Lectures on Tropical Cyclones

Chapter 1 Observations of Tropical Cyclones

Course outline

> Introduction, Observed Structure

> Dynamics of Mature Tropical Cyclones *****Equations of motion Primary and secondary circulation *****Tropical cyclone boundary layer *****The role of moist convection *****The sloping eyewall *****The tropical cyclone eye *****A model for the boundary layer *****Tropical cyclone motion

Reading material

- > Anthes (1970), Tropical Cyclones, AMS Monograph
- Anthes (1974), The dynamics and energetics of mature tropical cyclones, Rev. Geophys. Space Phys., 12, 495-522
- **WMO Tech. Note (1995)** *Ed. R. L. Elsberry*
 - H. E. Willoughby Mature structure and evolution
 - J. L. McBride Tropical cyclone formation
- Paradigms for tropical-cyclone intensification. (2014) Montgomery and Smith
- > The fluid dynamics of tropical cyclones. (2017) Montgomery and Smith
- Cloud Dynamics, 2nd edition (2014) Robert Houze
- http://www.meteo.physik.uni-muenchen.de/~gerard.kilroy/

NOAA-15 HRPT 26 OCT 1998 13:20 GMT RGB = CH. 1,2,4 1 km resolution HURRICANE MITCH WINDS: 155 mph PRESSURE: 923 MB

MEXICO (YUCATAN)

HONDURAS

Tropical Cyclones

- Tropical cyclones are intense, cyclonically-rotating, low-pressure weather systems that form over the tropical oceans.
- Cyclonic means counter clockwise in the northern hemisphere and clockwise southern hemisphere
- Intense means that sustained wind speeds exceed 17 m/s (60 km /h, 32 knots) near the surface.
- Severe tropical cyclones have near surface sustained wind speeds equal to or exceeding 34 m/s (120 km/h, 64 knots): these are called hurricanes over the Atlantic Ocean, the East Pacific Ocean and the Caribbean Sea, and Typhoons over the Western North Pacific Ocean.
- Typically the strongest winds occur in a ring some tens of kilometres from the centre and there is a calm region near the centre, the eye, where winds are light.

Hurricane Research Aircraft, NOAA WD-P3

Structure

- The mature tropical cyclone consists of a horizontal quasisymmetric circulation on which is superposed a vertical, or transverse circulation.
- These are sometimes referred to as the primary and secondary circulations, respectively.
- When combined, these two component circulations result in a spiralling motion with inflow at low and middle levels and outflow at upper levels.
- The secondary circulation is mostly thermally-direct, which means that warm air rising, a process that releases potential energy.
- However subsidence occurs in the eye and the circulation there is thermally indirect, a process that requires energy to be supplied.

Radar display from the tail radar

Schematic cross-section through a hurricane

Close up photograph of the eye

The eye of Hurricane *Lili* (2002)

Dropwindsonde sounding in the eye of a hurricane

From Willoughby (AMM, 1988)

Radar PPI in Hurricane Gilbert (1988)

Fig. 2.4 (a) Plan-position indicator (PPI) radar reflectivity composite of Hurricane Gilbert at ~2200 UTC 13 September 1988, when it was at maximum intensity near 19.9°N, 83.5°W. (b) Flight-level measurements from research aircraft. The abscissa is distance along a northsouth pass through the center. The top panel shows wind speed (dark solid line), 700 mb height (light solid line), and crossing angle (tan⁻¹ u/v, dash-dotted line). Winds are relative to the moving vortex center. The middle panel shows temperature (upper curve) and dewpoint. When $T_D > T$, both are set to $1/2(T+T_D)$. The bottom panel shows vertical wind (Black and Willoughby 1992).

> dEZ 18-63 17-17 16-16 11-15 12-13 10-11 38-39 36-37 34-35 32-33 30-31 28-29 26-27 24-25 MDS

From Black & Willoughby (JAS, 1992)

Flight level data from a Hurricane traverse

From Willoughby (WMO, 1995)

Vertical-radial cross-section through a mature hurricane

Vertical-radial cross-section through a mature hurricane

Sea surface fluxes

Strength, intensity and size

- Intensity is conventionally measured in terms of maximum wind or minimum sea-level pressure
- Strength is a spatially-averaged wind speed over an annulus between 100 and 250 km from the cyclone centre.
- Size which may be defined as the average radius of gale force winds (17 m s⁻¹)
- Observations show that size and strength are strongly correlated, but neither is strongly correlated with intensity.

