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What is radiation?

Two pictures:

1 electromagnetic waves that propagate with speed of light
(c = 2.998·108 m/s)

2 photons having zero mass and energy E=hν
(Planck constant h = 6.626·10−34 Js, frequency ν [1/s])

The wavelength λ of the radiation can be obtained from the relation

c = λ · ν
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Radiation balance of the Earth

Radiative transfer 10. February 2010 3 / 52



Radiation Radiative transfer equation Discrete ordinate method Single scattering properties Molecular absorption

Electromagnetic spectrum

Copyright: http://scipp.ucsc.edu
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Radiance I and irradiance E

Radiance Lν :

dQν = Iν cos θdνdσdωdt

Unit:
W/(m2 Hz sr) or W/(m2 nm sr)

Irradiance Eν :

Eν =

∫
Iν cos θdω

Unit:
W/(m2 Hz) or W/(m2 nm)

σ

ω

d

d

θ

Figure: Definition of radiance.
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Blackbody radiation

Planck function

B(ν,T ) =
2hν3

c2

1

exp
(

hν
kBT

)
− 1

Unit: W/(m2 Hz sr)

Wien’s displacement law
(Maximum of Planck function)

λm =
2897

T

Stefan-Boltzmann’s law
(integrated Planck function)

E = σSBT 4

Figure: An opaque container at absolute
temperature T encloses a “gas” of photons
emitted by its walls. At equilibrium, the
distribution of photon energies is determined
solely by this temperature. The distribution
function is called Planck (distribution) function
(Figure from Bohren and Clothiaux, 2006)
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Planck radiation
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Figure: Planck functions for surface temperature of sun (≈ 6000 K, blue
line), surface temperature of earth (≈ 300 K) and solar irradiance at top of
atmosphere (dotted green line).
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Radiative transfer equation

~n∇Iν = −kext,ν Iν +
ksca,ν

4π

∫
4π

Pν(~n′ → ~n)Iν(~n′)dω + kabs,νBν

(integro-differential equation for radiance for specific direction ~n)

RTE includes the following processes:
Exchange of photons with surrounding of volume element
∆V ∆ω∆ν

Extinction
Absorption
Outscattering: Scattering of photons from ~n into ~n′

Inscattering: Scattering of photons from ~n′ into ~n
Emission of photons into ~n

Stationary form of RTE because time dependence can be neglected
in Earth’s atmosphere
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Direct-diffuse splitting of radiation field

total solar radiation field = diffuse solar radiation + direct solar beam

Iν = Id,ν + Sνδ(~n − ~n0)

Direct radiation Sν can be separated and calculated using
Lambert-Beer’s law:

dSν
ds

= −kext,νSν , ~n = ~n0

RTE for diffuse solar radiation must be further simplified
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Horizontally homogeneous atmosphere

plane-parallel approximation:
curvature of Earth’s atmosphere is neglected
all optical properties are independent of horizontal position
solar beam independent on horizontal position

only one spatial coordinate required, altitude z or
optical thickness τ =

∫ z
0 kext(z′)dz′

approximation not valid for e.g. inhomogeneous clouds or very
low sun

Figure from Mayer 2009
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Separation of µ and φ

Assumption: Phase function is rotationally symmetric along
direction of incident light, correct for spherical and randomly
oriented particles
Phase function expansion in Legendre series

P(cos Θ) =
∞∑
l=0

plPl (cos Θ)

p0 =
1
2

∫ 1

−1
P(cos Θ)d cos Θ = 1 (normalization of P)

p1 =
3
2

∫ 1

−1
cos ΘP(cos Θ)d cos Θ = g (asymmetry parameter)

Phase function with µ = cos θ and φ separated using addition
theorem of associated Legendre polynomials:

P(cos Θ) =
∞∑

m=0

(2− δ0m)
∞∑

l=m

pm
l Pm

l (µ)Pm
l (µ′) cos m(φ− φ′)
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System of differential equations for each Fourier
mode of radiance field

Fourier expansion of the radiance field:

I(τ, µ, φ) =
∞∑

m=0

(2− δ0m)Im(τ, µ) cosφ

DE for each Fourier mode of radiance field, depends only on 2
variables τ and µ:

µ
d

dτ
Im(τ, µ) = Im(τ, µ)− Jm(τ, µ) m = 0,1, ...,Λ
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Scattering integral – Gaussian quadrature

Gaussian quadrature: method to approximate integral of
functions which can well be approximated by a polynomial
function
Separate differential equation (DE) for each quadrature point
(also called stream):

µi
dIm(τ, µi )

dτ
=Im(τ, µ)− ω0

2

r∑
j=1

wj Im(τ, µj )
∞∑

l=m

pm
l Pm

l (µi )Pm
l (µj )

− ω0

4π
S0 exp

(
− τ

µ0

)
P(µi , µ0)− (1− ω0)B(τ)δ0m

Inhomogeneous DE⇒ solution= particular solution for
inhomogeneous DE + general solution for homogeneous DE
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DOM - Impact of number of streams

clearsky radiance
field
no aerosol⇒ only
Rayleigh scattering

Figure: Clearsky radiance field, no
aerosol (exercise 6).
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DOM - Impact of number of streams
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Figure: Legendre
decomposition of Heney
Greenstein phase function
(exercise 5).

