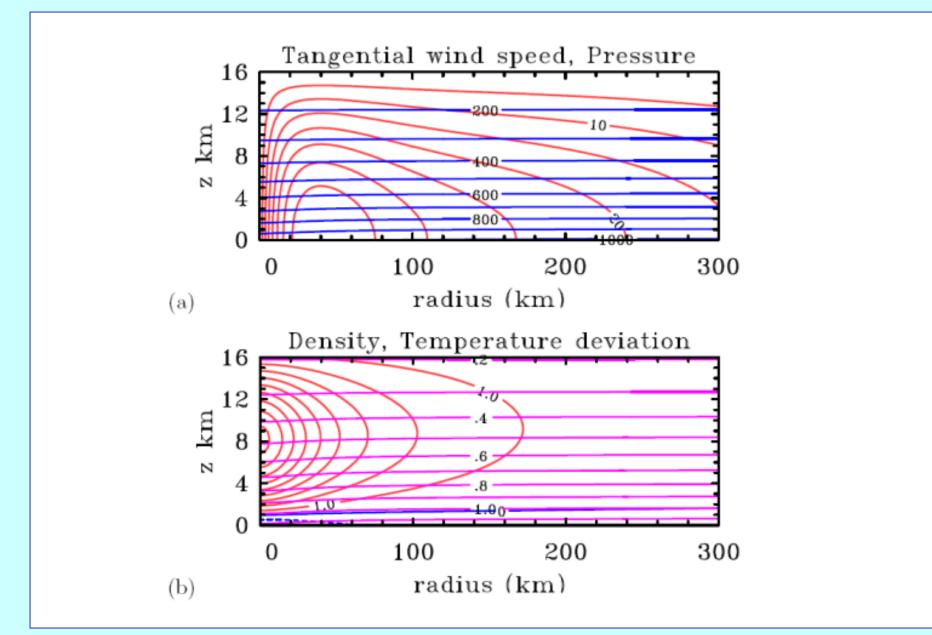
### Inferences



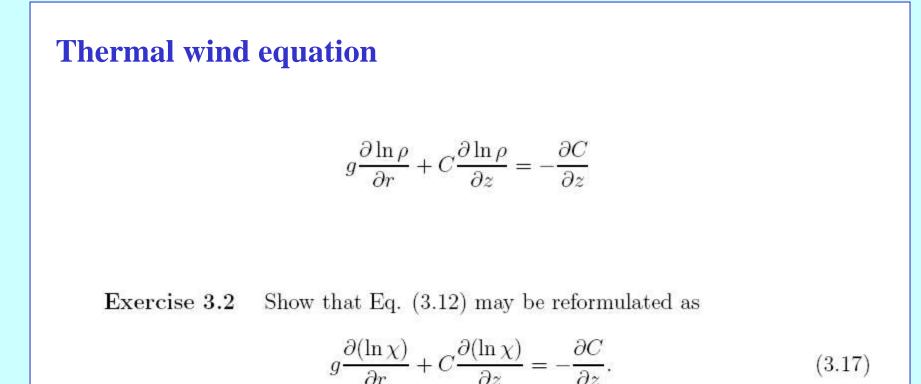
## Summary

- A barotropic vortex is cold cored if temperature contrasts are measured at constant height.
- ➤ A baroclinic vortex is warm cored if temperature contrasts are measured at constant height and if -∂v/∂z is large enough.