Vertical cross-section of Hurricane Hilda (1964)

A TC with a double eyewall

From Willoughby, WMO (1995)

Cross-section from composite data

Vertical cross section of the mean vertical air motion (mb per day) in typhoons. Analysis is a composite of data collected in many storms.

Asymmetries

Asymmetric structure

Typical radar echo pattern

ATC with a double eyewall

Western Australia: TC Bobby

Genesis definition

- Tropical cyclones form in many parts of the world from initial convective disturbances sometimes referred to as cloud clusters.
- There has been much debate in the literature about the meaning of such terms as "tropical cyclogenesis", "TC formation", and "TC development"
- Issue about when genesis has occurred and intensification has commenced.
- The existence of a (warm) core region can be identified by the time that the system is classified as a tropical cyclone (i.e., mean wind speeds exceeding 17 m s⁻¹ or 34 kt).
- Further development of the maximum wind speeds beyond 17 m s⁻¹ will be referred to as intensification. This stage includes the evolution of the core into a well-defined radar eye.
- Changes in wind speed of the outer vortex are referred to as outer structure change, or strength change, or size change.

Genesis conditions

- The only region of cyclone formation not associated with a monsoon trough is the North Atlantic.
- In the first global climatology of tropical cyclogenesis found that cyclone formation is related to six environmental factors:
- 1. large values of low-level relative vorticity;
- 2. a location at least a few degrees poleward of the equator, giving a significant value of planetary vorticity;
- 3. weak vertical shear of the horizontal winds;
- 4. sea-surface temperatures (SSTs) exceeding 26°C, and a deep thermocline;
- 5. conditional instability through a deep atmospheric layer; and
- 6. large values of relative humidity in the lower and middle troposphere.

Annual mean sea surface temperatures

Mean latitude of formation

Latitudes at which initial disturbances later became tropical cyclones were first detected

From Gray (MWR, 1975)

Frequency of TCs per 100 years

From WMO (1993)

Trade wind and monsoon flow regimes

Climatology in Atlantic Basin

Number of North Atlantic tropical cyclones reaching at least 17.5 m s⁻¹ (34 kt) intensity (open bar) and reaching at least 33 m s⁻¹ (64 kt) intensity (solid bar) each year during 1886-1985. (From McBride, 1995)

Large-scale conditions for formation

- Tropical cyclones form from pre-existing disturbances containing abundant deep convection;
- The pre-existing disturbance must acquire a warm core thermal structure throughout the troposphere;
- Formation is preceded by an increase of lower tropospheric relative vorticity over a horizontal scale of approximately 1000 to 2000 km;
- A necessary condition for cyclone formation is a large-scale environment with small vertical wind shear;

Large-scale conditions for formation (cont)

- An early indicator that cyclone formation has begun is the appearance of curved banding features of the deep convection in the incipient disturbance;
- The inner core of the cyclone may originate as a mid-level meso-vortex that has formed in association with a preexisting mesoscale area of altostratus (i.e., a Mesoscale Convective System or MCS); and
- Formation often occurs in conjunction with an interaction between the incipient disturbance and an uppertropospheric trough.

Easterly waves over Africa

WV Imagery 17 June 1997 00Z

Atlantic hurricane tracks in 1998

Track forecasting

Tropical cyclone tracks (1979-1988)

From WMO (1993)

Mean direction of TC motion

From WMO (1993)

Satellite imagery - classification

Fig. 3.20 Cloud pattern types in the tropical cyclone intensity analysis based on satellite imagery. Patten changes from left to right are typical 24-hourly changes (Dvorak 1984).

TC Monica 2006

Tropical Cyclone Monica (23P) approaching Cape York Peninsula (36Ghz) 04/18/06 18002 23P MONICA 04/18/06 18142 TRMM COMPOSITE 04/18/06 18142 TRMM COMPOSITE 04/18/06 17302 GMS-6 IR 04/18/06 1200Z 23P MONICA 04/18/06 1552Z AQUA-1 COMPOSITE 04/18/06 1530Z GMS-6 IR 125 25 ٠ 165 6S

Damage TC Monica 2006

Related phenomena

Movies