Figure: Clearsky radiance field, default
aerosol (exercise 6).
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DOM - Impact of number of streams
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Figure: Legendre
decomposition of Heney
Greenstein phase function
(exercise 5).

Figure: Clearsky radiance field, default
aerosol (exercise 6).
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DOM - Impact of number of streams
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Figure: Legendre
decomposition of Heney
Greenstein phase function
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Figure: Clearsky radiance field, default
aerosol (exercise 6).
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DOM - Impact of number of streams
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Figure: Legendre
decomposition of Heney
Greenstein phase function
(exercise 5).

Figure: Clearsky radiance field, default
aerosol (exercise 6).
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DOM - Impact of number of streams
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Figure: Legendre
decomposition of Heney
Greenstein phase function
(exercise 5).

Figure: Clearsky radiance field, default
aerosol (exercise 6).
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Calculation for water cloud - no deltascaling
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Figure: Legendre
decomposition of Mie phase
function (exercise 7).

Figure: Cloudy radiance field, TOA,
DISORT, nstr=16 without delta-scaling
(exercise 8).
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Calculation for water cloud - deltascaling on

P(cos Θ) ≈

2f δ(1 − cos Θ) +
2s−1∑
l=0

(2l + 1)p′l Pl (cos Θ)
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Figure: Legendre
decomposition of
delta-scaled Mie phase
function (exercise 7).

Figure: Cloudy radiance field, TOA.
DISORT, nstr=16 with delta-scaling
(exercise 8).
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Calculation for water cloud - intensity correction

DISORT2 includes
intensity correction
method by Nakakjima
and Tanaka (1988),
which calculates the first
and second orders of
scattering using the
correct phase function

Figure: Cloudy radiance field, TOA.
DISORT2, nstr=16 with intensity correction
(exercise 8).
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Single scattering theory

Scattering calculations in planetary atmospheres:
1 single scattering by small volume element

(Mie theory, geometrical optics ...)
2 multiple scattering by entire atmosphere

(solution of RTE, e.g. DOM)

Assumption: scattering particles are sufficiently separated so
that they can be treated as independent scatterers (no
interference of radiation scattered by independent particles)

Scattered radiance at distance
R in far field:

~Isca = kscaP
dV

4πR2

Figure from Hansen and Travis, 1974
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Geometrical optics method

Geometrical optics method can be applied for particles that are
large compared to the wavelength, e.g. cloud droplets in UV/Vis
size parameter x = 2πr

λ � 1
Trace individual rays through particle
Snell’s law: direction of refracted rays

n1 sinα = n2 sinβ

Fresnel equations: Intensity and polarization of radiation
reflected and refracted by particle surface
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Geometrical optics

Figure from Hansen and Travis, 1974
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Rayleigh scattering

Figure from Hansen and Travis, 1974
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Mie theory

Calculation of optical properties (P,qsca,qabs) of spherical
particles (Mie, 2008)
Solution of Maxwell equations (Input: refractive index, size
parameter)
physical explanation: multipole expansion of scattered radiation
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Size distributions

A cloud consists of droplets of various sizes following a size
distribution n(r):

N =

∫ rmax

rmin

n(r)dr

optical properties are averaged over size distribution

ksca =

∫ rmax

rmin

σscan(r)dr

kext =

∫ rmax

rmin

σextn(r)dr

P(cos Θ) =
4π

k2ksca

∫ rmax

rmin

P′(cos Θ, r)n(r)dr
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Effective radius

A “mean radius” for scattering may be defined as follows (scattering
cross section σsca = πr 2Qsca):

rsca =

∫ rmax

rmin
rπr 2Qsca(r)n(r)dr∫ rmax

rmin
πr 2Qsca(r)n(r)dr

In the UV/VIS water cloud droplets fulfill x � 1 and ω0 ≈ 1 , then
Qsca ≈ 2

reff =
1
G

∫ rmax

rmin

rπr 2n(r)dr

Generalization for non-spherical particles (e.g. ice crystals or aerosols)

reff =

∫ rmax

rmin
V (r)n(r)dr∫ rmax

rmin
A(r)n(r)dr

r – equivalent sphere radius; A – geometrical cross section averaged
over all possible orientations
Effective variance of a size distribution:

veff =
1

Gr 2
eff

∫ rmax

rmin

(r − reff)2A(r)n(r)dr
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Extinction efficiency
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Figure from exercise 14

major maxima and minima
caused by interference of
diffracted radiation (l=0) and
transmitted radiation (l=2)
phase shift for ray passing
through sphere ρ = 2x(nr − 1)

superimposed “ripple” structure
last few sigificant terms in Mie
series
explanation: surface waves
vanish by integration over size
distribution

geometrical optics limit of 2 for
large x
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Asymmetry parameter
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Figure from exercise 14

geometrical optics limit of 0.87 for
large x
Rayleigh limit of 0 for small x
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Size distributions