### A typical vortex

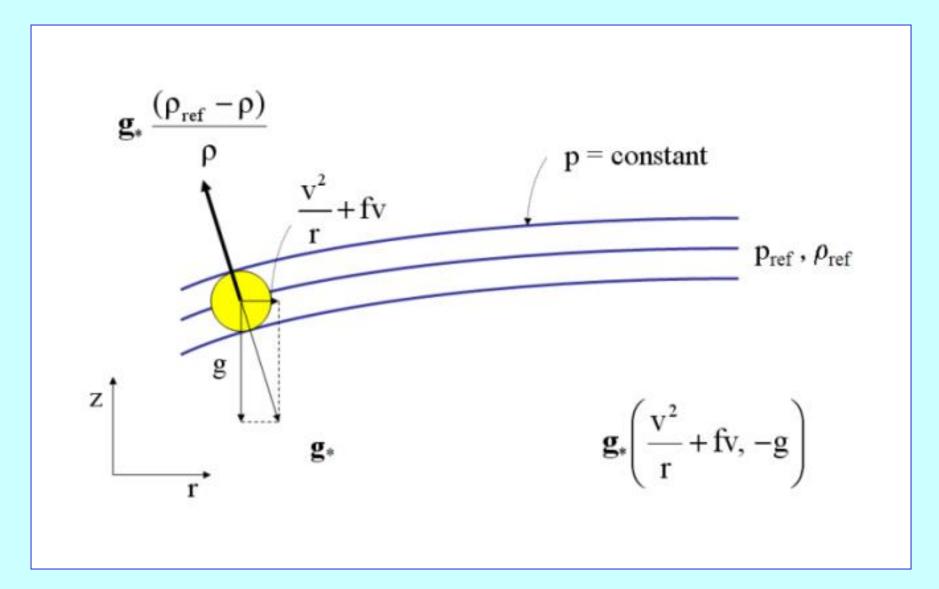


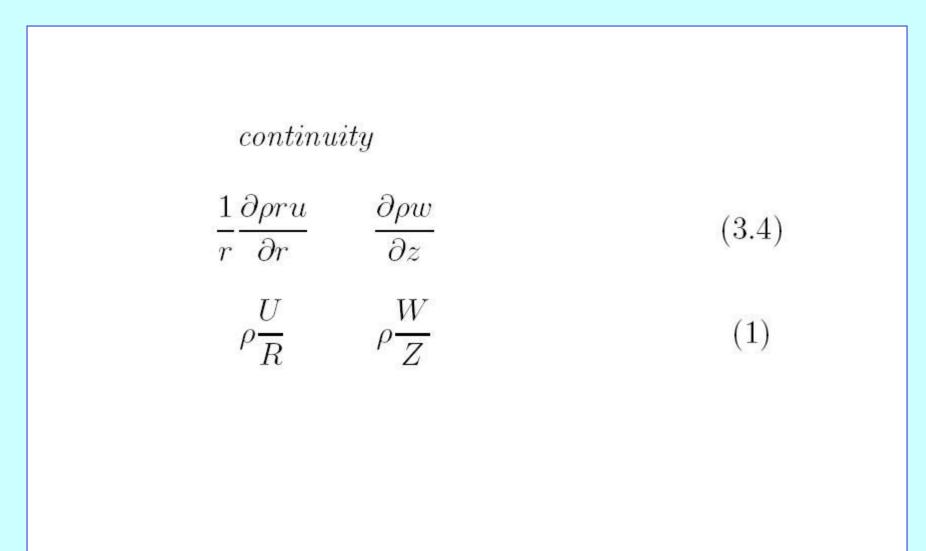
### The secondary circulation

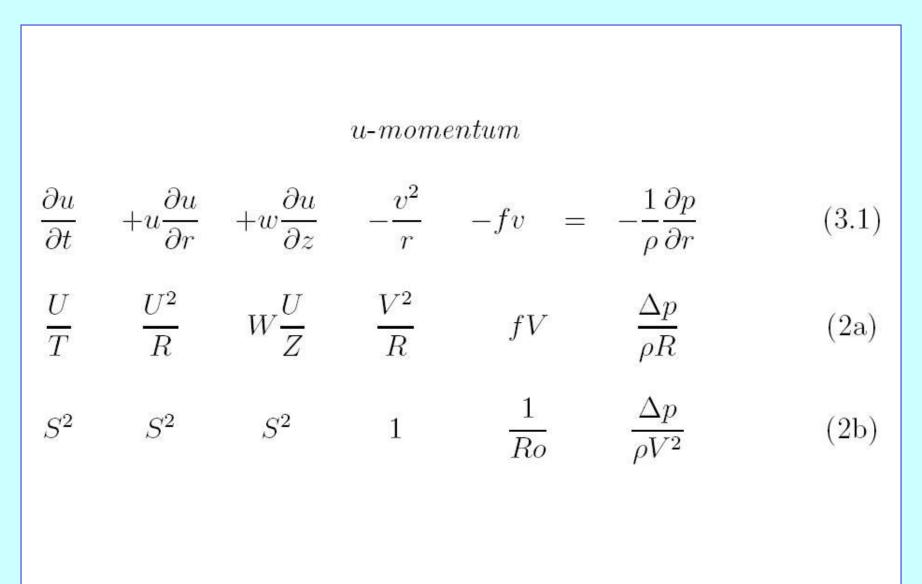


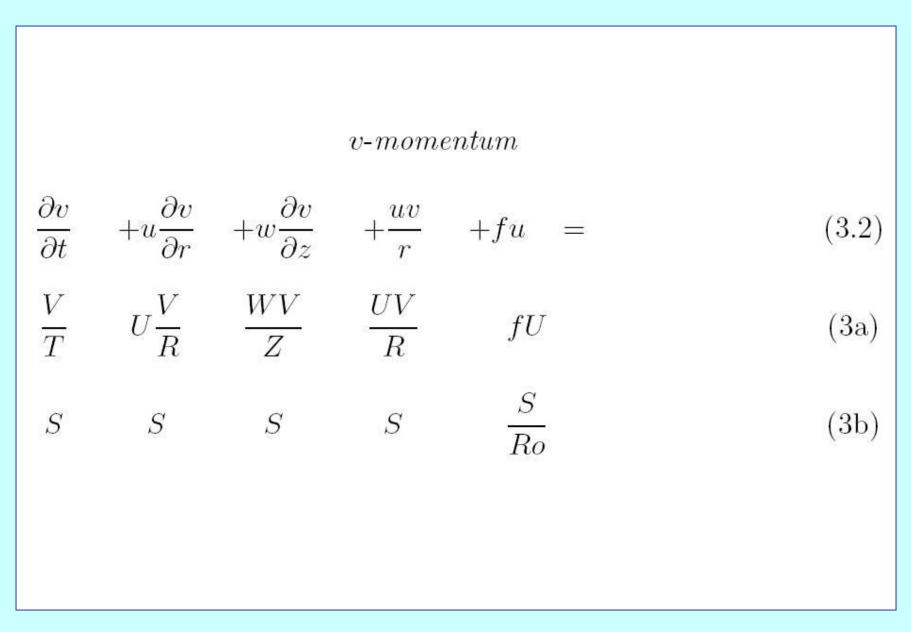
where  $\chi = 1/\theta$ .