Mie calculations for size distributions
with the same reff=10 µm and
different veff (exercise 15)

Optical properties in UV/Vis/NIR for
all size distibutions very similar, but
larger differences in thermal spectral
region
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Dependence on effective radius

Mie calculations for size distributions
with different reff and the same
veff=0.1 (exercise 16)

Optical properties in UV/Vis/NIR for
all size distibutions very similar, but
larger differences in thermal spectral
region
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Scattering phase functions
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Figure: Phase functions for different effective radii at 550 nm (exercise 17).
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Remote sensing of clouds
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Remote sensing of optical thickness in visible channels, effective radius in NIR
channels, exercise 19.
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Solar irradiance spectrum (surface)
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Solar transmittance spectrum (surface), O2A-Band

750 755 760 765 770 775 780
Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

n
sm

it
ta

n
ce

libradtran calculation (line-by-line)

Radiative transfer 10. February 2010 41 / 52



Radiation Radiative transfer equation Discrete ordinate method Single scattering properties Molecular absorption

Thermal irradiance spectrum (TOA)
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Absorption coefficients in atmospheric window
(8–14µm)
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altitude: 0.5 km, ARTS calculation
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Molecular physics

Molecules have 3 forms of internal energy

Eint = Erot + Evib + Eel

According to quantum mechanics energy states are quantized:
Erot - rotational energy (microwave)
Evib - vibrational energy (IR)
Eel - electronic energy (NIR/Vis/UV)

Erot < Evib < Eel

absorption: transition from lower to higher energy state
emission: transition from higher to lower energy state
absorption/emission lines characteristic for particular molecule
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Line broadening

1 Natural broadening
Heisenberg’s uncertainty priciple ∆E∆t & h
lifetime of molecule in excited state is finite
emitted energy is distributed over finite frequency interval ∆ν
negligible in Earth’s atmosphere

2 Collision / Pressure broadening
during emission molecule collides with other molecules
lifetime is shortened
interaction causes line-broadening (larger than natural broadening
because lifetime of molecule much longer than time between
collisions)
dominant below 20 km in Earth’s atmosphere

3 Doppler broadening
random thermal motion of molecules
different relative velocities between molecules and radiation source
causes Doppler broadening of emission lines
dominant above 50 km in Earth’s atmosphere
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Line-shapes

Figure from Zdunkowski et al.
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k-distribution method

aim: obtain average transmission in a particular spectral band
resort frequency grid according to absorption coefficient k and
replace wavenumber integration by integration over k:

Tν̄ =

∫
∆ν

e−k(ν)ds dν
∆s

=

∫ ∞
0

e−kdsh(k)dk

h(k) - probability density function (pdf) for occurence of k

integration over cumulative pdf g(k) =
∫ k

0 h(k)dk :

Tν̄ =

∫ 1

0
e−k(g)dsdg

g(k) is a smooth monotonically increasing function between 0
and 1 and the integral can be approximated by very few grid
points (e.g. using Gaussian quadrature)
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k-distribution method

Illustration of k-distribution method.
Figures from Zdunkowski et al.
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correlated-k-distribution method

k-distribution method exact only for homogeneous layer
for inhomogeneous atmosphere correlated-k method may be
used
Transmission for 2 trace gases:

Tν̄)(1,2) =

∫
∆ν

Tν(1)Tν(2)
dν
∆s

Approach results in integration over two cumulative PDFs
approximate method, accuracy investigated in e.g. Fu and Liao
(1992)
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Radiative transfer
1 Radiation

What is radiation?
Radiance I and irradiance E
Blackbody radiation

2 Radiative transfer equation
Derivation
Direct-diffuse splitting of radiation field
Horizontally homogeneous atmosphere

3 Discrete ordinate method
Solution of RTE using the DOM
DOM - Impact of number of streams
DOM - Deltascaling and intensity correction

4 Single scattering properties
Single scattering theory
Size distribution
Examples

5 Molecular absorption
Introduction
Line-by-line calculations
Broad-band calculations
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Radiative transfer applications
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Monte Carlo radiative transfer course

3D radiative transfer simulation using MYSTIC
Monte Carlo RT course: program your own code within 1 week!
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