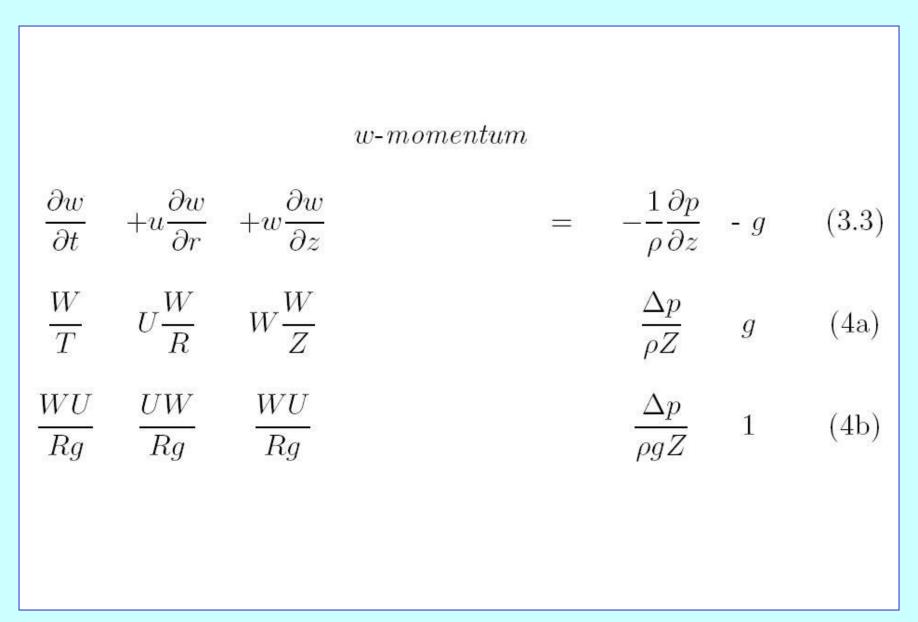
## **Generalized buoyancy**











## The secondary circulation

#### A balanced theory: The Sawyer-Eliassen equation

**Continuity** 
$$\rightarrow \qquad u = -\frac{1}{r\rho} \frac{\partial \psi}{\partial z} \qquad w = \frac{1}{r\rho} \frac{\partial \psi}{\partial r}.$$
 (3.57)

#### Thermal wind $\rightarrow$

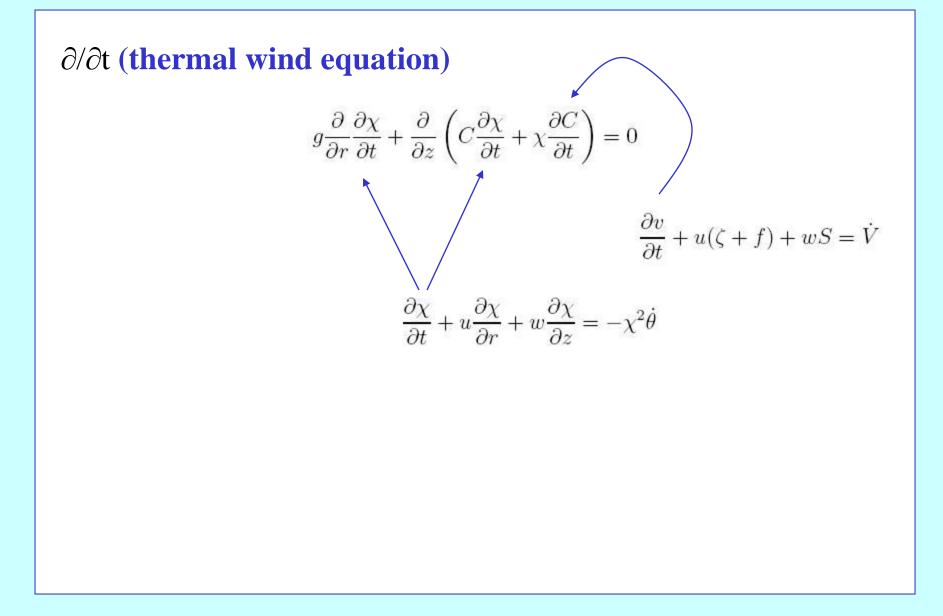
$$g\frac{\partial(\ln\chi)}{\partial r} + C\frac{\partial(\ln\chi)}{\partial z} = -\frac{\partial C}{\partial z}.$$
(3.17)

#### **Prognostic equations**

$$\frac{\partial v}{\partial t} + u(\zeta + f) + wS = \dot{V} \tag{3.58}$$

$$\frac{\partial \chi}{\partial t} + u \frac{\partial \chi}{\partial r} + w \frac{\partial \chi}{\partial z} = -\chi^2 \dot{\theta}$$
(3.59)

### A balanced theory: The Sawyer-Eliassen equation



### A balanced theory: The Sawyer-Eliassen equation

#### $\partial/\partial t$ (thermal wind equation)

$$g\frac{\partial}{\partial r}\left(u\frac{\partial\chi}{\partial r} + w\frac{\partial\chi}{\partial z} - Q\right) + \frac{\partial}{\partial z}\left[C\left(u\frac{\partial\chi}{\partial r} + w\frac{\partial\chi}{\partial z} - Q\right) + \chi\xi\left(u(\zeta + f) + wS - \dot{V}\right)\right] = 0$$

where  $\chi = 1/\theta$  and  $Q = -\chi^2 \dot{\theta}$ . Then

or

$$\begin{aligned} \frac{\partial}{\partial r} \left[ g \frac{\partial \chi}{\partial z} w + g \frac{\partial \chi}{\partial r} u \right] + \\ \frac{\partial}{\partial z} \left[ (\chi \xi (\zeta + f) + C \frac{\partial \chi}{\partial r}) u + \frac{\partial}{\partial z} (\chi C) w \right] &= g \frac{\partial Q}{\partial r} + \frac{\partial}{\partial z} (CQ) + \frac{\partial}{\partial z} (\chi \xi \dot{V}) \\ \frac{\partial}{\partial r} \left[ g \frac{\partial \chi}{\partial z} w - \frac{\partial}{\partial z} (\chi C) u \right] + \\ \frac{\partial}{\partial z} \left[ (\chi \xi (\zeta + f) + C \frac{\partial \chi}{\partial r}) u + \frac{\partial}{\partial z} (\chi C) w \right] &= g \frac{\partial Q}{\partial r} + \frac{\partial}{\partial z} (CQ) + \frac{\partial}{\partial z} (\chi \xi \dot{V}) \end{aligned}$$
(3.60)

### **The Sawyer-Eliassen equation**

$$\frac{\partial}{\partial r} \left[ g \frac{\partial \chi}{\partial z} \frac{1}{\rho r} \frac{\partial \psi}{\partial r} + \frac{\partial}{\partial z} (\chi C) \frac{1}{\rho r} \frac{\partial \psi}{\partial z} \right] - \frac{\partial}{\partial z} \left[ \left( \xi \chi(\zeta + f) + C \frac{\partial \chi}{\partial r} \right) \frac{1}{\rho r} \frac{\partial \psi}{\partial z} - \frac{\partial}{\partial z} (\chi C) \frac{1}{\rho r} \frac{\partial \psi}{\partial r} \right] = g \frac{\partial Q}{\partial r} + \frac{\partial}{\partial z} (CQ) + \frac{\partial}{\partial z} (\chi \xi \dot{V})$$
(3.61)  
**Discriminant**  $D = -g \frac{\partial \chi}{\partial z} \left( \xi \chi(\zeta + f) + C \frac{\partial \chi}{\partial r} \right) - \left[ \frac{\partial}{\partial z} (\chi C) \right]^2$  (3.62)  
• the static stability  
 $N^2 = -g \frac{\partial ln \chi}{\partial z};$   
**Parameters** • the inertial stability  
 $I^2 = \frac{1}{r^3} \frac{\partial M^2}{\partial r} = \xi(\zeta + f);$   
• the baroclinicity  
 $B_1 = \frac{1}{r^3} \frac{\partial M^2}{\partial z} = \xi S.$ 

### **The Sawyer-Eliassen equation**

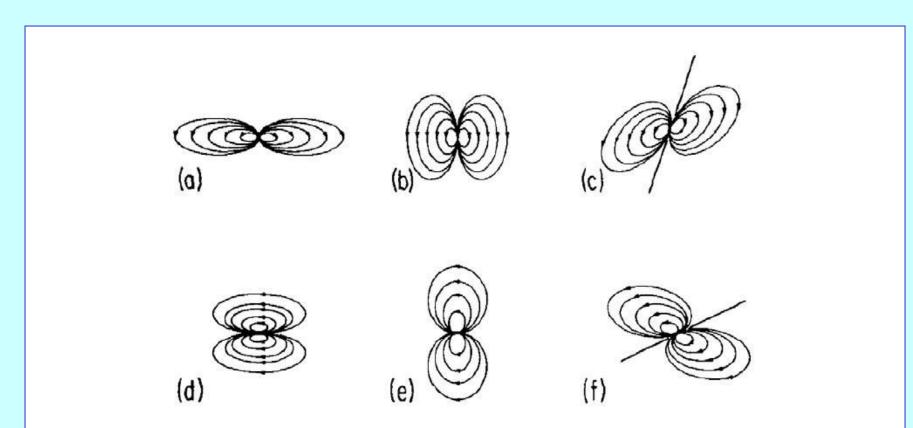


Figure 3.11: Streamfunction responses to point sources of: (a) Heat in a barotropic vortex with weak inertial stability, (b) heat in a barotropic vortex with strong inertial stability, (c) heat in a baroclinic vortex, (d) momentum in a barotropic vortex with weak inertial stability, (e) momentum in a barotropic vortex with strong inertial stability, and (f) momentum in a baroclinic vortex. (Based on Figs. 8, 9, 11, and 12

### **The Sawyer-Eliassen equation**

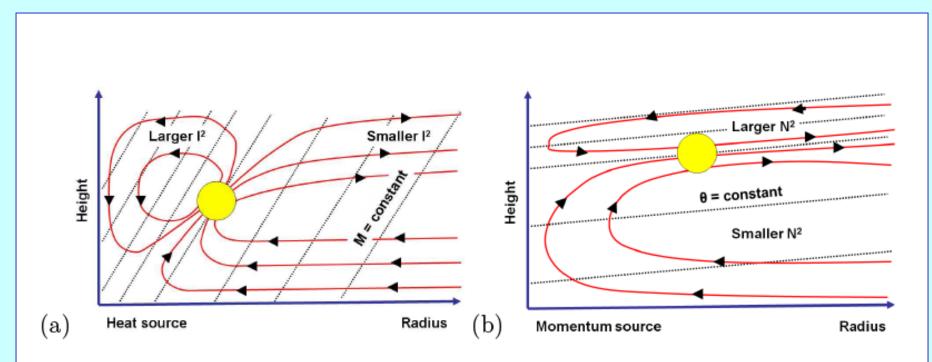


Figure 3.12: Secondary circulation induced in a balanced vortex by (a) a heat source and (b) a cyclonic momentum source showing the distortion induced by variation in inertial stability,  $I^2$  and thermodynamic stability.  $N^2$ , and baroclinicity  $S^2$ . The strong motions through the source follow lines of constant angular momentum for a heat source and of constant potential temperature for a momentum source. From

#### Willoughby (1995)

#### A balance theory for the evolution of an axisymmetric vortex

**1.** Solve for the initial balanced density and pressure fields corresponding to  $v_i(r,z,0)$ 

$$g\frac{\partial(\ln\chi)}{\partial r} + C\frac{\partial(\ln\chi)}{\partial z} = -\frac{\partial C}{\partial z}$$

**2. Solve for**  $\psi(r,z,0)$ 

$$\frac{\partial}{\partial r} \left[ g \frac{\partial \chi}{\partial z} \frac{1}{\rho r} \frac{\partial \psi}{\partial r} + \frac{\partial}{\partial z} (\chi C) \frac{1}{\rho r} \frac{\partial \psi}{\partial z} \right] - \frac{\partial}{\partial z} \left[ \left( \xi \chi (\zeta + f) + C \frac{\partial \chi}{\partial r} \right) \frac{1}{\rho r} \frac{\partial \psi}{\partial z} - \frac{\partial}{\partial z} (\chi C) \frac{1}{\rho r} \frac{\partial \psi}{\partial r} \right] = g \frac{\partial Q}{\partial r} + \frac{\partial}{\partial z} (CQ) + \frac{\partial}{\partial z} (\chi \xi \dot{V})$$
(3.61)

**3. Solve for** 
$$u(r,z,0)$$
 and  $w(r,z,0)$   $u = -\frac{1}{r\rho}\frac{\partial\psi}{\partial z}$   $w = \frac{1}{r\rho}\frac{\partial\psi}{\partial r}$ .

$$\frac{\partial v}{\partial t} + u(\zeta + f) + wS = \dot{V}$$

**5. Repeat to find**  $v(r,z,\Delta t)$ 

**4. Predict**  $v(r,z,\Delta t)$ 

#### **Issues**

As tropical cyclones intensify, the boundary layer and uppertropospheric outflow region generally develop regions of zero or negative discriminant (D < 0) implying symmetric instability. Then the global balance solution breaks down.

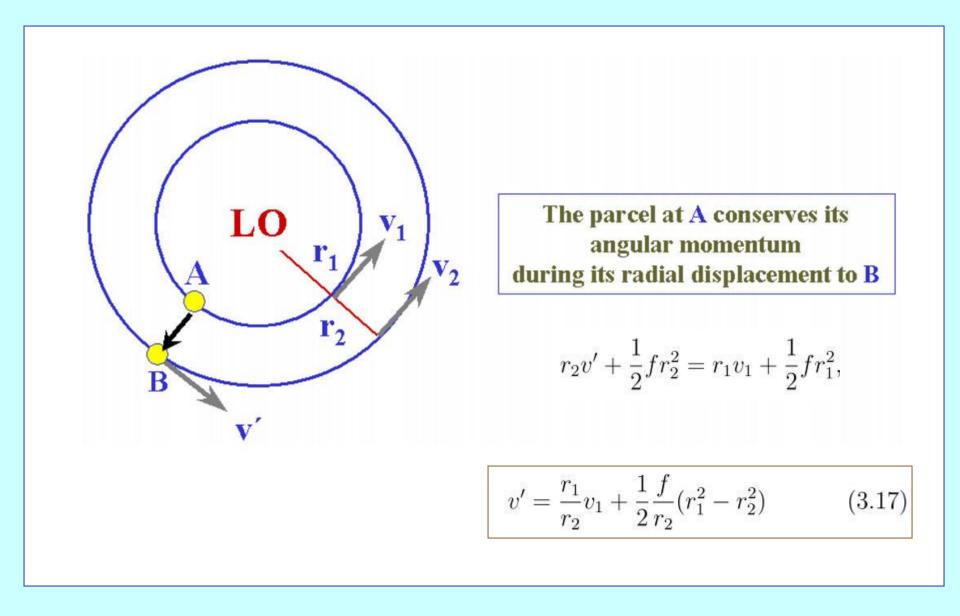
If the regions of D < 0 remain localized, one may apply a regularization procedure to keep the Sawyer-Eliassen equation elliptic and thus solvable.

How to formulate the forcing terms in the Sawyer-Eliassen equation,
 i.e. the diabatic heating rate and the near-surface frictional force?

The representation of diabatic heating in terms of the evolving flow constitutes the cumulus parameterization problem. Typically, this requires the inclusion of a prediction equation for water vapour and, in more sophisticated representations, for various species of water condensate.

The boundary layer IS NOT balanced!

## **Barotropic stability**



## Net radial force on a displaced air parcel

#### **Radial pressure gradient at B**

$$\frac{1}{\rho} \left. \frac{dp}{dr} \right|_{r=r_2} = \frac{v_2^2}{r_2} + fv_2. \tag{3.18}$$

#### Net force on parcel at B

F = centrifugal + Coriolis force - radial pressure gradient

$$= \frac{v'^2}{r_2} + fv' - \frac{1}{\rho} \frac{\partial p}{\partial r} \Big]_{r=r_2}$$

$$F = \frac{1}{r_2^3} \left[ (r_1 v_1 + \frac{1}{2} r_1^2 f)^2 - (r_2 v_2 + \frac{1}{2} r_2^2 f)^2 \right].$$
(3.19)

### Net radial force on a displaced air parcel

$$F = \frac{1}{r_2^3} \left[ (r_1 v_1 + \frac{1}{2} r_1^2 f)^2 - (r_2 v_2 + \frac{1}{2} r_2^2 f)^2 \right].$$
(3.19)

In the special case of <u>solid body rotation</u>,  $v = \Omega r$ , and for a small displacement from radius  $r_1 = r$  to  $r_2 = r + r'$ , (3.19) gives

$$F \approx -4(\Omega + \frac{1}{2}f)^2 r' \tag{3.20}$$

